共查询到20条相似文献,搜索用时 15 毫秒
1.
以南通市区2006年至2007年的SAR影像为数据源,利用PS InSAR技术对南通市区进行地面沉降研究.结果显示,南通市区存在多个沉降漏斗,但沉降量不大,大部分区域的线性沉降速率不超过11 mm/a. 相似文献
2.
本文以阜南县为研究区域,选取2017—2022年88景Sentinel-1A影像数据,利用PS-InSAR技术对阜南县地面沉降分布情况进行研究和分析。结果表明:研究区近5年累计沉降量为0~60 mm,平均沉降速率为0~14 mm/a,其中西南部的方集镇至洪河桥镇、地城镇之间以及东南部的中岗镇至曹集镇区域地面沉降显著,最大累计沉降量为60 mm,平均沉降速率大于10 mm/a,地面沉降发育程度为中等发育。西南部的沉降区形状明显向西南方向延伸,主要是受到西南侧淮滨县地下水开采的影响;东南部的沉降区形状呈闭合的椭圆形,是由区内地下水超采所致。 相似文献
3.
基于PS-InSAR的 1995-2000 年苏州地面沉降监测 总被引:1,自引:0,他引:1
永久散射体(PS)技术在传统差分干涉测量(D-InSAR)中引入时间维,分析长时间内保持稳定的像元集相位变化,获得毫米级的地面测量精度,但是该技术要求处理的范围较小.采用分块处理的方法,通过PS差分干涉测量处理,得到1995-2000 年苏州地区地面沉降场的测量值.地面水准测量数据的验证分析表明,雷达差分干涉测量精度可达5mm(以水准测量代表地面形变的真实情况),基于分块处理的 PS-InSAR 技术在进行城市地面沉降监测和时空演化特征研究中具有很大的优势. 相似文献
4.
短时空基线PS-InSAR采用同时控制时间基线和垂直基线的方法,在一定程度上避免了时空失相关问题。文中采用短时空基线PS-InSAR的方法监测北京区域地面沉降,分析了区域地面沉降中的时间序列演化特征,以及抽取地下水、断裂带对地面沉降的影响。结果发现时间序列上的地面沉降存在明显的季节性变化特征,抽取地下水作为导致地面沉降的主要原因,在一定程度上还取决于断裂带的影响,地面沉降中心区域并没有完全与地下水漏斗吻合,这可能与可压缩土层的厚度有关。 相似文献
5.
武威市位于甘肃省中部,是一座典型的农业城市,分布有大量农业耕地。由于土壤疏松,地面容易受到降水和地下水的影响,易发生地面沉降地质灾害对居民的生产、生活造成不利影响。本文利用2017年2月至2022年12月的Sentinel-1A数据,通过PS-InSAR技术提取了武威市的地面沉降监测数据,包括视线向形变速率和累积形变量。对形变场的时空分布特征进行了详细分析,并引入Mogi模型反演地下深部变形范围。最后,结合研究区的降水数据和GRACE重力卫星获取到由陆地水负荷引起的地表形变数据,并对研究区的沉降成因进行了初步分析。结果表明,研究区存在两个主要沉降区,其中主沉降区A的最大累积沉降量达到-290.9 mm,视线向形变速率为-52.0 mm/a;主沉降区B的沉降量达到-178.1 mm,视线向形变速率为-43.8 mm/a。地表沉降呈现周期性变化,且向东南方向逐步扩展,与降水和地下水变化特征相似。通过Mogi模型反演,得出了主沉降区的地下影响范围(半径)和深度,其中主沉降区A为40.96 m和133.67 m,主沉降区B为38.60 m和140.78 m。按季节划分统计形变数据,结果表明,由于研究区所属干旱区,自然降水无法对地面沉降产生显著影响,而农耕时大量地下水的抽取才是导致区域地面沉降的主要原因。
相似文献6.
8.
PS-InSAR技术在北京通州区地面沉降监测中的应用 总被引:1,自引:0,他引:1
地面沉降是通州区重要地质灾害,由此引发的地裂缝次生灾害现象严重影响通州区的发展建设.以TerraSAR-X卫星影像为数据基础,采用永久散射体干涉测量(PS-InSAR)技术获取通州区地面沉降2015—2018年监测数据,分析了通州区地面沉降时空分布特征以及地裂缝次生灾害的垂向形变特征.结果表明:(1)通州区地面沉降主要集中在西部和北部地区,形成了以通州城区—梨园—台湖为中心的西部沉降区和以永顺—宋庄为中心的北部沉降区,每个沉降区内又分布着多个小的沉降漏斗,在区域上具有不均匀沉降的特征;(2)宋庄地裂缝两盘各存在一个沉降漏斗中心,裂缝带沿线存在多个小沉降漏斗,由裂缝带向两侧沉降量逐渐增大,垂直裂缝带方向存在显著的沉降梯度变化,差异沉降特征明显,建议在宋庄地裂缝成因机理研究过程中考虑差异沉降对地裂缝形成的影响. 相似文献
9.
巴彦淖尔市位于内蒙古自治区西部,区内第四系松散沉积层厚度大,具有发育地面沉降的基础条件。为填补该地区地面沉降研究的空白,利用PS-InSAR和SBAS-InSAR技术分别对巴彦淖尔市2007—2011年(ALOS PALSAR数据,98景)和2015—2016年(Radarsat-2数据,10景)的地面沉降情况进行定量... 相似文献
10.
PS-InSAR和SBAS-InSAR技术被广泛应用于地面沉降监测。由于技术原理的不同,两种技术的监测精度会受到地物散射特性的影响。目前缺少针对两种技术监测精度在复杂地物散射特征区的差异性的相关研究。本文针对宿州西水源地水位降落漏斗所引发的区域地面沉降,分别采用PS-InSAR和SBAS-InSAR技术,利用2017~2020年38景Sentinel-1A数据,对宿州西水源地110眼水井为中心的周边20×20 km2范围内的地面进行沉降监测,以宿州市区光纤监测孔SK01实测数据来校正时序InSAR监测结果并将两种技术得到的监测结果进行对比。选取15号、48号、98号水井附近以及研究区内城市郊区与城市中心区特征点进行时序分析并在建筑密集区域进行精度分析。结果表明:研究区内两种技术的监测结果具有一致性和相关性。但是,在快速沉降区域,SBAS-InSAR技术解算鲁棒性更强,监测到了水源地西侧沉降漏斗的中心区域。在城市郊区地物散射弱区,两种技术监测结果的数值偏差较大。在城市中心区地物散射强区PS-InSAR可以从更小尺度反映建筑结构与周围环境的沉降差异。相比之下,PS-InSAR更适合于研究城市中心区建筑结构与周围环境的沉降差异,SBAS-InSAR更适合于研究城市郊区分辨率较低的大规模变形趋势。 相似文献
11.
通过对沿线地形地貌、工程地质、水文地质的调查,利用宁波地面沉降漏斗扩展动态结果、沉降中心各土层变形量统计和各土层累计沉降量,分析了宁波轨道规划区域地面沉降特征。针对宁波区域地面沉降监测存在的问题,提出由地面沉降基岩标、地面沉降分层标、水准点、孔隙水压力孔和地下水监测井等组成的宁波轨道交通地面沉降监测网布设方案,探讨了地面沉降监测及预警对策。轨道交通地面沉降监测网的建立将减轻地面沉降对轨道交通造成的影响。 相似文献
12.
东莞市是珠三角城市群和粤港澳大湾区的重要节点城市,深厚欠固结软弱土及其诱发的地面沉降已成为湾区内代表性的区域地质灾害问题,影响城市地质环境安全。为研究东莞市地面沉降发育规律及时空演变特征,采用改进时序InSAR技术对覆盖东莞地区的137景Sentinel-1 SLC SAR影像数据进行处理,分析了2015年6月至2020年6月地表形变动态演化规律。结果表明:(1)全域内地表沉降变形整体较稳定,沉降发育区占市域面积的34.6%,变形严重发育区主要集中在麻涌镇、道滘镇、洪梅镇、中堂镇、沙田镇及滨海湾新区;(2)大部分沉降变形点处于缓慢发展变形阶段,年平均沉降速率在20 mm/a以内,累计沉降量在1 000 mm以内;(3)结合形变监测和现场调查,认为地面沉降与深厚软土发育和人类工程活动的耦合作用有很强的相关性。证明该方法能较好地识别和反映城市复杂形态区地面沉降发育的时空演化特征,为灾害预警、减避及治理提供技术支持。 相似文献
13.
14.
基于PS-InSAR技术的断裂带地壳形变实验研究 总被引:1,自引:1,他引:1
PS-InSAR技术克服了常规D-InSAR技术的空间、时间失相干和大气相位延迟等影响,对高相干点的差分干涉相位采用二维线性(或非线性)回归分析模型获取微小形变。概述PS-InSAR技术的相位组成、技术处理流程,以位于祁连山海原断裂带北盘的海原县为实验区,采用2003—2009年的21景ENVISAT ASAR数据,以GAMMA软件IPTA模块为软件平台处理得出实验区位移速率为-7~-9 mm/a,运动方向为自东向西,断裂带表现为左旋走滑,实验结果与GPS、库仑应力和地质学方法结果有较好的一致性。 相似文献
15.
16.
17.
豫北平原是河南省平原地区地面沉降灾害较严重地区之一,快速全面掌握豫北平原地面沉降信息、有效防控地面沉降的持续快速发展对中原城市群建设至关重要。本文借助中高分辨率RADARSAT-2雷达数据,基于SBAS-InSAR技术获取了豫北平原2014-2016年的地面沉降监测数据。监测结果表明:两年内豫北平原地面整体下沉,区内共圈定8个较明显的沉降区,总面积约3 006 km2,各沉降区沉降速率在25.00~114.85 mm/a之间;其中,除安阳县白壁镇-内黄县沉降区和辉县沉降区最大沉降速率分别达到95.36和114.85 mm/a之外,其余6个沉降区最大沉降速率均小于73.58 mm/a。根据沉降区现场实地调查和综合分析发现,豫北平原地面沉降主要是活动断裂、松软岩土、地下水超采、城市建设活动、石油和地热资源开采等共同作用的结果。建议将豫北平原地面沉降的防控重点放在人类活动引起的地下水超采和城市建设引发的松软岩土层超量堆载等方面。 相似文献
18.
近几年,盘锦地区的地面沉降问题开始受到人们的关注。为了掌握盘锦地区地面沉降现状,包括沉降中心位置、沉降区面积、沉降量、沉降速率等,选取2013-2016年覆盖研究区的19景C波段Radarsat-2 SAR数据,采用SBAS-InSAR技术提取了盘锦地区地面沉降速率和累积沉降量。结果表明,研究区内存在两个沉降区:曙四联沉降区,面积约为43.6 km2,最大沉降速率为-151.49 mm·a-1;龙王村沉降区,面积约为33.28 km2,最大沉降速率为-119.55 mm·a-1。通过地表形变量时序分析,发现两个沉降区的范围随着时间不断扩大,累积沉降量不断增大。与水准监测数据进行对比后发现,两种监测方法得到的沉降区范围和沉降量大体一致,但两者间仍有差别。对研究区内油田井场分布和地下水水位降落漏斗特征与沉降区分布进行了对比分析,研究表明地面沉降与地下水开采、油气资源开采、新构造运动等多种因素具有密切关系。研究结果将为地质环境的管理、地面沉降灾害的防治及资源开发利用规划提供基础依据。 相似文献
19.
大同市煤炭资源丰富,但煤矿开采活动造成的地面沉降等地质环境问题一定程度上制约着矿区发展。为监测大同市云冈矿区的地面沉降特征,基于哨兵-1A卫星数据,文章使用星载合成孔径雷达差分干涉测量技术(Differential Interferometric Synthetic Aperture Radar,D-InSAR)技术处理2020年6—7月的2景影像,初步获取矿区沉降区域特征,监测区最大沉降量达4.6 cm/36 d;采用小基线集差分干涉技术(Small Baseline Subset InSAR,SBAS-InSAR)处理2019年1月—2020年12月的24景影像,得到监测区部分沉陷区域的长时间序列形变量,该形变量与2020年1月—2020年9月的同地区25景影像数据永久散射体合成孔径雷达干涉测量(Persistent Scattered Interferometric Synthetic Aperture Radar,PS-InSAR)监测形变空间分布一致,形变趋势吻合。综合以上3种InSAR监测结果表明,监测区内存在多达12个明显快速沉降区,均分布于矿区内,其中最大沉降速率达180 mm/y,2019—2020年最大累积沉降量为333 mm,东南部城市区域没有明显形变迹象。研究结果为矿区沉降监测及合理开采提供科学依据。 相似文献
20.
深圳市南山区后海片区为总部大厦基地,莲花山断裂带和珠江口大断裂带在此交汇,区域内基岩埋藏较深,断层较发育,存在巨厚的风化深槽,地面高层建筑多采用超长桩基础。文中研究采用永久散射体合成孔径雷达干涉测量技术对深圳市南山区后海片区南部东侧沿海部分的地面和建(构)筑物进行大范围、长时间形变监测。监测结果表明,深槽上建筑物以及其他构筑物沉降相对稳定,目前在后海巨厚深槽上的建筑桩基施工工艺安全有效。沉降量较大的区域为深圳湾公园草地及其周边区域,主要由于填海造陆软土引起形变。经过与传统监测技术的对比,InSAR技术监测精度满足规范要求。在大范围、低成本、高精度、高效率的形变监测需求方面,InSAR技术具有优势。 相似文献