首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preservation of mineral assemblages that were fluid‐present during their prograde history is primarily related to the consumption of the fluid by growth of more hydrous minerals as the retrograde history begins. The range of behaviour relating to the preservation of mineral assemblages is examined using calculated phase diagrams for fluid‐saturated conditions, contoured for the H2O content of the mineral assemblage. At equilibrium, as a mineral assemblage crosses contours of decreasing H2O content along a pressure–temperature path, it dehydrates, the fluid being lost from the rock. If the assemblage crosses contours of increasing H2O content, the mineral assemblage starts to rehydrate using any fluid on its grain boundaries. When the rock has consumed its fluid, the resulting mineral assemblage is that preserved in the rock. Conditions relating to the preservation of mineral assemblages are discussed, and examples of the consequences of different pressure–temperature paths on preservation in a metapelitic and a metabasic rock composition are considered on phase diagrams calculated with thermocalc .  相似文献   

2.
The prograde disappearance of staurolite can be described inthe model system K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) by thereaction: staurolite + muscovite + quartz = biotite + aluminumsilicate + garnet + water. The common occurrence and world—widedistribution of the assemblage staurolite-biotite-aluminum silicate-garnet(SBAG) in quartz-mica-schist suggest that the model reactionmay be over-simplified. Previous workers have suggested thatthe SBAG assemblage (1) is a strictly divariant assemblage thatbuffered water activity, (2) is stabilized by non-KFMASH components,and (3) did not attain equilibrium. We used least-squares regression to show that balanced reactionsdo not exist among the minerals in samples of SBAG assemblagesfrom Califonia and New England. The absence of reaction relationshipscan be explained by imbalances in two or three of the minorelements Zn, Mn, and either Ca or Na. The assemblage is apparentlystabilized by non-KFMASH components. Criteria for mapping staurolite-out isograds that representthe conditions of the KFMASH staurolite-out reaction dependon which of the four phases is the ‘extra’ phase,and require an understanding of the thermodynamic effects ofall the ‘extra’ components. Our results suggestthat transition zones of SBAG assemblages near staurolite-outisograds are the result of ‘extra’ components. However,it is uncertain whether µH2O of fluids in equilibriumwith SBAG assemblages varied across such zones.  相似文献   

3.
Abstract Dehydration-melting reactions, in which water from a hydrous phase enters the melt, leaving an anhydrous solid assemblage, are the dominant mechanism of partial melting of high-grade rocks in the absence of externally derived vapour. Equilibria involving melt and solid phases are effective buffers of aH2,o. The element-partitioning observed in natural rocks suggests that dehydration melting occurs over a temperature interval during which, for most cases, aH2o is driven to lower values. The mass balance of dehydration melting in typical biotite gneiss and metapelite shows that the proportion of melt in the product assemblage at T± 850°C is relatively small (10–20%), and probably insufficient to mobilize a partially melted rock body. Granulite facies metapelite, biotite gneiss and metabasic gneiss in Namaqualand contain coarse-grained, discordant, unfoliated, anhydrous segregations, surrounded by a finer grained, foliated matrix that commonly includes hydrous minerals. The segregations have modes consistent with the hypothesis that they are the solid and liquid products of the dehydration-melting reactions: Bt + Sil + Qtz + PI = Grt ° Crd + Kfs + L (metapelite), Bt + Qtz + Pl = Opx + Kfs + L (biotite gneiss), and Hbl + Qtz = Opx + Cpx + Pl + L (metabasic gneiss). The size, shape, distribution and modes of segregations suggest only limited migration and extraction of melt. Growth of anhydrous poikiloblasts in matrix regions, development of anhydrous haloes around segregations and formation of dehydrated margins on metabasic layers enclosed in migmatitic metapelites all imply local gradients in water activity. Also, they suggest that individual segregations and bodies of partially melted rock acted as sinks for soluble volatiles. The preservation of anhydrous assemblages and the restricted distribution of late hydrous minerals suggest that retrograde reaction between hydrous melt and solids did not occur and that H2O in the melt was released as vapour on crystallization. This model, combined with the natural observations, suggests that it is possible to form granulite facies assemblages without participation of external fluid and without major extraction of silicate melt.  相似文献   

4.
Melt loss and the preservation of granulite facies mineral assemblages   总被引:29,自引:3,他引:29  
The loss of a metamorphic fluid via the partitioning of H2O into silicate melt at higher metamorphic grade implies that, in the absence of open system behaviour of melt, the amount of H2O contained within rocks remains constant at temperatures above the solidus. Thus, granulite facies rocks, composed of predominantly anhydrous minerals and a hydrous silicate melt should undergo considerable retrogression to hydrous upper amphibolite facies assemblages on cooling as the melt crystallizes and releases its H2O. The common occurrence of weakly retrogressed granulite facies assemblages is consistent with substantial melt loss from the majority of granulite facies rocks. Phase diagram modelling of the effects of melt loss in hypothetical aluminous and subaluminous metapelitic compositions shows that the amount of melt that has to be removed from a rock to preserve a granulite facies assemblage varies markedly with rock composition, the number of partial melt loss events and the P–T conditions at which melt loss occurs. In an aluminous metapelite, the removal of nearly all of the melt at temperatures above the breakdown of biotite is required for the preservation of the peak mineral assemblage. In contrast, the proportion of melt loss required to preserve peak assemblages in a subaluminous metapelite is close to half that required for the aluminous metapelite. Thus, if a given proportion of melt is removed from a sequence of metapelitic granulites of varying composition, the degree of preservation of the peak metamorphic assemblage may vary widely.  相似文献   

5.
Eclogite facies metatroctolites from a variety of Western Alps localities (Voltri, Monviso, Lanzo, Allalin, Zermat–Saas, etc.) that preserve textural evidence of their original form as bimineralic olivine‐plagioclase rocks are considered in terms of calculated mineral equilibria in the system Na2O‐CaO‐FeO‐MgO‐Al2O3‐SiO2‐H2O (NCFMASH). Pseudosections, based on a new petrogenetic grid for NCFMASH presented here, are used to unravel the metamorphic history of the metatroctolites, considering the rocks to consist of different composition microdomains corresponding to the original olivine and plagioclase grains. On the basis that the preservation of the mineral assemblage in each microdomain will tend to be from where on a rock's P–T path the metamorphic fluid phase is used up via rehydration reactions, P–T pseudosections contoured for water content, and P–T path‐MH2O (amount of water) pseudosections, are used to examine fluid behaviour in each microdomain. We show that the different microdomains are likely to preserve their mineral assemblages from different places on the P–T path. For the olivine microdomain, the diagnostic mineral assemblage is chloritoid + talc (+ garnet + omphacite). The preservation of this assemblage, in the light of the closed system P–T path‐MH2O relationships, implies that the microdomain loses its metamorphic fluid as it starts to decompress, and, in the absence of subsequent hydration, the high pressure mineral assemblage is then preserved. In the plagioclase microdomain, the diagnostic assemblage is epidote (or zoisite) + kyanite + quartz suggesting a lower pressure (of about 2 GPa) than for the olivine microdomain. In the light of P–T path‐MH2O relationships, development of this assemblage implies breakdown of lawsonite across the lawsonite breakdown reaction, regardless of the maximum pressure reached. It is likely that the plagioclase microdomain was mainly fluid‐absent prior to lawsonite breakdown, only becoming fluid‐present across the reaction, then immediately becoming fluid‐absent again.  相似文献   

6.
C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites   总被引:4,自引:0,他引:4  
Abstract C-O-H fluid produced by the equilibration of H2O and excess graphite must maintain the atomic H/O ratio of water, 2:1. This constraint implies that all thermodynamic properties of the fluid are uniquely determined at isobaric-isothermal conditions. The O2, H2O and CO2 fugacities (fo2, fH2O and fCO2) of such fluids have been estimated from equations of state and fit as a function of pressure and temperature. These fugacities can be taken as characteristic for graphitic metamorphic systems in which the dominant fluid source is dehydration, e.g. pelitic lithologies. Because there are no compositional degrees of freedom for graphite-saturated fluids produced entirely by dehydration, the variance of the dehydration process is not increased in comparison with that in non-graphitic systems. Thus, compositional ‘buffering’of C-O-H fluids by dehydration equilibria, a common petrological model, requires that redox reactions, decarbonation reactions or external, H/O ± 2, fluid sources perturb the evolution of the metamorphic system. Such perturbations are not likely to be significant in metapelitic environments, but their tendency will be to increase the fO2 of the fluid phase. At high metamorphic grades, pyrite desulphidation reactions may cause a substantial reduction of fH2O and slight increases in fO2 and fCO2 relative to sulphur-free fluid. At low metamorphic grade, sulphur solubility in H/O ± 2 fluids is so low that pyrite decomposition must occur by sulphur-conserving reactions that cause iron depletion in silicates, a common feature of sulphidic pelites. With increasing temperature and sulphur solubility, pyrite desulphidation may be driven by dehydration reactions or infiltration of H2O-rich fluids. The absence of magnetite and the assemblages carbonate + aluminosilicate or pyrite + pyrrhotite + ilmenite from most graphitic metapelites is consistent with an H/O = 2 model for GCOH(S) fluid. For graphitic rocks in which such a model is inapplicable, a phase diagram variable that defines the H/O ratio of GCOH(S) fluid is more useful than the conventional fO2 variable.  相似文献   

7.
Data on compositions of coexisting minerals in the graphite-bearing carbonatites of the Chernigovka massif are reported. Thermodynamic analysis of these results made it possible to establish that the temperature of equilibrium between graphite, dolomite, calcite, magnetite, and olivine for silica activity buffered by the (zircon + baddeleyite) assemblage is approximately 600°C. The minimal pressure of formation of these mineral assemblages is approximately 0.2 GPa, which is consistent with estimates of the erosion depth for the Chernigovka massif. The oxygen fugacity typical of the graphite-bearing carbonatite is 0.6–0.8 log units below the quartz-magnetite-fayalite buffer. Such values are typical of magmatic systems, e.g., basalts of the mid-ocean ridges (MORB). At 600°C, the gas phase in the C-H-O system equilibrated with the mineral assemblage of the carbonatite studied is dominated by CO2 and H2O, whereas methane-rich fluids appear at lower temperatures.  相似文献   

8.
Polymetamorphic metapelites and embedded eclogites share a complex, episodic interplay of dehydration and fluid infiltration at the eclogite type‐locality (Saualpe–Koralpe, Eastern Alps, Austria). The metapelites inherited a fluid content (i.e. mineral‐bound OH expressed in terms of mol.% H2O) of ~6–7 mol.% H2O from high‐T–low‐P metamorphism experienced during the Permian. At or near Pmax of the subsequent Eoalpine event (~20 kbar and 680°C), the breakdown of paragonite to Na‐rich clinopyroxene and kyanite in metapelites released a discrete pulse of hydrous fluid. Prior to the dehydration event, the rocks were largely fluid absent, allowing only limited re‐equilibration during the prograde Eoalpine evolution. Similarly, Permian‐aged gabbros have persisted metastably due to the absence of a catalyst prior to fluid‐induced re‐equilibration. The fluid triggered partial to complete eclogitization along a fluid infiltration front partially preserved in metagabbro. Near‐isothermal decompression to ~7.5–10 kbar and 670–690°C took place under fluid‐absent conditions. After decompression, a second breakdown of phengitic white mica and garnet produced muscovite, biotite, plagioclase and ~0.1–0.7 mol.% H2O that enhanced extensive fluid‐aided re‐equilibration of the metapelites. Potential relicts of high‐P assemblages were largely obliterated and replaced by the recurrent amphibolite facies assemblage garnet+biotite+staurolite+kyanite+muscovite+plagioclase+ilmenite+quartz. The hydrous fluid originating from the metapelites infiltrated the embedded eclogites at these P–T conditions and induced the local breakdown of the peak assemblage omphacite and garnet to fine‐grained symplectites of diopside and plagioclase. Further fluid infiltration led to the formation of hornblende–quartz poikiloblasts at the expense of the symplectites. The metapelites re‐equilibrated until the growth of retrograde staurolite consumed any remaining free fluid, thereby terminating the process. Further re‐equilibration is inhibited by both the lack of a catalytic fluid and H2O as a reactant essential for rehydration reactions. The interplay between fluid sources and fluid sinks describes a closed cycle for the rocks at the eclogite type‐locality. Final, near‐isobaric cooling is indicated by a slight increase of XFe in garnet rims. Post‐decompression dehydration and fluid‐aided re‐equilibration arrested by the introduction of staurolite might explain the apparently homogeneous retrogression conditions as well as the notorious absence of diagnostic high‐P assemblages in metapelites at the eclogite type‐locality.  相似文献   

9.
Due to the retrograde cation exchange problems experienced by conventional geothermobarometers above their closure temperatures, petrogenetic grids are a potentially powerful alternative to unravelling the PT evolution of ultrahigh‐T granulite terranes. A new qualitative KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) petrogenetic grid for Mg–Al rich metapelites containing K‐feldspar, sillimanite and quartzofeldspathic melt that successfully accounts for the majority of assemblages composed of variations of sapphirine, spinel, garnet, orthopyroxene, cordierite, biotite and quartz is developed. Univariant reactions are predicted utilizing a newly derived ‘melt projection’ and these reactions are entirely consistent with algebraically calculated reaction coefficients obtained using a set of standard phase compositions. Based upon observations of commonly associated mineral assemblages in natural lithologies the [Spr, Spl], [Qtz, Spl], [Bt, Spl], [Opx, Spr], [Opx, Qtz] and [Bt, Opx] invariant points are assumed to be stable, whilst the [Grt, Spr], [Grt, Qtz], [Spr, Qtz] and [Crd, Qtz] are assumed to be metastable. Biotite‐bearing assemblages are confined to the lowest temperatures, and sapphirine + quartz to the highest temperatures. Orthopyroxene + sillimanite ± quartz assemblages are confined to the highest pressures, whilst spinel‐bearing assemblages are stabilized by lower pressures. The alternative choice of invariant point stability leads to significant differences between this grid and previously proposed topologies. Spinel cannot be stable along with the orthopyroxene and sillimanite assemblage as previously proposed. Further, more subtle differences in topology result from the treatment of H2O in the chemographic projection used to deduce univariant reactions, and projecting from a water‐bearing quartzofeldspathic melt does not yield the same reaction coefficients as projection from H2O. The new grid allows reinterpretation of previously proposed evolutionary P–T paths for Mg–Al rich granulites from the Napier Complex and Rauer Group, East Antarctica, and In Ouzzal, Algeria.  相似文献   

10.
Lawsonite equilibria are predicted to occur over a broad P–T spectrum developed during subduction, yet lawsonite‐bearing assemblages are rare. In the context of mafic mineral equilibria modelled for the range of common crustal metamorphism (4–23 kbar, 400–750 °C) using the system Na2O‐CaO‐K2O‐FeO‐MgO‐Al2O3‐SiO2‐H2O and the software thermocalc , unusually high water contents are demanded by lawsonite assemblages. As a consequence, lawsonite assemblages are predicted to have difficulty forming and lawsonite equilibria to be uncommon. Metabasalt undergoing cooler subduction may experience substantial periods involving the metastable persistence of mineral assemblages because of water under‐saturation with non‐occurrence of recrystallization. If formed, lawsonite‐bearing assemblages are observed to be highly unstable; their preservation requires that exhumation be accompanied by substantial cooling. The amount of structurally bound H2O in minerals plays a critical role in the formation and preservation of mineral assemblages, controlling key changes in rocks undergoing subduction.  相似文献   

11.
The H2O content of wadsleyite were measured in a wide pressure (13–20 GPa) and temperature range (1,200–1,900°C) using FTIR method. We confirmed significant decrease of the H2O content of wadsleyite with increasing temperature and reported first systematic data for temperature interval of 1,400–1,900°C. Wadsleyite contains 0.37–0.55 wt% H2O at 1,600°C, which may be close to its water storage capacity along average mantle geotherm in the transition zone. Accordingly, water storage capacity of the average mantle in the transition zone may be estimated as 0.2–0.3 wt% H2O. The H2O contents of wadsleyite at 1,800–1,900°C are 0.22–0.39 wt%, indicating that it can store significant amount of water even under the hot mantle environments. Temperature dependence of the H2O content of wadsleyite can be described by exponential equation C\textH2 \textO = 6 3 7.0 7 \texte - 0.00 4 8T , C_{{{\text{H}}_{2} {\text{O}}}} = 6 3 7.0 7 {\text{e}}^{ - 0.00 4 8T} , where T is in °C. This equation is valid for temperature range 1,200–2,100°C with the coefficient of determination R 2 = 0.954. Temperature dependence of H2O partition coefficient between wadsleyite and forsterite (D wd/fo) is complex. According to our data apparent Dwd/fo decreases with increasing temperature from D wd/fo = 4–5 at 1,200°C, reaches a minimum of D wd/fo = 2.0 at 1,400–1,500°C, and then again increases to D wd/fo = 4–6 at 1,700–1,900°C.  相似文献   

12.
We have mapped the mineralogy onto the H2O-undersaturated liquidus surface of basaltic andesite from North Sister Volcano to constrain the crystalline assemblage with which, and PT–H2O conditions at which, the melt last equilibrated before erupting. Combining our high pressure experimental results with examples of tectonically exposed lower arc crust, geophysical constraints, trace element geochemistry, and melt inclusion volatile contents, we conclude that an anhydrous, augite-rich gabbro at ∼12 kbar and ∼1,175°C is the most probable lithology with which North Sister basaltic andesite with ∼3.5 wt% H2O last equilibrated before erupting. We speculate that reaction between this gabbro and primitive mantle-derived precursor melts buffered the compositions of magmas erupted from this volcano resulting in their remarkably limited compositional range.  相似文献   

13.
Low-pressure, medium- to high-temperature (Buchan-type) regional metamorphism of pelitic rocks in the Mount Lofty Ranges, South Australia, is defined by the development of biotite, staurolite-andalusite, fibrolite, prismatic sillimanite and migmatite zones. K-feldspar makes its first appearance in the prismatic sillimanite zone and here we restrict our discussion to lower grade assemblages containing prograde muscovite, concentrating particularly on well-developed andalusitestaurolite parageneses. In general, the spatial distribution and mineral chemical variation of these assemblages accord with the predictions of petrogenetic grids and P-T and T-X Fe pseudo-sections constructed from the internally consistent data set of Holland and Powell (1990) in the system KFMASH, assuming a(H2O) 1, although analysed white mica compositions are systematically more aluminous than predicted. Importantly, the stability ranges of most critical assemblages predicted by these grids and pseudo-sections coincide closely with P-T estimates calculated using the data set of Holland and Powell (1990) from the Mount Lofty Ranges assemblages. With the exception of Mn in garnet and Zn in one staurolite-cordierite-muscovite assemblage non-KFMASH components do not significantly appear to have affected the stability ranges of the observed assemblages. An apparent local reversal in isograd zonation in which andalusite first appears down-grade of staurolite suggests a metamorphic field gradient concave towards the temperature axis and, together with evidence for essentially isobaric heating of individual rocks, is consistent with the exposures representing an oblique profile through a terrain in which heat was dissipated from intrusive bodies at discrete structural levels.Mineral abbreviations used in figures als Al2SiO5 phase - bi biotite - chl chlorite - ky kyanite - ph phengite - sill sillimanite - and andalusite - cd cordieritc - gt garnet - mu muscovite - q quartz - st staurolite  相似文献   

14.
Phase equilibria modelling of post‐peak metamorphic mineral assemblages in (ultra)high‐P mafic eclogite from the Tso Morari massif, Ladakh Himalaya, northwest India, has provided new insights into the potential behaviour and source of metamorphic fluid during exhumation, and constrained the P–T conditions of hydration. A series of PM(H2O) pseudosections constructed in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system show that a number of petrographically distinct hydration episodes occurred during exhumation from peak P–T conditions (~640 °C, 27–28 kbar), resulting in the formation of abundant compositionally zoned amphibole and minor clinozoisite poikiloblasts at the expense of a peak assemblage dominated by garnet and omphacite. Initial hydration is interpreted to have occurred as a result of the destabilization of talc following isothermal decompression to ~23 kbar, which led to the formation of barroisite–winchite amphibole core domains. An episode of fluid infiltration from an external source at ~19 kbar, with or without syn‐decompressional cooling to ~560 °C, resulted in further barroisitic–winchitic amphibole growth, followed by the formation of clinozoisite poikiloblasts. Continued buoyancy‐driven exhumation to the base of the lower crust is constrained to have taken place with no additional fluid input. A final hydration event is characterized by the formation of magnesiohornblende rims on the barroisite–winchite cores, with the former interpreted to have formed during later prograde overprinting in the middle crust associated with the final stages of exhumation. Notably, the vast majority of externally sourced H2O, comprising just over half of the current bulk rock fluid content, was added during this later hydration event. In a middle crustal setting, this is interpreted as the result of devolatilization reactions occurring in migmatitic host orthogneiss and/or metasedimentary units, or following the crystallization of partial melt.  相似文献   

15.
The eclogite facies assemblage K-feldspar–jadeite–quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite+quartz=albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm63Prp26Grs10)–K-feldspar–plagioclase–biotite±sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm50Prp14Grs35)–jadeite (Jd80–97Di0–4Hd0–8Acm0–7)–zoisite–phengite. Plagioclase is replaced by jadeite–zoisite–kyanite–K-feldspar–quartz, and biotite is replaced by garnet–phengite or omphacite–kyanite–phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar–jadeite–quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar–jadeite–quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15–21 kbar (±1.6–1.9 kbar) at 550±50 °C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio PH2O/PT. The inferred limiting a(H2O) for the assemblage jadeite–kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.  相似文献   

16.
In the southern Adula nappe (Central Alps), two stages of regional metamorphism have affected mafic and pelitic rocks. Earlier eclogite facies with a regional zonation from glaucophane eclogites to kyanite-hornblende eclogites was followed by a Tertiary overprint which varied from greenschist to high-grade amphibolite facies. Despite a common metamorphic history, contrasting equilibration conditions are often recorded by high-pressure mafic eclogite and adjacent predominantly lower-pressure pelite assemblages. This pressure contrast may be explained by different overprinting rates of the two bulk compositions during unloading. The rates are controlled by a mechanism in which dehydrating metapelites provide the H2O required for simultaneous overprinting of enclosed mafic eclogites by hydration.Quantitative mass balance modelling based on corona textures is used to show that overprinting of metapelites during unloading involved dehydration reactions. The relatively rapid rate of dehydration reactions led to nearly complete reequilibration of metapelites to amphibolite facies assemblages.After the formation during high-pressure metamorphism of mafic eclogites, later lower-pressure reequilibration by hydration to amphibolites was slow, and therefore incomplete, because it depended on large scale transport of H2O from adjacent, dehydrating metapelites.The facies contrast observed between rocks of different bulk composition is thus a consequence of the general tendency of metamorphic rocks to retain the most dehydrated assemblage as the final recorded state.  相似文献   

17.
The changing XCO2 in fluids during the progressive metamorphism in Sanbagawa belt of the Cretaceous subduction zone, Japan, was estimated by a newly proposed method. The subduction zone meta-sediments are characterized commonly by four-phase assemblages in the CaO–NaAlO2–KAlO2–Al2O3 system with excess quartz and a CO2–H2O binary fluid phase. Using the common assemblage of calcite–albite–muscovite–clinozoisite, XCO2 of the fluid was estimated to be from about 0.0001–0.0005 (the lowest grade chlorite zone), through 0.004–0.01 (garnet zone), 0.01–0.05 (albite–biotite zone) to 0.06–0.2 (oligoclase–biotite zone).The paragenetic relationship of meta-sediments from the subduction zones was compared in a wide PT range to cover the stability fields of aragonite and jadeite. As a result, an excellent PT–XCO2 relationship was delineated to serve as a quantitative monitor for the evolving fluid composition during the progressive metamorphism in subduction zones.  相似文献   

18.
High-pressure, low-temperature metamorphic Mn-rich quartzites from Andros and Evvia (Euboea) islands, Greece, situated in the Eocene blueschist belt of the Hellenides, reveal different Mn-Al-Ca-Mg-silicate assemblages in response to variable metamorphic grade. On Evvia, piemontite- and/or braunite-rich quartzites which are associated with low-grade blueschists (T<400° C, P> 8 kbar) show the principle mineral assemblage quartz + montite + sursassite + braunite + Mg-chlorite + hematite + rutile + titanite. The Mn-Al-silicate sursassite, basically (Mn2+, Ca)4 Al2(Al, Fe3+, Mn3+, Mg)4Si6O21(OH)7, thus far reported as a rare mineral, locally occurs as a rockforming mineral in cm- to m-thick layers. On Andros, higher-grade quartzites (T450–500° C, P>10 kbar) of similar composition contain the assemblage quartz + piemontite + spessartine + braunite + Mg-chlorite+hematite + phengite+ phlogopite + rutile. Rare sursassite is present only as a relict phase. Additional, mostly accessory minerals in quartzites from Evvia and Andros are ardennite, Na-amphibole, acmitic clinopyroxene, albite, apatite, and tourmaline. The chemical composition of the main phases is characterized in detail.Disequilibrium textures and mineral compositions in some samples from Andros and Evvia imply the reactions sursassite + braunite + quartz = spessartine+clinochlore±hematite + H2O + O2 (1) sursassite + braunite + phengite + quartz = spessartine + phlogopite±hematite + H2O + O2 (2) and in braunite-free assemblages sursassite + Mn3+Fe –1 3+ [hematite, piemontite] + hematite + quartz = spessartine + clinochlore + H2O+O2 (3) Reactions (1) to (3) have positive P-T slopes. They are considered to account for the breakdown of sursassite and the formation of spessartine during prograde metamorphism of the piemontite quartzites and related rocks. P-T data from Andros and Evvia and geological data from few other occurrences reported suggest sursassite+ quartz±braunite to be stable at T<400–450° C over a considerable pressure interval at least up to 10 kbar. Theoretical phase relations among Mn3+-Mn2+-silicates in the pseudoquaternary system Al-Mn-Ca-Mg with excess quartz, H2O, and O2 indicate that low-grade assemblages containing sursassite (±braunite±pumpellyite±viridine±piemontite + quartz) are likely precursors of higher-grade assemblages including spessartine, Mg-chlorite, braunite, viridine, and piemontite reported from greenschist-, amphibolite-, and high-grade blueschist-facies rocks of appropriate composition.  相似文献   

19.
Magnesian metamorphic rocks with metapelitic mineral assemblage and composition are of great interest in metamorphic petrology for their ability to constrain PT conditions in terranes where metamorphism is not easily visible. Phase–assemblage diagrams for natural and model magnesian metapelites in the system KFMASH are presented to document how phase relationships respond to water activity, bulk composition, pressure and temperature. The phase assemblages displayed on these phase diagrams are consistent with natural mineral assemblages occurring in magnesian metapelites. It is shown that the equilibrium assemblages at high pressure conditions are very sensitive to a(H2O). Specifically, the appearance of the characteristic HP assemblage chloritoid–talc–phengite–quartz (with excess H2O) in the magnesian metapelites of the Monte Rosa nappe (Western Alps) is due to the reduction of a(H2O). Furthermore, the mineral assemblages are determined by the whole-rock FeO/(FeO+MgO) ratio and effective Al content X A as well as P and T. The predicted mineral associations for the low- and high-X A model bulk compositions of magnesian metapelites at high pressure are not dependent on the X A variations as they show a similar sequence of mineral assemblages. Above 20 kbar, the prograde sequence of assemblages associated with phengite (with excess SiO2 and H2O) for low- and high-X A bulk compositions of magnesian metapelites is: carpholite–chlorite → chlorite–chloritoid → chloritoid–talc → chloritoid–talc–kyanite → talc–garnet–kyanite → garnet–kyanite ± biotite. At low to medium PT conditions, a low-X A stabilises the phengite-bearing assemblages associated with chlorite, chlorite + K-feldspar and chlorite + biotite while a high-X A results in the chlorite–phengite bearing assemblages associated with pyrophyllite, andalusite, kyanite and carpholite. A high-X A magnesian metapelite with nearly iron-free content stabilises the talc–kyanite–phengite assemblage at moderate to high PT conditions. Taking into account the effective bulk composition and a(H2O) involved in the metamorphic history, the phase–assemblage diagrams presented here may be applied to all magnesian metapelites that have compositions within the system KFMASH and therefore may contribute to gaining insights into the metamorphic evolution of terranes. As an example, the magnesian metapelites of the Monte Rosa nappe have been investigated, and an exhumation path with PT conditions for the western roof of the Monte Rosa nappe has been derived for the first time. The exhumation shows first a near-isothermal decompression from the Alpine eclogite peak conditions around 24 kbar and 505°C down to approximately 8 kbar and 475°C followed by a second decompression with concomitant cooling.M. Frey: deceased  相似文献   

20.
Abstract Mineral assemblages in different samples of amphibolite facies pelitic schists collected from two separate outcrops in the Moosilauke area, NH, record differences in the chemical potential of water during metamorphism. Mineralogical, petrological, and field relations indicate that mineral assemblages at both outcrops equilibrated at 520°C and 3.5–4.0 kbar. Thermodynamic analysis of the mineral assemblages demonstrates that maximum chemical potential differences at each outcrop were of the order of 150 calories, over distances of 10–20 m.
The differences in the chemical potential of water recorded in both bed-to-bed and outcrop-to-outcrop relations are consistent with the following conclusions: (1) mineral assemblages on a specific outcrop did not equilibrate with an external reservoir of fluid of fixed composition, (2) the relatively small magnitude of the chemical potential differences suggests little or no infiltration of externally derived fluid, (3) these differences on the outcrop scale are probably related to initial compositional variations and the buffer capacity of the mineral assemblage, and (4) the different values of the chemical potential of water exhibited by the various mineral assemblages permits an understanding of the effects of variable μH2O for amphibolite facies pelitic schists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号