首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anhydrous melting behaviour of two synthetic peridotite compositions has been studied experimentally at temperatures ranging from near the solidus to about 200° C above the solidus within the pressure range 0–15 kb. The peridotite compositions studied are equivalent to Hawaiian pyrolite and a more depleted spinel lherzolite (Tinaquillo peridotite) and in both cases the experimental studies used peridotite –40% olivine compositions. Equilibrium melting results in progressive elimination of phases with increasing temperature. Four main melting fields are recognized; from the solidus these are: olivine (ol)+orthopyroxene (opx)+clinopyroxene (cpx)+Al-rich phase (plagioclase at low pressure, spinel at moderate pressure, garnet at high pressure)+liquid (L); ol+opx+cpx+Cr-spinel+L; ol+opx+Cr-spinel +L: ol±Cr-spinel+L. Microprobe analyses of the residual phases show progressive changes to more refractory compositions with increasing proportion of coexisting melt i.e. increasing Mg/(Mg+Fe) and Cr/(Cr+Al) ratios, decreasing Al2O3, CaO in pyroxene.The degree of melting, established by modal analysis, increases rapidly immediately above the solidus (up to 10% melting occurs within 25°–30° C of the solidus), and then increases in roughly linear form with increasing temperature.Equilibrium melt compositions have been calculated by mass balance using the compositions and proportions of residual phases to overcome the problems of iron loss and quench modification of the glass. Compositions from the melting of pyrolite within the spinel peridotite field (i.e. 15 kb) range from alkali olivine basalt (<15% melting) through olivine tholeiite (20–30% melting) and picrite to komatiite (40–60% melting). Melting in the plagioclase peridotite field produces magnesian quartz tholeiite and olivine-poor tholeiite and, at higher degrees of melting (30–40%), basaltic or pyroxenitic komatiite. Melts from Tinaquillo lherzolite are more silica saturated than those from pyrolite for similar degrees of partial melting, and range from olivine tholeiite through tholeiitic picrite to komatiite for melting in the spinel peridotite field.The equilibrium melts are compared with inferred primary magma compositions and integrated with previous melting studies on basalts. The data obtained here and complementary basalt melting studies do not support models of formation of oceanic crust in which the parental magmas of common mid-ocean ridge basalts (MORB) are attributed to segregation from source peridotite at shallow depths ( 25 km) to leave residual harzburgite. Liquids segregating from peridotite at these depths are more silica-rich than common MORB.  相似文献   

2.
Experimental clinopyroxenes synthesized at 850–1500 °C and 0–60 kbar in the CMS and CMAS-Cr systems and in more complex lherzolitic systems have been used to calibrate a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer for Cr-diopsides derived from garnet peridotites. The experiments cover a wide range of possible natural peridotitic compositions, from fertile pyrolite to refractory, high-Cr lherzolite. The barometer is based on the Cr exchange between clinopyroxene and garnet. Pressure is formulated as a function of temperature and clinopyroxene composition:
where a CaCrTs Cpx=Cr−0.81·Cr#·(Na+K) and Cr#= , with elements in atoms per 6 oxygens. This formulation reproduces the experimental pressures to ±2.3 kbar (1σ) and has a temperature dependence (1.2–2.4 kbar/50 °C, varying with composition) that is weaker than that of the widely used Al-in-Opx barometer (2–3 kbar/50 °C). The enstatite-in-Cpx thermometer includes corrections for the effect of minor components and is formulated as
where K)). The thermometer reproduces the experimental temperatures to ±30 °C (1σ). The uncertainties of the present formulations are comparable to, or better than, those of the most widely used thermobarometers for garnet peridotites. P-T estimates obtained for diamond-bearing and graphite-bearing lherzolite xenoliths and peridotitic clinopyroxene inclusions in kimberlitic and lamproitic diamonds confirm the reliability of the thermobarometer. Cr-diopside thermobarometry appears to be a potential tool for obtaining information on the thermal state of the upper mantle and the extent of mantle sampling by deep-seated magmas. We consider the Cr-in-Cpx barometer to be the best alternative to the Al-in-Opx barometer for the evaluation of pressure conditions of equilibration of natural garnet lherzolites. P-T conditions of equilibration can be directly retrieved from the composition of Cr-diopside alone, thus allowing application to partially altered xenoliths, inclusions in diamonds, and loose grains from sediments. We foresee application of the present thermobarometer to evaluation of the diamond potential of kimberlite and lamproite provinces and in diamond exploration where Cr-diopside from deep mantle sources is preserved in the surficial weathering environment. Received: 16 August 1999 / Accepted: 17 March 2000  相似文献   

3.
Experiments have been done which simulate the modal metasomatism of spinel lherzolite by partial melts of the subducted slab. The experiments were designed so that the metasomatizing melts were generated during the experiments by partial melting of a slab analog (basaltic composition amphibolite). The melts are thought to be representative of hybridizing melts in that they are derived by high-pressure partial melting under conditions appropriate to a hot slab geotherm. During the experiments, the melts infiltrate into and metasomatize a model depleted peridotite. Chemical modifications to minerals in the peridotite are of the same nature and extent as those found in naturally metasomatized spinel lherzolites. Modal metasomatism produced pargasitic amphiboles in runs at 1.5 GPa and in all but the highest temperature run at 2.0 GPa. The amphiboles are indistinguishable from amphiboles found in amphibole-bearing peridotites from supra-subduction zone environments. Systematic variations in amphibole composition suggest that the melt infiltration process in the experiments involved continuous modification of the composition of the infiltrating melt as observed around inferred quenched melt (i.c., amphibolite or amphibolite/clinopyroxenite) veins in xenoliths and massif peridotites. The compositions of the initial and final mineral phases in the experiments and those of the metasomatizing melts are used to derive amphibole formation reactions at 1.5 and 2.0 GPa that are similar in form to those inferred in studies of natural amphibole-bearing peridotites. The metasomatism reactions show that the extent of amphibole formation in peridotite at 1.5 and 2.0 GPa will, in general, be limited by clinopyroxene and spinel abundance.  相似文献   

4.
The join tremolite (Tr)-pargasite (Pa) was studied at temperatures between 800 and 1150°C under water vapour pressure of 10 kbar. The results show a continuous solid solution of amphibole between the composition Tr80Pa20 and Pa100 at 800°C and 10kb. Pargasite melts incongruently and breaks down at high temperature to clinopyroxene+forsterite+spinel+L+V. A single phase amphibole with composition lying between Tr80Pa20 and nearly pure Pa, breaks down to amphibole of different composition plus other phases. The stability fields of amphibole spread toward higher temperature side with increasing pargasite content, and pargasite itself has the widest stability field. At subliquidus, the composition of amphibole coexisting with other phases becomes more pargasitic with increasing temperature. The compositions of liquid, which are formed by partial melting of amphibole of Tr40Pa60 composition (Fo-normative) under water vapour pressure of 10 kbar, are alumina-rich and Qz-normative.  相似文献   

5.
The Lherz orogenic lherzolite massif (Eastern French Pyrenees) displays one of the best exposures of subcontinental lithospheric mantle containing veins of amphibole pyroxenites and hornblendites. A reappraisal of the petrogenesis of these rocks has been attempted from a comprehensive study of their mutual structural relationships, their petrography and their mineral compositions. Amphibole pyroxenites comprise clinopyroxene, orthopyroxene and spinel as early cumulus phases, with garnet and late-magmatic K2O-poor pargasite replacing clinopyroxene, and subsolidus exsolution products (olivine, spinel II, garnet II, plagioclase). The original magmatic mineralogy and rock compositions were partly obscured by late-intrusive hornblendites and over a few centimetres by vein–wallrock exchange reactions which continued down to subsolidus temperatures for Mg–Fe. Thermobarometric data and liquidus parageneses indicate that amphibole pyroxenites started to crystallize at P ≥ 13 kbar and recrystallized at P < 12 kbar. The high AlVI/AlIV ratio (>1) of clinopyroxenes, the early precipitation of orthopyroxene and the late-magmatic amphibole are arguments for parental melts richer in silica but poorer in water than alkali basalts. Their modelled major element compositions are similar to transitional alkali basalt with about 1–3 wt% H2O. In contrast to amphibole pyroxenites, hornblendites only show kaersutite as liquidus phase, and phlogopite as intercumulus phase. They are interpreted as crystalline segregates from primary basanitic magmas (mg=0.6; 4–6 wt% H2O). These latter cannot be related to the parental liquids of amphibole pyroxenites by a fractional crystallization process. Rather, basanitic liquids mostly reused pre-existing pyroxenite vein conduits at a higher structural level (P ≤ 10 kbar). A continuous process of redox melting and/or alkali melt/peridotite interaction in a veined lithospheric mantle is proposed to account for the origin of the Lherz hydrous veins. The transitional basalt composition is interpreted in terms of extensive dissolution of olivine and orthopyroxene from wallrock peridotite by alkaline melts produced at the mechanical boundary layer/thermal boundary layer transition (about 45–50 km deep). Continuous fluid ingress allowed remelting of the deeper veined mantle to produce the basanitic, strongly volatiles enriched, melts that precipitated hornblendites. A similar model could be valid for the few orthopyroxene-rich hydrous pyroxenites described in basalt-hosted mantle xenoliths. Received: 15 September 1999 / Accepted: 31 January 2000  相似文献   

6.
Spinel peridotite xenoliths from the Atsagin-Dush volcanic centre, SE Mongolia range from fertile lherzolites to clinopyroxene(cpx)-bearing harzburgites. The cpx-poor peridotites typically contain interstitial fine-grained material and silicate glass and abundant fluid inclusions in minerals, some have large vesicular melt pockets that apparently formed after primary clinopyroxene and spinel. No volatile-bearing minerals (amphibole, phlogopite, apatite, carbonate) have been found in any of the xenoliths. Fifteen peridotite xenoliths have been analysed for major and trace elements; whole-rock Sr isotope compositions and O isotope composition of all minerals were determined for 13 xenoliths. Trace element composition and Sr-Nd isotope compositions were also determined in 11 clinopyroxene and melt pocket separates. Regular variations of major and moderately incompatible trace elements (e.g. heavy-rare-earth elements) in the peridotite series are consistent with its formation as a result of variable degrees of melt extraction from a fertile lherzolite protolith. The Nd isotope compositions of LREE (light-rare-earth elements)-depleted clinopyroxenes indicate an old (≥ 1 billion years) depletion event. Clinopyroxene-rich lherzolites are commonly depleted in LREE and other incompatible trace elements whereas cpx-poor peridotites show metasomatic enrichment that can be related to the abundance of fine-grained interstitial material, glass and fluid inclusions in minerals. The absence of hydrous minerals, ubiquitous CO2-rich microinclusions in the enriched samples and negative anomalies of Nb, Hf, Zr, and Ti in primitive mantle-normalized trace element patterns of whole rocks and clinopyroxenes indicate that carbonate melts may have been responsible for the metasomatic enrichment. Low Cu and S contents and high δ34S values in whole-rock peridotites could be explained by interaction with oxidized fluids that may have been derived from subducted oceanic crust. The Sr-Nd isotope compositions of LREE-depleted clinopyroxenes plot either in the MORB (mid-ocean-ridge basalt) field or to the right of the mantle array, the latter may be due to enrichment in radiogenic Sr. The LREE-enriched clinopyroxenes and melt pockets plot in the ocean island-basalt field and have Sr-Nd isotope signatures consistent with derivation from a mixture of the DMM (depleted MORB mantle) and EM (enriched mantle) II sources. Received: 18 January 1996 / Accepted: 23 August 1996  相似文献   

7.
Summary A garnet peridotite lens from Monte Duria (Adula nappe, Central Alps, Northern Italy) contains porphyroblastic garnet and pargasitic amphibole and reached peak metamorphic conditions of ∼830 C, ∼2.8 GPa. A first stage of near isothermal decompression to pressures <2.0 GPa is characterised by domains where fine grained spinel, clinopyroxene, orthopyroxene and amphibole form. The newly formed amphibole contains elevated levels of fluid mobile elements such as Rb, Ba and Pb indicating that recrystallization was assisted by infiltration of a crustal-derived fluid. Further decompression and cooling to ∼720 °C, 0.7–1.0 GPa associated with limited fluid influx is documented by the formation of orthopyroxene-spinel-amphibole symplectites around garnet. Zircon separated from this garnet peridotite exhibits two distinct zones. Domain 1 displays polygonal oscillatory zoning and high trace element contents. It contains clinopyroxene and amphibole inclusions with the same composition as the same minerals formed during the spinel peridotite equilibration, indicating that this domain formed under sub-solidus conditions during decompression and influx of crustal fluids. Domain 2 has no zoning and much lower trace element contents. It replaces domain 1 and is likely related to zircon recrystallization during the formation of the symplectites. SHRIMP dating of the two domains yielded ages of 34.2 ± 0.2 and 32.9 ± 0.3 Ma, respectively, indicating fast exhumation of the peridotite within the spinel stability field. We suggest that the Duria garnet peridotite originates from the mantle wedge above the tertiary subduction of the European continental margin and that it was assembled to the country rock gneisses between 34 and 33 Ma. Third author was Deceased  相似文献   

8.
We performed modified iterative sandwich experiments (MISE) to determine the composition of carbonatitic melt generated near the solidus of natural, fertile peridotite + CO2 at 1,200–1,245°C and 6.6 GPa. Six iterations were performed with natural peridotite (MixKLB-1: Mg# = 89.7) and ∼10 wt% added carbonate to achieve the equilibrium carbonatite composition. Compositions of melts and coexisting minerals converged to a constant composition after the fourth iteration, with the silicate mineral compositions matching those expected at the solidus of carbonated peridotite at 6.6 GPa and 1,230°C, as determined from a sub-solidus experiment with MixKLB-1 peridotite. Partial melts expected from a carbonated lherzolite at a melt fraction of 0.01–0.05% at 6.6 GPa have the composition of sodic iron-bearing dolomitic carbonatite, with molar Ca/(Ca + Mg) of 0.413 ± 0.001, Ca# [100 × molar Ca/(Ca + Mg + Fe*)] of 37.1 ± 0.1, and Mg# of 83.7 ± 0.6. SiO2, TiO2 and Al2O3 concentrations are 4.1 ± 0.1, 1.0 ± 0.1, and 0.30 ± 0.02 wt%, whereas the Na2O concentration is 4.0 ± 0.2 wt%. Comparison of our results with other iterative sandwich experiments at lower pressures indicate that near-solidus carbonatite derived from mantle lherzolite become less calcic with increasing pressure. Thus carbonatitic melt percolating through the deep mantle must dissolve cpx from surrounding peridotite and precipitate opx. Significant FeO* and Na2O concentrations in near solidus carbonatitic partial melt likely account for the ∼150°C lower solidus temperature of natural carbonated peridotite compared to the solidus of synthetic peridotite in the system CMAS + CO2. The experiments demonstrate that the MISE method can determine the composition of partial melts at very low melt fraction after a small number of iterations.  相似文献   

9.
 Geochemical data have been interpreted as requiring that a significant fraction of the melting in MORB source regions takes place in the garnet peridotite field, an inference that places the onset of melting at ≥80 km. However, if melting begins at such great depths, most models for melting of the suboceanic mantle predict substantially more melting than that required to produce the 7±1 km thickness of crust at normal ridges. One possible resolution of this conflict is that MORBs are produced by melting of mixed garnet pyroxenite/spinel peridotite sources and that some or all of the “garnet signature” in MORB is contributed by partial melting of garnet pyroxenite layers or veins, rather than from partial melting of garnet peridotite. Pyroxenite layers or veins in peridotite will contribute disproportionately to melt production relative to their abundance, because partial melts of pyroxenite will be extracted from a larger part of the source region than peridotite partial melts (because the solidus of pyroxenite is at lower temperature than that of peridotite and is encountered along an adiabat 15–25 km deeper than the solidus of peridotite), and because melt productivity from pyroxenite during upwelling is expected to be greater than that from peridotite (pyroxenite melt productivity will be particularly high in the region before peridotite begins melting, owing to heating from the enclosing peridotite). For reasonable estimates of pyroxenite and peridotite melt productivities, 15–20% of the melt derived from a source region composed of 5% pyroxenite and 95% peridotite will come from the pyroxenite. Most significantly, garnet persists on the solidus of pyroxenite to much lower pressures than those at which it is present on the solidus of peridotite, so if pyroxenite is present in MORB source regions, it will probably contribute a garnet signature to MORB even if melting only occurs at pressures at which the peridotite is in the spinel stability field. Partial melting of a mixed spinel peridotite/garnet pyroxenite mantle containing a few to several percent pyroxenite can explain quantitatively many of the geochemical features of MORB that have been attributed to the onset of melting in the stability field of garnet lherzolite, provided that the pyroxenite compositions are similar to the average composition of mantle-derived pyroxene-rich rocks worldwide or to reasonable estimates of the composition of subducted oceanic crust. Sm/Yb ratios of average MORB from regions of typical crustal thickness are difficult to reconcile with derivation by melting of spinel peridotite only, but can be explained if MORB sources contain ∼5% garnet pyroxenite. Relative to melting of spinel peridotite alone, participation of model pyroxenite in melting lowers aggregate melt Lu/Hf without changing Sm/Nd ratios appreciably. Lu/Hf-Sm/Nd systematics of most MORB can be accounted for by melting of a spinel peridotite/garnet pyroxenite mantle provided that the source region contains 3–6% pyroxenite with ≥20% modal garnet. However, Lu/Hf-Sm/Nd systematics of some MORB appear to require more complex melting regimes and/or significant isotopic heterogeneity in the source. Another feature of the MORB garnet signature, (230Th)/(238U)>1, can also be produced under these conditions, although the magnitude of (230Th)/(238U) enrichment will depend on the rate of melt production when the pyroxenite first encounters the solidus, which is not well-constrained. Preservation of high (230Th)/(238U) in aggregated melts of mixed spinel peridotite/garnet pyroxenite MORB sources is most likely if the pyroxenites have U concentrations similar to that expected in subducted oceanic crust or to pyroxenite from alpine massifs and xenoliths. The abundances of pyroxenite in a mixed source that are required to explain MORB Sm/Yb, Lu/Hf, and (230Th)/(238U) are all similar. If pyroxenite is an important source of garnet signatures in MORB, then geochemical indicators of pyroxenite in MORB source regions, such as increased trace element and isotopic variability or more radiogenic Pb or Os, should correlate with the strength of the garnet signature. Garnet signatures originating from melts of the garnet pyroxenite components of mixed spinel peridotite/garnet pyroxenite sources would also be expected to be stronger in regions of thin crust. Received: 15 February 1995/Accepted: 7 February 1996  相似文献   

10.
Experiments have been conducted in a peralkaline Ti-KNCMASH system representative of MARID-type bulk compositions to delimit the stability field of K-richterite in a Ti-rich hydrous mantle assemblage, to assess the compositional variation of amphibole and coexisting phases as a function of P and T, and to characterise the composition of partial melts derived from the hydrous assemblage. K-richterite is stable in experiments from 0.5 to 8.0 GPa coexisting with phlogopite, clinopyroxene and a Ti-phase (titanite, rutile or rutile + perovskite). At 8.0 GPa, garnet appears as an additional phase. The upper T stability limit of K-richterite is 1200–1250 °C at 4.0 GPa and 1300–1400 °C at 8.0 GPa. In the presence of phlogopite, K-richterite shows a systematic increase in K with increasing P to 1.03 pfu (per formula unit) at 8.0 GPa/1100 °C. In the absence of phlogopite, K-richterite attains a maximum of 1.14 K pfu at 8.0 GPa/1200 °C. Titanium in both amphibole and mica decreases continuously towards high P with a nearly constant partitioning while Ti in clinopyroxene remains more or less constant. In all experiments below 6.0 GPa ΣSi + Al in K-richterite is less than 8.0 when normalised to 23 oxygens+stoichiometric OH. Rutiles in the Ti-KNCMASH system are characterised by minor Al and Mg contents that show a systematic variation in concentration with P(T) and the coexisting assemblage. Partial melts produced in the Ti-KNCMASH system are extremely peralkaline [(K2O+Na2O)/Al2O3 = 1.7–3.7], Si-poor (40–45 wt% SiO2), and Ti-rich (5.6–9.2 wt% TiO2) and are very similar to certain Ti-rich lamproite glasses. At 4.0 GPa, the solidus is thought to coincide with the K-richterite-out reaction, the first melt is saturated in a phlogopite-rutile-lherzolite assemblage. Both phlogopite and rutile disappear ca. 150 °C above the solidus. At 8.0 GPa, the solidus must be located at T≤1400 °C. At this temperature, a melt is in equilibrium with a garnet- rutile-lherzolite assemblage. As opposed to 4.0 GPa, phlogopite does not buffer the melt composition at 8.0 GPa. The experimental results suggest that partial melting of MARID-type assemblages at pressures ≥4.0 GPa can generate Si-poor and partly ultrapotassic melts similar in composition to that of olivine lamproites. Received: 23 December 1996 / Accepted: 20 March 1997  相似文献   

11.
A garnet websterite nodule from the Honolulu volcanic series,Oahu, Hawaii, has been melted in the presence of nearly pureH2O. The solidus is intermediate between that of peridotiteand gabbro. The curve displays a temperature minimum around20 kb reflecting the breakdown of plagioclase. The Iiquidusis between 1130 ?C and 1150 ?C between 10 and 20 kb vapor pressure.Amphibole (pargasitic hornblende) has an extensive stabilityfield, reaching a maximum temperature about 20 ?C below thegarnet websterite liquidus at 15 kb and a maximum pressure of27.5 kb at 950 ?C. The amphibole-out curve intersects the soliduswith a positive slope. Liquids formed by partial melting of garnet websterite are quartz-normativewithin the stability field of amphibole, but become olivine-normative(tholeiitic) with increasing temperature. Amphibole and clinopyroxeneare enriched in Tschermak's molecule at higher temperatures,pargasite content of amphibole increases with increasing pressure. A garnet websterite-rich upper mantle containing modal olivineyields quartz-normative (13–16 per cent), aluminous (21–4wt. per cent A12O3) melts at 17 P 10 kb and in the presenceof nearly pure H2O. However, the presence of amphibole controlsthe liquid composition, a situation not found for liquids formedfrom wet peridotite. In contrast to many basalt liquids, liquidof garnet websterite composition cannot fractionate to andesiteby precipitation of amphibole, as amphibole is not a liquidusphase.  相似文献   

12.
Anhydrous partial melting experiments, at 10 to 30 kbar from solidus to near liquidus temperature, have been performed on an iron-rich martian mantle composition, DW. The DW subsolidus assemblage from 5 kbar to at least 24 kbar is a spinel lherzolite. At 25 kbar garnet is stable at the solidus along with spinel. The clinopyroxene stable on the DW solidus at and above 10 kbar is a pigeonitic clinopyroxene. Pigeonitic clinopyroxene is the first phase to melt out of the spinel lherzolite assemblage at less than 20°C above the solidus. Spinel melts out of the assemblage about 50°C above the solidus followed by a 150° to 200°C temperature interval where melts are in equilibrium with orthopyroxene and olivine. The temperature interval over which pigeonitic clinopyroxene melts out of an iron-rich spinel lherzolite assemblage is smaller than the temperature interval over which augite melts out of an iron-poor spinel lherzolite assemblage. The dominant solidus assemblage in the source regions of the Tharsis plateau, and for a large percentage of the martian mantle, is a spinel lherzolite.  相似文献   

13.
High pressure experimental studies of the melting of lherzolitic upper mantle in the absence of carbon and hydrogen have shown that the lherzolite solidus has a positive dP/dT and that the percentage melting increases quite rapidly above the solidus. In contrast, the presence of carbon and hydrogen in the mantle results in a region of ‘incipient’ melting at temperatures below the C,H-free solidus. In this region the presence or absence of melt and the composition of the melt are dependent on the amount and nature of volatiles, particularly the CO2, H2O, and CH4 contents of the potential C-H-O fluid. Under conditions of low (IW to IW + 1 log unit atP ∼ 20–35kb), fluids such as CH4+H2O and CH4+H2 inhibit melting, having a low solubility in silicate melts. Under these conditions, carbon and hydrogen are mobile elements in the upper mantle. At slightly higher oxygen fugacity (IW+2 log units,P∼20–35 kb) fluids in equilibrium with graphite or diamond in peridotite C-H-O are extremely water-rich. Carbon is thus not mobile in the mantle in this range and the melting and phase relations for the upper mantle lherzolite approximate closely to the peridotite-H2O system. Pargasitic amphibole is stable to solidus temperatures in fertile lherzolite compositions and causes a distinctive peridotite solidus, the ‘dehydration solidus’, with a marked change in slope (a ‘back bend’) at 29–30kb due to instability of pargasite at high pressure. Intersections of geothermal gradients with the peridotite-H2O solidi define the boundary between lithosphere (subsolidus) and asthenosphere (incipient melt region). This boundary is thus sensitive to changes in [affecting CH4:H2O:CO2 ratios] and to the amount of H2O and carbon (CO2, CH4) present. At higher conditions (IW + 3 log units), CO2-rich fluids occur at low pressures but there is a marked depression of the solidus at 20–21 kb due to intersection with the carbonation reaction, producing the low temperature solidus for dolomite amphibole lherzolite (T∼925°C, 21 to >31kb). Melting of dolomite (or magnesite) amphibole lherzolite yields primary sodic dolomitic carbonatite melt with low H2O content, in equilibrium with amphibole garnet lherzolite. The complexity of melting in peridotite-C-H-O provides possible explanations for a wide range of observations on lithosphere/asthenosphere relations, on mantle melt and fluid compositions, and on processes of mantle metasomatism and magma genesis in the upper mantle.  相似文献   

14.
Calibrations are presented for an independent set of four equilibria between end-members of garnet, hornblende, plagioclase and quartz. Thermodynamic data from a large internally-consistent thermodynamic dataset are used to determine the ΔG° of the equilibria. Then, with the known mixing properties of garnet and plagioclase, the non-ideal mixing in amphibole is derived from a set of 74 natural garnet–amphibole–plagioclase–quartz assemblages crystallised in the range 4–13 kbar and 500–800 °C. The advantage of using known thermodynamic data to calculate ΔG° is that correlated variations of composition with temperature and pressure are not manifested in fictive derived entropies and volumes, but are accounted for with non-ideal mixing terms. The amphibole is modelled using a set of ten independent end-members whose mixing parameters are in good agreement with the small amount of data available in the literature. The equilibria used to calibrate the amphibole non-ideal mixing reproduce pressures and temperatures with average absolute deviations of 1.1 kbar and 35 °C using an average pressure–temperature approach, and 0.8 kbar with an average pressure approach. The mixing data provide not only a basis for thermobarometry involving additional phases, but also for calculation of phase diagrams in complex amphibole-bearing systems. Received: 8 November 1999 / Accepted: 7 July 2000  相似文献   

15.
The join tremolite (Tr)-pargasite (Pa) has been studied in the temperature range 750 °–1,150 ° C under a water vapor pressure of 1 and 5 kbar. There is a continuous solid solution series between the compositions Tr85Pa15 and TroPa100 at 850 ° C and 5 kbar. Tremolite and pargasite are separated by a solvus at 1 kbar and the field of tremolitic amphibole +pargasitic amphibole+vapor is present in the region between Tr90Pa10 and Tr10Pa90 at 800 ° C. The phase assemblages at 850 ° C and 1 kbar change as follows with increasing pargasite component; clinopyroxene +orthopyroxene+quartz+vapor, tremolitic amphibole+vapor, tremolitic amphibole+clinopyroxene +forsterite+plagioclase+vapor, tremolitic amphibole+pargasitic amphibole+vapor, and pargasitic amphibole+vapor. The petrological significance of amphibole pairs in metamorphic rocks is discussed on the basis of the experimental results.  相似文献   

16.
The peridotite bodies of the Ulten Zone (Upper Austroalpine, Italian Eastern Alps) are enclosed in Variscan migmatites and derive from a mantle wedge environment. They display the progressive transformation of porphyroclastic spinel peridotites (T=1,200°C; P=1.5 GPa) into fine-grained garnet–amphibole peridotites (T=850°C; P=3 GPa). Detailed bulk-rock and mineral trace element analyses of a sample suite documenting the entire metamorphic evolution of the peridotites revealed several stages of metasomatism. The spinel peridotites derive from a depleted mantle that became enriched in some large ion lithophile element (LILE) and light rare earth elements (LREE). The same signature pertains to clinopyroxene and orthopyroxene, indicating that this metasomatic signature was acquired at the recorded temperature of 1,200°C. Such a temperature is considerably above the wet peridotite solidus and hence the metasomatic agent must have been a hydrous melt. Moreover, the Li-enrichment of the spinel-facies pyroxenes (up to 24 ppm Li) reflects disequilibrium distribution after exchange with a presumably mafic melt. cpx/opx D Li=3–7 and cpx/ol D Li=2.7–8 indicate that the spinel-facies clinopyroxene hosts higher Li amounts than the coexisting minerals. LREE fractionation, variable LREE enrichment, LILE enrichment with respect to HFSE (average clinopyroxene Pb N /Nb N =16–90) in spinel lherzolites can be related to chromatographic effects of porous melt flow. The significant enrichment of pyroxenes from the spinel lherzolites in Pb, U and Li indicates that the metasomatic melt was subduction-related. All these features suggest that the spinel lherzolites formed a mantle wedge layer percolated by melts carrying recycled crustal components and rising from a deeper source of subduction magmas. The garnet + amphibole peridotites equilibrated at temperatures well below the wet solidus in the presence of an aqueous fluid. Bulk-rock trace element patterns display pronounced positive anomalies in Cs, Ba, Pb and U and moderate enrichment in Li, indicating addition of a crustal component to the mantle rocks. Amphibole hosts most of these trace elements. Clinopyroxene displays high LILE/HFSE (Pb N /Nb N =300–600), low Ce/Pb (1.4–2.7 in garnet-facies clinopyroxene compared with 2.6–24.5 in the spinel-facies one) and variable LILE and LREE enrichments. The coupled increase of modal amphibole, Sr and Pb, together with positive Pb–Sr and Pb–U correlations, further indicate that incompatible element influx in these samples was fluid-mediated. In the garnet-facies samples, amphibole and, interestingly, olivine have similarly high Li concentrations as clinopyroxene, leading to cpx/amph D Li=0.7 and cpx/ol D Li=0.7–0.8, the latter being up to ten times lower than in the spinel-facies rocks. Due to its high modal abundance, olivine is the main host of Li in the garnet–amphibole peridotites. The observed metasomatic features provide evidence for the infiltration of an aqueous fluid in the mantle wedge above a subducting slab. This fluid most likely derived from subducted crustal rocks that underwent partial melting. Successive retrograde re-equilibration during exhumation of the garnet peridotite is accompanied by garnet and clinopyroxene breakdown and amphibole formation. This process produced minor changes, such as an increase of HREE and Li in amphibole, and an increase of Li in olivine. The general trace element signature remains essentially unchanged during retrogression and further hydration, indicating that fluids with a similar composition to the one present at the garnet–amphibole peridotite formation, were responsible for increased amphibole formation. The combined evidence from the metamorphic and metasomatic evolution indicates that the peridotites experienced first corner flow in a mantle wedge, followed by subduction and finally entrapment and exhumation within a crustal slab. During their entire history the Ulten peridotites were percolated first by melts and then by aqueous fluids, which added recycled crustal components to the mantle wedge.  相似文献   

17.
A suite of mantle peridotites sampled in the Kamchatsky Mys includes spinel lherzolite, clinopyroxene-bearing harzburgite, and harzburgite. Mineral chemistry of olivine, chromian spinel, and clinopyroxene show strongly correlated element patterns typical of peridotite formed by 8% to more than 22% partial melting. Clinopyroxene in the Kamchatka peridotites is compositionally different from that of both abyssal and suprasubduction varieties: Clinopyroxene in lherzolite is depleted in LREE relative to abyssal peridotite and that in harzburgite has very low LREE and Sr unlike the subduction-related counterpart. These composition features indicate that the rocks ultra-depleted in basaltic components originated in the vicinity of a hotspot, possibly, proto-Hawaiian plume, which provided high temperature and melting degree of the MORB source mantle at mid-ocean ridge.  相似文献   

18.
Numerous lenticular bodies of ultramafic rocks occur withinthe upper amphibolite- to granulitefacies metamorphic terraneof the Austrides between the Non and Ultimo valleys (Nonsbergregion), northern Italy. The ultramafic rocks are divided intotwo textural types: (a) coarse-type; and (b) finetype. The coarse-typerocks have the protogranular texture and are predominantly spinellherzolite. Some coarse-type spinel lherzolites have partlytransformed to garnet lherzolite. The fine-types are consideredto be metamorphic derivatives of the former, and the observedmineral assemblages are: (1) olivine + orthopyroxene + clinopyroxene+ garnet + amphibole ? spinel, (2) olivine + orthopyroxene +garnet + amphibole + spinel; (3) olivine + orthopyroxene + amphibole+ spinel; and (4) olivine+ orthopyroxene + amphibole + chlorite.Based on the microprobe analyses of constituent minerals fromten representative peridotite samples, physical conditions ofthe metamorphism, particularly that of the spinel to garnetlherzolite transformation, are estimated. Applications of pyroxenegeothermometry yield temperature estimates of 1100–1300?Cfor the formation of the primary spinel lherzolite, and 700–800?Cfor that of the fine-type peridotites. A pressure range of 16–28kb is obtained for the garnet lherzolite crystallization dependingon the choice of geobarometers. Two alternative P-T paths, i.e.(1) isobaric cooling or (2) pressure-increase and temperaturedecrease are considered and their geodynamic implications discussed.  相似文献   

19.
High-temperature peridotite massifs occur as lensoid bodies with high-pressure granulites in the southern Bohemian massif. In lower Austria the peridotites comprise garnet lherzolites lacking primary spinel, rare garnet and garnet-spinel harzburgites, and harzburgites containing Cr-rich primary spinel instead of garnet. These phase assemblages suggest initial high-pressure equilibration and are consistent with results from garnet-orthopyroxene geobarometry indicating equilibration at around 3–3.5 GPa. Maximum temperature estimates obtained on core compositions of coexisting minerals from the peridotites are not higher than ca. 1100 °C. In contrast, pyroxene megacryst compositions, garnet exsolution textures in the garnet pyroxenites, and results from geothermometry indicate much higher original equilibration temperatures in most of the pyroxenites (up to 1400 °C). High temperatures, modal zoning, the occasional presence of Mg-rich garnetites and chemical evidence suggest that the pyroxenites are cumulates which crystallized from low-degree melts derived from the sub-lithospheric mantle. Isothermal interpolation of the high temperatures to an upper mantle adiabat suggests that the melts were derived from a minimum depth of 180–200 km. The formation of small garnet II grains and garnet exsolution lamellae in the pyroxenites and pyroxene megacrysts may reflect isobaric cooling of the cumulates from temperatures above 1400 °C to ca. 1100–1200 °C (at 3–3.5 GPa) to approach the ambient lithospheric isotherm. This model differs from other models in which the formation of garnet II was explained by an increase in pressure during cooling in a subduction zone. Isobaric cooling was followed by near-isothermal decompression from 3–3.5 GPa to 1.5–2 GPa at 1000–1200 °C, as indicated by the increase of Al in pyroxenes near garnet. Further cooling in the spinel lherzolite stability field is indicated by spinel exsolution lamellae in pyroxenes from lherzolites. The formation of symplectites and kelyphites indicate sub-millimetre scale re-equilibration during exhumation in the course of the Carboniferous collision in the Bohemian massif. The peridotite massifs represent fragments of normal (non-cratonic) lithospheric mantle from a Paleozoic convergent plate margin. Received: 22 July 1996 / Accepted 28 February 1997  相似文献   

20.
Flood basalt provinces may constitute some of the most catastrophic volcanic events in the Earth's history. A popular model to explain them involves adiabatic ascent of plumes of anomalously hot peridotite from a thermal boundary layer deep in the mantle, across the peridotite solidus. However, peridotitic plumes probably require unreasonably high potential temperatures to generate sufficient volumes of magma and high enough melting rates to produce flood volcanism. This lead to the suggestion that low melting eclogitic or pyroxenitic heterogeneities may be present in the source regions of the flood basalts. In order to constrain petrogenetic models for flood basalts generated in this way, an experimental investigation of the melting relations of homogeneous peridotite + oceanic basalt mixtures has been performed. Experiments were conducted at 3.5 GPa on a fertile peridotite (MPY90)–oceanic basalt (GA1) compositional join. The hybrid basalt + peridotite compositions crystallised garnet lherzolite at subsolidus temperatures plus quenched ne-normative picritic liquids at temperatures just above the solidus, over the compositional range MPY90 to GA150MPY9050. The solidus temperature decreased slightly from ∼1500 °C for MPY90 to ∼1450 °C for GA150MPY9050. Compositions similar to GA130MPY9070 have 100% melting compressed into a melting interval which is approximately 50–60% smaller than that for pure MPY90, due to a liquidus minimum. During adiabatic ascent of hybrid source material containing a few tens of percent basalt in peridotite, the lower solidus and compressed solidus–liquidus temperature interval may conspire to substantially enhance melt productivity. Mixtures of recycled oceanic crust and peridotite in mantle plumes may therefore provide a viable source for some flood volcanics. Evidence for this would include higher than normal Fe/Mg values in natural primary liquids, consistent with equilibration with more Fe-rich olivine than normal pyrolitic olivine (i.e. <Fo89–92). Modelling of fractionation trends in West Greenland picrites is presented to demonstrate that melts parental to the Greenland picrites were in equilibrium at mantle P–T conditions with olivine with Fo84–86, suggesting an Fe-enriched source compared with normal peridotite, and consistent with the presence of a basaltic component in the source. Received: 29 October 1999 / Accepted: 3 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号