首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
随着秦皇岛地区人口增加、经济发展,地下水的开采日益加大,沿海地区由此产生的海水入侵现象较为普遍。海水入侵也是一种地质灾害,如何防止海水入侵是广大地质工作者和相关科技人员所要解决的问题。本文在分析了本地区海水入侵分布规律、发生原因及产生机理的基础上,提出科学管理地下水开采、引调客水补充地下水以及修建拦潮坝等多种举措防治海水入侵。借鉴国内外成熟的经验和方法,修建拦水坝拦潮蓄洪是治理海水入侵行之有效的方法。同时指出,修建梯级多道拦水坝逐级提高河水位强化对地下水的补给是治理海水入侵的一种新的尝试。  相似文献   

2.
A seawater-intrusion study was conducted at an oil-refinery site located on the coast in the lower Esino Valley, Italy. A steady-state density-dependent flow model was used in order to understand the position of the freshwater/salt-water interface, as influenced by the hydrogeologic structure and the presence of industrial activities and a river. Collected data and model results showed that in a large part of the area, the salt-water interface is steep and can penetrate only a few meters inland. On the other hand, close to the river mouth, seawater represents the main saline source for the aquifer. The river, in connection with the sea, can enhance seawater encroachment into the coastal aquifer; a long-term survey of river level and chloride concentrations in groundwater is recommended to further improve the physical model and to obtain a better calibration. At the refinery site, two “secondary” sources of saline water were identified and were demonstrated to have had a great influence on the presence of brackish waters in the unconfined aquifer: leakage from the fire-extinguishing system (network of pipes containing seawater) and rough sea events. This confirmed that groundwater contamination by chloride can result from means other than seawater intrusion.  相似文献   

3.
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.  相似文献   

4.
Ongoing hydrogeological research aims to develop a correct management model for the Plio-Pleistocene multi-aquifer system of the Albegna River coastal plain (southern Tuscany, Italy); overexploitation of this aquifer for irrigation and tourism has caused seawater intrusion. The conceptual model is based on field and laboratory data collected during the 1995–2003 period. Meteoric infiltration and flows from the adjoining carbonate aquifer recharge the aquifer. Natural outflow occurs through a diffuse flow into the sea and river; artificial outflow occurs through intensive extraction of groundwater from wells. Water exchanges in the aquifer occur naturally (leakage, closing of aquitard) and artificially (multiscreened wells). The aquifer was represented by a three-dimensional finite element model using the FEFLOW numerical code. The model was calibrated for steady-state and transient conditions by matching computed and measured piezometric levels (February 1995–February 1996). The model helped establish that seawater intrusion is essentially due to withdrawals near the coast during the irrigation season and that it occurs above all in the Osa-Albegna sector, as well as along the river that at times feeds the aquifer. The effects of hypothetical aquifer exploitation were assessed in terms of water budget and hydraulic head evolution.  相似文献   

5.
The overexploitation of groundwater in coastal aquifers is often accompanied by seawater intrusion, intensified by climate change and sea level rise. Heading long-term water quality safety and thus the determination of vulnerable zones to seawater intrusion becomes a significant hydrogeological task for many coastal areas. Due to this background, the present study focussed the established methodology of the GIS-based GALDIT model to assess the aquifer vulnerability to seawater intrusion for the Algerian example of the Quaternary coastal Collo aquifer. According to the result analysis overall, more than half of the total surface of the northern study area can be classified as highly vulnerable. Besides the coastline, the areas nearby the local wadis of Guebli and Cherka occur to be the most vulnerable in the region. In view of further map removal performance as well as single-parameter sensitivity analyses from a coupled perspective respectively the GALDIT parameters, distance from the shore (D) and aquifer hydraulic conductivity (A) have been found to be of key significance regarding the model results (mean effective weightings ~?18–19%). Overall, the study results provide a good approximation basis for future management decisions of the Collo aquifer region, including various perspectives such as identification of suitable settings for prospective groundwater pumping wells.  相似文献   

6.
The present study concerns the application of a numerical approach to describe the influence of anthropogenic modifications in surface flows (operation of a projected reservoir) on the freshwater-seawater relationships in a downstream coastal aquifer which has seasonal seawater intrusion problems (River Verde alluvial aquifer, Almuñécar, southern Spain). A steady-state finite element solution to the partial differential equation governing the regional motion of a phreatic surface and the resulting sharp interface between fresh water and salt water was used to predict the regional behavior of the River Verde aquifer under actual surface flow conditions. The present model approximates, with simple triangular elements, the regional behavior of a coastal aquifer under appropriate sinks, sources, Neumann and open boundary conditions. A steady-state solution to this numerical approach has been shown to precisely calculate freshwater heads, saltwater thicknesses, and freshwater discharges along steeply sloping coasts. Hence, the adequate treatment and interpretation of the hydrogeological data which are available for the River Verde aquifer have been of main concern in satisfactorily applying the proposed numerical model. Present simulated conditions consider steady-state yearly averaged amounts of external supplies of fresh water in order to determine the influences of the projected Otívar reservoir on the further behavior of the River Verde coastal aquifer. When recharges occur at the coastline, essentially because of freshwater deficits due to groundwater overexploitation, a hypothesis of mixing for the freshwater-saltwater transition zone is made in order to still allow the model to continue calculating groundwater heads under the sea level, and, as a consequence, the resulting seawater intrusion and recharges of saltwater from the sea. Simulations show that a considerable advance in seawater intrusion would be expected in the coastal aquifer if current rates of groundwater pumping continue and a significant part of the runoff from the River Verde is channeled from the Otívar reservoir for irrigation purposes.  相似文献   

7.
广西北海市海城区西段含水层海水入侵地球化学过程研究   总被引:2,自引:0,他引:2  
姚锦梅  周训  谢朝海 《地质学报》2011,85(1):136-144
广西北海市海城区西段地下含水层出现过海水入侵.海水入侵过程中可能发生哪些地球化学作用是人们关注的问题.本文运用绘制Piper图、理论混合线(TML)、计算离子delta值和饱和指数SI以及水文地球化学模拟等方法研究了该区含水层在海水入侵后发生的地球化学作用.通常海水入侵后地下水含水层容易发生白云岩化作用,要通过模拟计算...  相似文献   

8.
 The Gaza Strip coastal aquifer is under severe hydrological stress due to over-exploitation. Excessive pumping during the past decades in the Gaza region has caused a significant lowering of groundwater levels, altering in some regions the normal transport of salts into the sea and reversing the gradient of groundwater flow. The sharp increase in chloride concentrations in groundwater indicates intrusion of seawater and/or brines from the western part of the aquifer near the sea. Simulations of salt-water intrusion were carried out using a two-dimensional density-dependent flow and transport model SUTRA (Voss 1984). This model was applied to the Khan Yunis section of the Gaza Strip aquifer. Simulations were done under an assumption that pumping rates increase according to the rate of population growth, or about 3.8% a year. Model parameters were estimated using available field observations. Numerical simulations show that the rate of seawater intrusion during 1997–2006 is expected to be 20–45 m/yr. The results lead to a better understanding of aquifer salinization due to seawater intrusion and give some estimate of the rate of deterioration of groundwater. Received, September 1997 Revised, January 1998, July 1998 Accepted, August 1998  相似文献   

9.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

10.
Salinization in coastal aquifers is usually related to both seawater intrusion and water–rock interaction. The results of chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai, southern China. The concentrations of the major ions that dominate in seawater (Cl?, Na+, Ca2+, Mg2+ and SO 4 2– ), as well as the isotopic content and ratios (2H, 18O, 87Sr/86Sr and 13C), suggest that the salinization occurring in the aquifer of the coastal plain is related to seawater and that the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization has occurred in an area that is significantly influenced by land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds are identified in the shallowest confined aquifer (I) in the middle of the area (site BBW2). Leakage from this polluted confined aquifer causes the salinization of groundwater in the underlying confined aquifer (II). At the coastal monitoring site (BBW3), confined aquifer I and lower confined aquifer II are heavily contaminated by seawater intrusion. The weak connectivity between the upper aquifers, and the seaward movement of freshwater, prevents saltwater from encroaching the deepest confined aquifer (III). A conceptual model is presented. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for the planning and sustainable management of groundwater resources in this region.  相似文献   

11.
The Batinah coastal plain in northern Oman has experienced a severe deterioration of groundwater quality due to seawater intrusion as a result of excessive groundwater abstraction for agricultural irrigation. Upgrading all farms to fully automated irrigation technology based on soil moisture sensors may significantly reduce the water demand and lead to recovering groundwater levels. This study compares the effects of smart irrigation technology, recharge dams, and a combination of both on seawater intrusion in the coastal aquifer of the Batinah. A groundwater flow and transport model is used to simulate the effect of reduced pumping rates on seawater intrusion for various intervention scenarios over a simulation period of 30 years, and an economic analysis based on cost-benefit analysis is conducted to estimate the potential benefits. Results indicate that a combination of smart irrigation and recharge dams may prevent further deterioration of groundwater quality over the next 30 years. In conjunction with increased efficiency, this combination also generates the highest gross profit. This outcome shows that the problem of seawater intrusion needs to be tackled by a comprehensive, integrated intervention strategy.  相似文献   

12.
山东烟台夹河中、下游地区海水入侵三维水质数值模拟研究   总被引:17,自引:0,他引:17  
建立了三维变密度对流弥散水质数学模型来研究山东省烟台夹河中、下游地区咸淡水界面的运移规律。以四面体为基本离散单元 ,推导出三维海水入侵变密度水质模型求解的数值方法 ,其中水流方程求解时运用了迦辽金有限单元法。溶质运移方程求解时运用了欧拉拉格朗日混合方法 ,将对流项与弥散项分离 ,用传统迦辽金有限元方法求解弥散项 ;采用自适应MOC MMOC法求解对流项 ,以消除人工过量和数值弥散。根据地下水的潮汐效应观测信息 ,确定了含水系统的海底延伸边界 ;利用该地区地下水水头及水质长观资料识别了模型的水文地质参数 ,探讨了夹河地区海水入侵的原因 :认为夹河下游地区滨海地带地下水过量开采是造成烟台地区海水入侵的主要原因。此外 ,海水随潮定期地倒灌进入夹河 ,通过局部岩性天窗侵入淡水含水层加剧了沿夹河河床两侧地下水的咸化。同时还预测了几种情况下地下水的水质演化趋势 ,为防止和减轻夹河地区海水入侵提供合理、科学的依据。  相似文献   

13.
Over-exploitation of groundwater results in decline of water levels, leading to intrusion of salt water along the coastal region, which is a natural phenomenon. A groundwater quality survey has been carried out to assess such phenomena along the coast of Visakhapatnam, Andhra Pradesh, India. Brackish groundwaters are observed in most of the wells. The rest of the wells show a fresh water environment. The factors responsible for the brackish groundwater quality with respect to the influence of seawater are assessed, using the standard ionic ratios, such as Ca2+:Mg2+, TA:TH and Cl:HCO 3. Results suggest that the brackish nature in most of the groundwaters is not due to the seawater influence, but is caused by the hydrogeochemical process. Some influence of seawater on the groundwater quality is observed along the rock fractures. The combined effect of seawater and urban wastewaters is due to the inferior quality of groundwater in a few wells, where they are at topographic lows close to the coast.  相似文献   

14.
With the increased demand for groundwater resulting from fast demographic growth, accelerated urbanization, economic and agricultural activity diversification, and the increase of per capita consumption, ground water resources, in particular in coastal regions, remain relatively low, compared to demand. The groundwater quality and piezometric variations result mainly from intensive exploitation, agricultural activities and the intrusion of seawater. This phenomenon is observed mostly in semi-arid areas, such as the oriental Sahel of Tunisia, where an apparent reduction in rainfall in recent years can be seen. Groundwater becomes overexploited especially as its natural recharge by rainwater does not succeed in maintaining the hydrologic balance. The imbalance between water demand and resources induces the degradation of the water quality. In such a case, the artificial recharge of water-table aquifers by water from dams is a credible alternative to improve the hydrodynamic and physicochemical conditions of the groundwater. Like most coastal aquifers, the Teboulba water-table aquifer is threatened by overexploitation for at least three decades. This threat appears by a considerable piezometric level drop and by water salinisation, due to seawater intrusion. Given this alarming situation, since 1971, artificial recharge through wells with surface water from a dam was tested in order to restore the water levels and to improve water quality. The piezometric and chemical surveys of the Teboulba aquifer permitted one to describe the temporal and spatial piezometric and geochemical conditions of the aquifer and to show the effect of the artificial recharge. Indeed, the artificial recharge undertaken since 1971 made the geochemical and piezometric conditions of the Teboulba aquifer improve. This example is a rare, well-documented case-study of the benefits of artificial recharge in a coastal aquifer, over the long term.  相似文献   

15.
Greece is dependent on groundwater resources for its water supply. The main aquifers are within carbonate rocks (karstic aquifers) and coarse grained Neogene and Quaternary deposits (porous aquifers). The use of groundwater resources has become particularly intensive in coastal areas during the last decades with the intense urbanization, tourist development and irrigated land expansion. Sources of groundwater pollution are the seawater intrusion due to over-exploitation of coastal aquifers, the fertilizers from agricultural activities and the disposal of untreated wastewater in torrents or in old pumping wells. In the last decades the total abstractions from coastal aquifers exceed the natural recharge; so the aquifer systems are not used safely. Over-exploitation causes a negative water balance, triggering seawater intrusion. Seawater intrusion phenomena are recorded in coastal aquifer systems. Nitrate pollution is the second major source of groundwater degradation in many areas in Greece. The high levels of nitrate are probably the result of over-fertilization and the lack of sewage systems in some urban areas.  相似文献   

16.
Geoenvironmental effects of groundwater regime in Andhra Pradesh, India   总被引:4,自引:0,他引:4  
 The Indian subcontinent has the largest semi-arid tropical (SAT) area among developing nations. The State of Andhra Pradesh falls under the SAT region in India and is mostly covered by compact and hard rocks, characterized by seasonal rainfall of a highly fluctuating nature, in both space and time. As a consequence of the green revolution and an increase in industrial activity, there has been an increase in the utilization of groundwater resources during the last two decades in Andhra Pradesh. The development has also caused a number of problems, such as water table decline, decrease in well yields and seawater intrusion. Although major irrigation projects have contributed to improved agricultural production, the associated problems of waterlogging, salinization and loss of valuable bioresources have led to the gradual degradation of the land, affecting agricultural productivity. Surface water and groundwater have also been polluted in several parts of the State because of untreated discharge of effluents from the industries into nearby streams or open lands. A brief account of the overall scenario of the hydrogeological framework and geo-environmental effects on the groundwater regime in Andhra Pradesh is presented. Possible management practices and conservation methods are suggested. Received: 9 August 1999 · Accepted: 10 July 2000  相似文献   

17.
 The coastal aquifer of Oropesa is affected by salinization processes undoubtedly associated with intense groundwater exploitation for agriculture supply. The aquifer corresponds geologically to a tectonic depression with Plioquaternary fill. Hydrogeologically, this aquifer is detrital, with intergranular porosity, which receives substantial recharge from adjacent Mesozoic aquifers. Contact with the sea, in addition to the presence of cultivated soil requiring extreme exploitation of groundwater, frequently give rise to processes of seawater intrusion. The present research is an attempt to understand the saltwater intrusion in this aquifer, using hydrochemical analyses of the behavior of certain minor ions that could help in the characterization process. In the case of the Oropesa sector, groundwater salinization does not appear to be attributable solely to the intrusion of seawater, but there are also anomalies related largely to the geology of the sector and its surroundings, the type of recharge, the hydrodynamic conditions in the specific area, etc. Received: 23 January 1995 · Accepted: 12 September 1995  相似文献   

18.
Groundwater depletion and seawater intrusion constitute major challenges along coastal aquifers in arid areas. This paper assesses the role of groundwater recharge dams constructed to replenish aquifers and fight seawater intrusion with reference to AlKhod dam, Oman, sited 7 km from the coast on a gravely unconfined aquifer. Water table rise in piezometers located downstream from the dam shows regular patterns correlating with magnitude of wadi flow, whereas upstream piezometers show irregular patterns. Controlled release of water captured by the dam optimizes water percolation and enhances artificial recharge which was estimated in the wet years 1997, 2003 and 2005 as 15, 22 and 27 Mm3, respectively, using water table fluctuation method. Recharge contributed 40–60 % of the total annual abstraction. Groundwater salinity increased in the 1980s and 1990s and the saline/freshwater interface advanced inland, but has receded partially after 1997 (highest rainfall) and completely after 2005 indicated by reduction in electrical conductivity and thickening of freshwater lens. The recession is attributed to the dam’s induced recharge and reduction of pumping in 2004 following the commissioning of Barka desalination plant. Integrating artificial recharge with groundwater resources management is therefore an effective measure to replenish aquifers in arid areas and mitigate seawater intrusion along the coasts.  相似文献   

19.
The study area is a small coastal plain in north-eastern Tunisia. It is drained by an ephemeral stream network and is subject to several pollutant discharges such as oilfield brine coming from a neighboring oil company and wastewater from Somâa city, located in the upstream of the plain. Furthermore, a hydraulic head near the coastal part of the aquifer is below sea level, suggesting that seawater intrusion may occur. A time-domain electromagnetic (TDEM) survey, based on 28 soundings, was conducted in Wadi Al Ayn and Daroufa plains to delineate the saline groundwater. Based on longitudinal and transversal resistivity two-dimensional pseudosections calibrated with boring data, the extent of saline water was identified. Geochemical tracers were combined with the resistivity dataset to differentiate the origin of groundwater salinization. In the upstream part of the plain, the infiltration of oilfield brine through the sandy bed of Wadi Al Ayn seems to have a considerable effect on groundwater salinization. However, in the coastal part of the aquifer, groundwater salinization is due to seawater intrusion and the saltwater is reaching an inland extent around 1.3 km from the shoreline. The contribution ratios of saline water bodies derived from the inverted chloride data vary for the oilfield brine from 1 to 13 % and for the seawater from 2 to 21 %.  相似文献   

20.
Seawater intrusion is one of the most serious environmental problems in many coastal regions all over the world. Mixing a small quantity of seawater with groundwater makes it unsuitable for use and can result in abandonment of aquifers. Therefore, seawater intrusion should be prevented or at least controlled to protect groundwater resources. This paper presents development and application of a simulation‐optimization model to control seawater intrusion in coastal aquifers using different management scenarios; abstraction of brackish water, recharge of freshwater, and combination of abstraction and recharge. The model is based on the integration of a genetic algorithm optimisation technique and a coupled transient density‐dependent finite element model. The objectives of the management scenarios include determination of the optimal depth, location and abstraction/recharge rates for the wells to minimize the total costs for construction and operation as well as salt concentrations in the aquifer. The developed model is applied to analyze the control of seawater intrusion in a hypothetical confined coastal aquifer. The efficiencies of the three management scenarios are examined and compared. The results show that combination of abstraction and recharge wells is significantly better than using abstraction wells or recharge wells alone as it gives the least cost and least salt concentration in the aquifer. The results from this study would be useful in designing the system of abstraction/recharge wells to control seawater intrusion in coastal aquifers and can be applied in areas where there is a risk of seawater intrusion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号