首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于概率统计的地震事件公报评估算法   总被引:1,自引:0,他引:1  
王海军  王燕  王伟 《地震学报》2009,31(3):342-346
给出一种基于概率统计的地震事件公报评估算法.选择事件的发震时间、震中经纬度构造特征函数.当特征函数为正态分布时计算事件匹配概率,选择匹配概率大于90%的事件为匹配事件.将该算法应用于国际数据中心(IDC)自动处理与人工分析公报的比较分析.相对于人工分析结果,IDC数据自动处理的匹配率约为79%,误检率约为52.3%.该算法可应用于地震事件公报的日常对比分析、台网监测能力分析、数据自动处理结果评估等领域.   相似文献   

2.
We demonstrate that several techniques based on waveform cross-correlation are able to significantly reduce the detection threshold of seismic sources worldwide and to improve the reliability of arrivals by a more accurate estimation of their defining parameters. A master event and the events it can find using waveform cross-correlation at array stations of the International Monitoring System (IMS) have to be close. For the purposes of the International Data Centre (IDC), one can use the spatial closeness of the master and slave events in order to construct a new automatic processing pipeline: all qualified arrivals detected using cross-correlation are associated with events matching the current IDC event definition criteria (EDC) in a local association procedure. Considering the repeating character of global seismicity, more than 90 % of events in the reviewed event bulletin (REB) can be built in this automatic processing. Due to the reduced detection threshold, waveform cross-correlation may increase the number of valid REB events by a factor of 1.5–2.0. Therefore, the new pipeline may produce a more comprehensive bulletin than the current pipeline—the goal of seismic monitoring. The analysts’ experience with the cross correlation event list (XSEL) shows that the workload of interactive processing might be reduced by a factor of two or even more. Since cross-correlation produces a comprehensive list of detections for a given master event, no additional arrivals from primary stations are expected to be associated with the XSEL events. The number of false alarms, relative to the number of events rejected from the standard event list 3 (SEL3) in the current interactive processing—can also be reduced by the use of several powerful filters. The principal filter is the difference between the arrival times of the master and newly built events at three or more primary stations, which should lie in a narrow range of a few seconds. In this study, one event at a distance of about 2,000 km from the main shock was formed by three stations, with the stations and both events on the same great circle. Such spurious events are rejected by checking consistency between detections at stations at different back azimuths from the source region. Two additional effective pre-filters are f–k analysis and F prob based on correlation traces instead of original waveforms. Overall, waveform cross-correlation is able to improve the REB completeness, to reduce the workload related to IDC interactive analysis, and to provide a precise tool for quality check for both arrivals and events. Some major improvements in automatic and interactive processing achieved by cross-correlation are illustrated using an aftershock sequence from a large continental earthquake. Exploring this sequence, we describe schematically the next steps for the development of a processing pipeline parallel to the existing IDC one in order to improve the quality of the REB together with the reduction of the magnitude threshold.  相似文献   

3.
苏亚军  靳平  李莎  毛颖 《地震学报》2012,34(3):323-330
通过对国际数据中心(IDC)审议地震公报(REB)与美国先进的国家地震系统(ANSS)地震目录的比较,分析了国际监测系统(IMS)对美国内华达地区地震事件的检测和定位能力,以及影响监测结果的主要因素.结果表明,对内华达地区的地震事件,IMS最低可检测mb为2.1的地震事件.对M>4.5的地震事件,IMS可以全部检测;对...  相似文献   

4.
— The Prototype International Data Center (PIDC) has designed and implemented a system to process data from the International Monitoring System's hydroacoustic network. The automatic system detects and measures various signal characteristics that are then used to classify the signal into one of three categories. The detected signals are combined with the seismic and infrasonic detections to automatically form event hypotheses. The automatic results are reviewed by human analysts to form the Reviewed Event Bulletin (REB). Continuous processing of hydroacoustic data has been in place since May 1997 and during that time a large database of hydroacoustic signals has been accumulated. For a two-year period, the REB contains 13,582 T phases that are associated to 8,437 events. This is roughly 25% of REB events after taking station downtime into account. Predicted travel times used in locations are based on the arrival time of the peak a mplitude mode calculated from a normal mode propagation model. Global sound velocity and bathymetry databases are used to obtain reliable 2-D, seasonally dependent, travel-time tables for each hydroacoustic station in the PIDC. A limited number of ground-truth observations indicate that the predicted travel times are good to within 5 seconds for paths extending to over 7,000?km – corresponding to a relative error of less than 0.1%. The ground truth indicates that the random errors in measuring arrival times for impulsive signals are between 1 and 6 seconds. This paper describes and evaluates the automatic hydroacoustic processing compared to the analyst reviewed results. In addition, special studies help characterize the overall performance of the hydroacoustic network.  相似文献   

5.
—?An important requirement for a comprehensive seismic monitoring system is the capability to accurately locate small seismic events worldwide. Accurate event location can improve the probability of determining whether or not a small event, recorded predominantly by local and regional stations, is a nuclear explosion. For those portions of the earth where crustal velocities are not well established, reference event calibration techniques offer a method of increased locational accuracy and reduced locational bias.¶In this study, data from a set of mining events with good ground-truth data in the Powder River Basin region of eastern Wyoming are used to investigate the potential of event calibration techniques in the area. Results of this study are compared with locations published in the prototype International Data Center's Reviewed Event Bulletin (REB). A Joint Hypocenter Determination (JHD) method was applied to a s et of 23 events. Four of those events with superior ground-truth control (mining company report or Global Positioning System data) were used as JHD reference events. Nineteen (83%) of the solutions converged and the resulting set of station-phase travel-time corrections from the JHD results was then tested. When those travel-time corrections were applied individually to the four events with good ground-truth control, the average locational error reduced the original REB location error from 16.1?km to 5.7?km (65% improvement). The JHD locations indicated reduced locational bias and all of the individual error ellipses enclosed the actual known event locations.¶Given a set of well-recorded calibration events, it appears that the JHD methodology is a viable technique for improving locational accuracy of future small events where the location depends on arrival times from predominantly local and/or regional stations. In this specific case, the International Associ ation of Seismology and the Physics of the Earth's Interior (IASPEI) travel-time tables, coupled with JHD-derived travel-time corrections, may obviate the need for an accurately known regional velocity structure in the Powder River Basin region.  相似文献   

6.
—?The IASPEI91 global travel-time curves are used as the default for event location at the Prototype International Data Center (PIDC). In order to improve event location, a 1-D Baltic travel-time model was implemented at the PIDC in 1997 for locating events using regional phases from Fennoscandian stations. Where a single model is insufficient for characterizing the regional geology, path-dependent corrections, or Source Specific Station Corrections (SSSCs), are more appropriate for event locations. We have developed SSSCs for regional phases at the Fennoscandian stations by interpolating travel times through different 1-D models. SSSCs for stations NRIS and SPITS are also derived, given the fact that paths from both stations to high latitude events are within the Fennoscandia regionalization as Baltic.¶Validation testing of the SSSCs demonstrates that using SSSCs in event location is superior to not using SSSCs, a nd, in most cases, to using the 1-D model directly when locating events. For a ground-truth data set which includes events in the Baltic Shield with location accuracy better than 2?km, the average improvement in location due to SSSCs is 9?km, and the median coverage ellipse is reduced by 2710?km2 (from 3830 to 1120?km2). These results are similar to those obtained using the 1-D Baltic model. For a CEB (Calibration Event Bulletin) data set which includes events along the North Atlantic oceanic ridge and in central/southern Europe, using SSSCs the ridge events move closer to the ridge axis, and the European events move closer to CEB locations than 1-D Baltic locations. For a constrained JHD (Joint Hypocenter Determination) data set of events in the Novaya Zemlya region, when using SSSCs or the 1-D Baltic model, relative to the JHD locations mislocations are less or similar to those without SSSCs. All coverage ellipses are smaller but sti ll contain the JHD solutions.¶Our SSSCs are strongly dependent on the 1-D regional models and regionalization. Future development in 1-D velocity models and travel-time curves should improve such SSSCs, event locations, and uncertainties. It is hoped that the implementation and demonstration of SSSCs in the PIDC software will encourage these further developments. These SSSCs were implemented at the PIDC for Reviewed Event Bulletin (REB) location in April 1999.  相似文献   

7.
—?On September 29, 1996, a routine mining blast of about 390 metric tons was detonated underground at the Kirovskiy mine in the central Kola Peninsula. The United States was notified two weeks in advance that the blast was to take place and was given the date, approximate time, location and total charge. The explosion was detected and located by the prototype International Data Center (pIDC) and published in the Reviewed Event Bulletin (REB). Detailed information about the blast, including the type and depth of mining operation, the underground charge configuration, and the blasting delay pattern, is reviewed and combined with a seismological analysis of the event. The seismic analysis points to a possible associated tectonic component to the blast, consisting of a small rock burst or induced tremor, spall, or some combination of these mechanisms, that may have enhanced the shear waves, produced large Rg waves at low frequency, and small Pn/Sn and Pn/Lg amplitude ratios at high frequency. While these discriminants might identify the event as an earthquake, the spectral/cepstral analysis of the event clearly shows the ripple-fire delays. This event provides important confidence-building measures for both location calibration, in the form of travel-time corrections for location of mine events in this region, and for improved understanding of seismic discriminants expected for large mine blasts that may have an associated induced tectonic component (e.g., spall, mine tremor or rock burst).  相似文献   

8.
山西运城振动事件S变换时频分析   总被引:1,自引:1,他引:0  
基于S变换,对2005年以来山西南部运城及其附近地区的振动事件波形进行时频分析,并与山西南部地区的天然地震、爆破和塌陷地震波谱特征进行对比分析。结果表明:天然地震一般S波携带能量较大,衰减较慢,震相高低频成分呈现均匀分布;一般近台记录的人工爆破P波比S波发育,能量衰减较快,震相急促短暂;塌陷地震波列能量随时间和频率的展布相对集中,一般分布在频率较低区域;振动事件震相简单,被不同台站记录的波形能量优势分布及频率分布范围差异较大,衰减特征不明显。据此,基本可以排除山西南部及附近区域的振动事件为天然地震、爆破和塌陷事件的可能。  相似文献   

9.
Improving Regional Seismic Event Location in China   总被引:1,自引:0,他引:1  
—?In an effort to improve our ability to locate seismic events in China using only regional data, we have developed empirical propagation path corrections and applied such corrections using traditional location routines. Thus far, we have concentrated on corrections to observed P arrival times for crustal events using travel-time observations available from the USGS Earthquake Data Reports, the International Seismic Centre Bulletin, the preliminary International Data Center Reviewed Event Bulletin, and our own travel-time picks from regional data. Location ground truth for events used in this study ranges from 25?km for well-located teleseimic events, down to 2?km for nuclear explosions located using satellite imagery. We also use eight events for which depth is constrained using several waveform methods. We relocate events using the EvLoc algorithm from a region encompassing much of China (latitude 20°–55°N; longitude 65°–115°E). We observe that travel-time residuals exhibit a distance-dependent bias using IASPEI91 as our base model. To remedy this bias, we have developed a new 1-D model for China, which removes a significant portion of the distance bias. For individual stations having sufficient P-wave residual data, we produce a map of the regional travel-time residuals from all well-located teleseismic events. Residuals are used only if they are smaller than 10?s in absolute value and if the seismic event is located with accuracy better than 25?km. From the residual data, correction surfaces are constructed using modified Bayesian kriging. Modified Bayesian kriging offers us the advantage of providing well-behaved interpolants and their errors, but requires that we have adequate error estimates associated with the travel-time residuals from which they are constructed. For our P-wave residual error estimate, we use the sum of measurement and modeling errors, where measurement error is based on signal-to-noise ratios when available, and on the published catalog estimate otherwise. Our modeling error originates from the variance of travel-time residuals for our 1-D China model. We calculate propagation path correction surfaces for 74 stations in and around China, including six stations from the International Monitoring System. The statistical significance of each correction surface is evaluated using a cross-validation technique. We show relocation results for nuclear tests from the Balapan and Lop Nor test sites, and for earthquakes located using interferometric synthetic aperture radar. These examples show that the use of propagation path correction surfaces in regional relocations eliminates distance bias in the residual curves and significantly improves the accuracy and precision of seismic event locations.  相似文献   

10.
地震事件的自动处理过程中会发生遗漏.台站数量越多,地震分析员在手动扫描遗漏事件时所花费的时间就越长.本文讨论了一种自动扫描漏检事件的方法,该方法利用分析员的分析经验,结合台站分布状况和地球物理学规则,重新关联那些具有很可能来自特定震源区域而未被分析员关联的信号,以形成一个待验证的事件,供分析员审定.该方法大大减少了分析员的工作量,提高了地震公报的质量.  相似文献   

11.
The paper describes a temporary seismic project aimed at developing the national database of natural seismic activity for seismic hazard assessment, officially called “Monitoring of Seismic Hazard of Territory of Poland” (MSHTP). Due to low seismicity of Poland, the project was focused on events of magnitude range 1–3 in selected regions in order to maximize the chance of recording any natural event. The project used mobile seismic stations and was divided into two stages.Five-year measurements brought over one hundred natural seismic events of magnitudes ML range 0.5–3.8. Most of them were located in the Podhale region in the Carpathians. Together with previously recorded events this made it possible to conduct a preliminary study on ground motion prediction equation for this region. Only one natural event, of magnitude ML = 3.8, was recorded outside the Carpathians in a surprising location in central-west Poland.  相似文献   

12.
The Reviewed Event Bulletin (REB) of the International Data Center (IDC) has been used in order to investigate the seismicity of the Northwest Himalaya and its neighboring region for the time period June 1999 to March 2015 within the geographical coordinates 25–40° N latitude and 65–85° E longitude. We have used a very precisely located earthquake dataset recorded by the International Monitoring System (IMS) Network containing 7,583 events with body wave magnitudes from 2.5 to 6.3. The study area has been subdivided into six regions based on the Flinn-Engdahl (F-E) seismic and geographical regionalization scheme, which was used as the region classifications of the International Data Center catalog. The examined region includes NW India, Pakistan, Nepal, Xizang, Kashmir, and Hindukush. For each region, Magnitudes of completeness (Mc) and Gutenberg-Richter (GR) recurrence parameters (a and b values) have been estimated. The Gutenberg-Richter analysis is preceded by an overview of the seismotectonics of the study area. The obtained Mc values vary from 3.5 to 3.9. The lower value of Mc was found mainly in Xizang region whereas the higher Mc threshold is evident in Pakistan region. However, the b values vary from 1.19 to 1.48. The lowest b value is recorded in Xizang region, which is mostly related to the Main Karakoram Thrust (MKT) fault, whereas the highest b values are recorded in NW India and Kashmir regions, which are mostly related to the Main Frontal Thrust (MFT) fault. The REB for the selected period has been compared to the most renowned bulletin of global seismicity, namely that issued by the National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS). A study of 4,821 events recorded by USGS in the study region indicates that about 36 % of seismic events were missed and the catalog is considered as complete for events with magnitudes ≥4.0. However, both a and b values are obviously higher than those of IMS catalog. The a and b parameters in the Gutenberg-Richter magnitude–frequency relationship have been utilized to forecast the probability of future earthquakes of different magnitudes and returned periods (recurrence intervals).  相似文献   

13.
For the purpose of verifying compliance with the CTBT seismic monitoring is one of the four techniques used by the IDC. In order to improve the accuracy of the automatic and the reviewed bulletin epicenter locations the IDC uses SASC for the IMS seismic stations. SASC determination is a straightforward calculation done by comparing for selected events the azimuth and slowness from the waveform processing using array techniques to the theoretical values based on the event locations and the velocity model.The main problem, however, is to build a set of reference events, whose locations are accurate enough and not based on information from the stations to be calibrated. A reference event list assumed to meet this requirement is the Gamma bulletin, which was collected since 1993 and was compiled in the framework of the GSETT-3. In this work calculation of SASC for regional to teleseismic distances (up to 30 degrees) was performed for 11 IMS primary arrays. The calculation was done using Pg, Pn, P, Sg, Sn, and S phases based on the detection list obtained from the pIDC and the Gamma bulletin for 6 years (1993–1999). The number of Gamma events varies from several hundreds for some arrays (BRAR) to several tens of thousands for others (i.e. ARCES, ILAR). Due to the fact that the Gamma bulletin is purely voluntary, the coverage is non-uniform both in time and in space and the location accuracy is non-uniform. This drawback can be overcome by encouraging signatory states to submit quality Gamma bulletin data to the IDC. The work presented here can be used as a routine procedure for improving IMS array performance, especially at regional distances.  相似文献   

14.
In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f{-}k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as “very likely” Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from the mine. The location accuracy achieved automatically by the single-array process is remarkably good, and is comparable to that obtained interactively by an experienced analyst using two-array observations. The greatest problem encountered in the single array location procedure is the difficulty in determining arrival times for secondary phases, given the weak Sn phase and the complexity of the P-coda. The method described here could be applied to a wide range of locations and sources for which the monitoring of seismic activity is desirable. The effectiveness will depend upon the distance between source and receiver, the nature of the seismic sources and the level of regional seismicity.  相似文献   

15.
We have relocated seismic events registered within the Barents and Kara sea region from early twentieth century to 1989 with a view to creating a relocated catalog. For the relocation, we collected all available seismic bulletins from the global network using data from the ISC Bulletin (International Seismological Centre), ISC-GEM project (International Seismological Centre–Global Earthquake Model), EuroSeismos project, and by Soviet seismic stations from Geophysical Survey of the Russian Academy of Sciences. The location was performed by applying a modified method of generalized beamforming. We have considered several travel time models and selected one with the best location accuracy for ground truth events. Verification of the modified method and selection of the travel time model were performed using data on four nuclear explosions that occurred in the area of the Novaya Zemlya Archipelago and in the north of the European part of Russia. The modified method and the Barents travel time model provide sufficient accuracy for event location in the region. The relocation procedure was applied to 31 of 36 seismic events registered within the Barents and Kara sea region.  相似文献   

16.
—?Ground-truth information is essential for location calibration of the International Monitoring System network being developed under the Comprehensive Nuclear-Test-Ban Treaty. The objective of the calibration effort is to improve the accuracy of seismic event locations and to reduce the size of the error ellipse, both in automatic and in human analyst-reviewed bulletins, in order to meet the On-Site Inspection requirement for the size of the inspection area. Several databases were compiled and are maintained at the Prototype International Data Center (PIDC) to support calibration efforts. The Nuclear Explosion Database contains most readily accessible information about all nuclear explosions worldwide. The events in the Calibration Event Bulletin (CEB) carefully selected well located events from the PIDC Reviewed Event Bulletin and relocated using additional arrivals from regional networks requested from various National Data Centers. The Ground-Truth Database contains carefully selected events with known or well estimated location accuracies from the Nuclear Explosion Database, CEB, as well as from bulletins of U.S. National Earthquake Information Center and International Seismic Centre. It also contains data on chemical explosions and quarry blasts when confirmed by local or national authorities. Ground-truth events are subdivided into various ground-truth categories according to their location accuracy. The databases have been used in various calibration studies to derive and test corrections to improve event locations. Several location calibration techniques are briefly described. The validation test for any proposed operational change requires that the results meet the location calibration metrics developed and implemented at the PIDC.  相似文献   

17.
We use the dense Israel Seismic Network (ISN) to discriminate between low magnitude earthquakes and explosions in the Middle East region. This issue is important for CTBT monitoring, especially when considering small nuclear tests which may be conducted under evasive conditions. We explore the performance of efficient discriminants based on spectral features of seismograms using waveforms of 50 earthquakes and 114 quarry and underwater blasts with magnitudes 1.0–2.8, recorded by ISN short-period stations at distances up to 200 km. The single-station spectral ratio of the low and high-frequency seismic energy shows an overlap between explosions and earthquakes. After averaging over a subnet of stations, the resolving power is enhanced and the two classes of events are separated. Different frequency bands were tested; the (1–3 Hz)/(6–8 Hz) ratio provided the best discriminant performance. We also estimated normalized r.m.s. spectral amplitudes in several sequential equal frequency windows within the 1–12 Hz band and applied multiparametric automatic classification procedures (Linear Discrimination Function and Artificial Neural Network) to the amplitudes averaged over a subnetwork. A leave-one-out test showed a low rate of error for the multiparametric procedures. An innovative multi-station discriminant is proposed, based on spectral modulation associated with ripple-firing in quarry blasts and with the bubbling effect in underwater explosions. It utilizes a distinct azimuth-invariant coherency of spectral shapes for different stations in the frequency range (1–12 Hz). The coherency is measured by semblance statistics commonly used in seismic prospecting for phase correlation in the time domain. After modification, the statistics applied to the network spectra provided event separation. A new feature of all the above mentioned procedures is that they are based on smoothed (0.5 Hz window), instrument-corrected FFT spectra of the whole signal; they are robust to the accuracy of onset time estimation and, thus well suited to automatic event identification.  相似文献   

18.
The paper presents the method of local magnitude determination used at Polish seismic stations to report events originating in one of the four regions of induced seismicity in Poland or its immediate vicinity. The method is based on recalculation of the seismic moment into magnitude, whereas the seismic moment is obtained from spectral analysis. The method has been introduced at Polish seismic stations in the late 1990s but as of yet had not been described in full because magnitude discrepancies have been found between the results of the individual stations. The authors have performed statistics of these differences, provide their explanation and calculate station corrections for each station and each event source region. The limitations of the method are also discussed. The method is found to be a good and reliable method of local magnitude determination provided the limitations are observed and station correction applied.  相似文献   

19.
Optimization of Surface Wave Identification and Measurement   总被引:1,自引:0,他引:1  
—?Accurate and reliable measurement of surface waves is important to Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring because the M s :m b discriminant and its regional variants can in many cases unambiguously identify events as earthquakes or explosions. Surface wave processing at the International Data Center (IDC) is designed to be completely automated and is performed using the program Maxsurf. Maxsurf searches for surface wave characteristics in the expected surface wave arrival time window for all continuous long-period and broadband data in the IDC processing stream. The Prototype IDC GSETT3 Reviewed Event Bulletin (REB) now contains a very large and growing data set of surface wave measurements. Users of this data set need to be aware of processing changes and calibration errors in the GSETT3 experimental bulletin. The prototype International Monitoring System (IMS) surface wave detection threshold is approximately one magnitude unit lower than the detection threshold of other global networks that use visual identification of surface waves. Surface wave identification and measurement can be improved through development of regionalized earth models, phase-matched filtering and the use of path corrected spectral magnitudes in place of M s . Regionalized earth models are developed through tomographic inversion of a very large data set of phase and group velocity dispersion measurements. Discrimination capability can be improved through the use of maximum likelihood magnitudes and maximum likelihood upper bounds.  相似文献   

20.
The most recent eruptive cycle of Tungurahua volcano began in May 2004, and reached its highest level of activity in July 2004. This activity cycle is the last one of a series of four cycles that followed the reawakening and major eruption of Tungurahua in 1999. Between June 30 and August 12, 2004, three temporary seismic and infrasonic stations were installed on the flanks of the volcano and recorded over 2,000 degassing events. The events are classified by waveform character and include: explosion events (the vast majority, spanning three orders of pressure amplitudes at 3.5 km from the vent, 0.1–180 Pa), jetting events, and sequences of repetitive infrasonic pulses, called chugging events. Travel-time analysis of seismic first arrivals and infrasonic waves indicates that explosions start with a seismic event at a shallow depth (<200 m), followed ∼1 s later by an out-flux of gas, ash and solid material through the vent. Cluster analysis of infrasonic signals from explosion events was used to isolate four groups of similar waveforms without apparent correlation to event size, location, or time. The clustering is thus associated with source mechanism and probably spatial distribution. Explosion clusters do not exhibit temporal dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号