首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
恒星形成于分子云环境中。近30多年的观测研究使得天文学家对小质量恒星的形成有了相对明确的认识:小质量恒星通过坍缩、吸积和外向流的路标而形成。至于大质量恒星,其形成过程还存在着许多不确定因素,现有的观测证据表明:大质量恒星也可能通过坍缩、吸积和外向流的路标来形成,但也不排除在星团中通过中小质量恒星聚合而成的因素。大质量恒星形成与致密电离氢区(UCHII)成协较好,而与大质量恒星形成区成协的分子云环境中,既有大质量恒星也有小质量恒星形成。综述了恒星形成各个阶段的观测结果和研究现状以及成协的天体物理环境情况。未来的观测和研究重点在于,大质量恒星形成以及星团环境中的恒星形成。  相似文献   

2.
We consider the effect of a supernova (SN) explosion in a very massive binary that is expected to form in a portion of Population III stars with the mass higher than  100 M  . In a Population III binary system, a more massive star can result in the formation of a black hole (BH) and a surrounding accretion disc. Such BH accretion could be a significant source of the cosmic reionization in the early Universe. However, a less massive companion star evolves belatedly and eventually undergoes a SN explosion, so that the accretion disc around a BH might be blown off in a lifetime of companion star. In this paper, we explore the dynamical impact of a SN explosion on an accretion disc around a massive BH, and elucidate whether the BH accretion disc is totally demolished or not. For the purpose, we perform three-dimensional hydrodynamic simulations of a very massive binary system, where we assume a BH of  103 M  that results from a direct collapse of a very massive star and a companion star of  100 M  that undergoes a SN explosion. We calculate the remaining mass of a BH accretion disc as a function of time. As a result, it is found that a significant portion of gas disc can survive through three-dimensional geometrical effects even after the SN explosion of a companion star. Even if the SN explosion energy is higher by two orders of magnitude than the binding energy of gas disc, about a half of disc can be left over. The results imply that the Population III BH accretion disc can be a long-lived luminous source, and therefore could be an important ionizing source in the early Universe.  相似文献   

3.
We present a model for the formation of massive ( M ≳10 M⊙) stars through accretion-induced collisions in the cores of embedded dense stellar clusters. This model circumvents the problem of accreting on to a star whose luminosity is sufficient to reverse the infall of gas. Instead, the central core of the cluster accretes from the surrounding gas, thereby decreasing its radius until collisions between individual components become sufficient. These components are, in general, intermediate-mass stars that have formed through accretion on to low-mass protostars. Once a sufficiently massive star has formed to expel the remaining gas, the cluster expands in accordance with this loss of mass, halting further collisions. This process implies a critical stellar density for the formation of massive stars, and a high rate of binaries formed by tidal capture.  相似文献   

4.
Nearly all of the initial angular momentum of the matter that goes into each forming star must somehow be removed or redistributed during the formation process. The possible transport mechanisms and the possible fates of the excess angular momentum are discussed, and it is argued that transport processes in discs are probably not sufficient by themselves to solve the angular momentum problem, while tidal interactions with other stars in forming binary or multiple systems are likely to be of very general importance in redistributing angular momentum during the star formation process. Most, if not all, stars probably form in binary or multiple systems, and tidal torques in these systems can transfer much of the angular momentum from the gas around each forming star to the orbital motions of the companion stars. Tidally generated waves in circumstellar discs may contribute to the overall redistribution of angular momentum. Stars may gain much of their mass by tidally triggered bursts of rapid accretion, and these bursts could account for some of the most energetic phenomena of the earliest stages of stellar evolution, such as jet-like outflows. If tidal interactions are indeed of general importance, planet-forming discs may often have a more chaotic and violent early evolution than in standard models, and shock heating events may be common. Interactions in a hierarchy of subgroups may play a role in building up massive stars in clusters and in determining the form of the upper initial mass function (IMF) . Many of the processes discussed here have analogues on galactic scales, and there may be similarities between the formation of massive stars by interaction-driven accretion processes in clusters and the buildup of massive black holes in galactic nuclei.  相似文献   

5.
The dynamics of protostellar envelopes around forming massive stars is analysed and the main stages of the process of massive star formation are identified. It is shown that massive stars can be formed in the outer layers of giant molecular cloud cores. Special conditions are necessary for the formation of massive stars.  相似文献   

6.
On the basis of 'sticky particle' calculations, it is argued that the gas features observed within 10 pc of the Galactic Centre — the circumnuclear disc (CND) and the ionized gas filaments — as well as the newly formed stars in the inner 1 pc can be understood in terms of tidal capture and disruption of gas clouds on low angular momentum orbits in a potential containing a point mass. The calculations demonstrate that a dissipative component forms a 'dispersion ring', an asymmetric elliptical torus precessing counter to the direction of rotation, and that this shape can be maintained for many orbital periods. For a range of plausible initial conditions, such a structure can explain the morphology and kinematics of the CND and of the most conspicuous ionized filament. While forming the dispersion ring, a small cloud with low specific angular momentum is drawn into a long filament which repeatedly collides with itself at high velocity. The compression in strong shocks is likely to lead to star formation even in the near tidal field of the point mass. This process may have general relevance to accretion on to massive black holes in normal and active galactic nuclei.  相似文献   

7.
Recent observations and hydrodynamical simulations of star formation inside a giant molecular cloud have revealed that, within a star-forming region, stars do not form evenly distributed throughout this region, but rather in small subclumps. It is generally believed that these subclumps merge and form a young star cluster. The time-scale of this merging process is crucial for the evolution and the possible survival of the final star cluster. The key issue is whether this merging process happens faster than the time needed to remove the residual gas of the cloud. A merging time-scale shorter than the gas-removal time would enhance the survival chances of the resulting star cluster. In this paper, we show by means of numerical simulations that the time-scale of the merging is indeed very fast. Depending on the details of the initial subclump distribution, the merging may occur before the gas is expelled from the newly formed cluster via either supernovae or the winds from massive stars. Our simulations further show that the resulting merger objects have a higher effective star formation efficiency than the overall star-forming region and confirm the results that mass-segregated subclumps form mass-segregated merger objects.  相似文献   

8.
Numerical simulations predict that metal-poor gas accretion from the cosmic web fuels the formation of disk galaxies. This paper discusses how cosmic gas accretion controls star formation, and summarizes the physical properties expected for the cosmic gas accreted by galaxies. The paper also collects observational evidence for gas accretion sustaining star formation. It reviews evidence inferred from neutral and ionized hydrogen, as well as from stars. A number of properties characterizing large samples of star-forming galaxies can be explained by metal-poor gas accretion, in particular, the relationship among stellar mass, metallicity, and star-formation rate (the so-called fundamental metallicity relationship). They are put forward and analyzed. Theory predicts gas accretion to be particularly important at high redshift, so indications based on distant objects are reviewed, including the global star-formation history of the universe, and the gas around galaxies as inferred from absorption features in the spectra of background sources.  相似文献   

9.
Understanding the star formation process is central to much of modern astrophysics. Stellar birth is intimately linked to the dynamical behavior of the parental gas cloud. Gravoturbulent fragmentation determines where and when protostellar cores form, and how they contract and grow in mass via accretion from the surrounding cloud material to build up stars. Supersonic turbulence can provide support against gravitational collapse on global scales, whereas at the same time it produces localized density enhancements that allow for collapse on small scales. The efficiency and timescale of stellar birth in Galactic molecular clouds strongly depend on the properties of the interstellar turbulent velocity field, with slow, inefficient, isolated star formation being a hallmark of turbulent support, and fast, efficient, clustered star formation occurring in its absence.  相似文献   

10.
Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time-scale that is short compared with the orbital period. We use a combination of hydrodynamic simulations and N -body orbit integrations to study the long-term evolution of a fragmenting disc with an initial mass ratio to the star of   M disc/ M *= 0.1  . For a disc that is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar-mass star) up to  ≈0.01 M  . Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 – in which the companions are close to or beyond the deuterium burning limit – appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ∼1 au should differ from that of stars with lower mass planetary companions.  相似文献   

11.
Recent images taken with the Hubble Space Telescope ( HST ) of the interacting disc galaxies NGC 4038/4039 (the Antennae) reveal clusters of many dozens and possibly hundreds of young compact massive star clusters within projected regions spanning about 100 to 500 pc. It is shown here that a large fraction of the individual star clusters merge within a few tens to a hundred Myr. Bound stellar systems with radii of a few hundred parsecs, masses ≲ 109 M⊙ and relaxation times of 1011 − 1012 yr may form from these. These spheroidal dwarf galaxies contain old stars from the pre-merger galaxy and much younger stars formed in the massive star clusters, and possibly from later gas accretion events. The possibility that star formation in the outer regions of gas-rich tidal tails may also lead to superclusters is raised. The mass-to-light ratio of these objects is small, because they contain an insignificant amount of dark matter. After many hundred Myr such systems may resemble dwarf spheroidal satellite galaxies with large apparent mass-to-light ratios, if tidal shaping is important.  相似文献   

12.
In this study we investigated the effects of external trigger on the characteristics of young stellar objects (YSOs) associated with cometary globules (CGs). We made optical spectroscopy of stars associated with star-forming CGs. We find that the masses of the most massive stars associated with CGs are correlated with the masses of the parent cloud but they are systematically larger than expected for clouds of similar mass from the relation M max-star=0.33M cl 0.43 given by Larson (Mon. Not. R. Astron. Soc. 200:159, 1982). We have also estimated the luminosities of the IRAS sources found associated with CGs as a function of cloud mass and then compared them with those of the IRAS sources found associated with isolated opacity class 6 clouds (isolated and relatively away from large star forming regions). We find that the luminosities of IRAS sources associated with CGs are larger than those of the opacity class 6 clouds. These findings support results from recent simulations in which it was shown that the Radiation Driven Implosion (RDI) process, believed to be responsible for the cometary morphology and star formation, can increase the luminosity 1–2 orders of magnitudes higher than those of protostars formed without external triggering due to an increase in accretion rates. Thus implying that the massive stars can have profound influence on the star formation in clouds located in their vicinity.  相似文献   

13.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

14.
The advent of ALMA is bound to improve our knowledge of OB star formation dramatically. Here, we present an overview of this topic outlining how high angular resolution and sensitivity may contribute to shed light on the structure of high-mass star forming regions and hence on the process itself of massive star formation. The impact of this new generation instrument will range from establishing the mass function of pre-stellar cores inside IR-dark clouds, to investigating the kinematics of the gas from which OB stars are built up, to assessing or ruling out the existence of circumstellar accretion disks in these objects.  相似文献   

15.
It is well known that galaxies accumulating large quantities of gas undergo violent bursts of star formation. This is believed to be due to tidal interactions of galaxies leading to the infall of gas into their central regions. Bursts of star formation in this scenario are transitory phenomena and can be induced only by external sources.However, in some cases there is no direct evidence of tidal interactions in starburst galaxies.We discuss another possibility of bursting phenomena in galaxies connected with nonlinear feedback processes in mass-exchange between components of star-forming region. We consider a three-component model including cold clouds, warm gas and massive stars and take into account the delay processes in the transformation of hot gas ejected by massive stars and evaporated from cold phase, into the warm phase. Self-regulating mechanism of phase transition of small clouds into warm gas due to heating radiation of massive stars is also taken into account.The analysis of stability of the system shows that it could be unstable even in case of a small efficiency in the birth of massive stars. The evolution of unstable nonlinear perturbations leads to the development of self-sustained nonlinear oscillations of star formation.  相似文献   

16.
Elias Brinks   《New Astronomy Reviews》2004,48(11-12):1305
The SKA will revolutionise the study of the principles underlying star formation (SF), resolving interstellar cloud complexes which are the birthplaces of stars and answering such questions as which are the sufficient and necessary conditions for SF to commence. Also, massive SF is intimately related to stellar death. The SKA will be able to study the structure of the ISM at 100 pc resolution out to distances of up to 20 Mpc and will quantify the impact the demise of massive stars has on their environment. Importantly, the SKA will probe the transition region between ISM and IGM, linking star formation and stellar death in the disks of galaxies to faint HI structures further afield, such as “anomalous gas” and (Compact) High Velocity Clouds. Lastly, the superb sensitivity of the SKA will result in some hundred background sources per square degree against which HI absorption lines can be searched for, probing not only the relative importance of the different phases of the gas in galaxies but also the low density gas in the outskirts and between galaxies.  相似文献   

17.
The intent of this study is to determine the nature of the star and associated nebulosity S 235 B, which are located in a region of active star formation still heavily obscured by the parent molecular cloud. Low-resolution  ( R = 400)  long-slit spectra of the star and nebulosity, and medium-  ( R = 1800)  and high-resolution  ( R = 60 000)  spectra of the central star are presented along with the results of Fabry–Perot interferometric imaging of the entire region. Based on the long-slit and Fabry–Perot observations, the nebulosity appears to be entirely reflective in nature, with the stellar component S 235 B★ providing most of the illuminating flux. The stellar source itself is classified here as a B1V star, with emission-line profiles indicative of an accretion disc. S 235 B★ thus belongs to the relatively rare class of early-type Hebrig Be stars. Based on the intensity of the reflected component, it is concluded that the accretion disc must be viewed nearly edge-on. Estimates of the accretion rate of S 235 B★ from the width of the Hα profile at 10 per cent of maximum intensity, a method which has been used lately for T Tauri stars and Brown Dwarfs, appear to be inconsistent with the mass outflow rate and accretion rate implied from previous infrared observations by Felli et al., suggesting this empirical law does not extend to higher masses.  相似文献   

18.
Clumpiness of the interstellar medium may play an important role in the transfer of infrared continuum radiation in star forming regions (Boisse, 1990). For example, in homogeneous models, C II emission should be confined to the cloud edge (Viala, 1986). However, in star formation regions (such as M17SW, M17 and W51), it is observed to extend deep into the molecular cloud (Stutzki et al., 1988; Keene et al., 1985). One plausible interpretation of these observations is that, due to their clumpiness, the clouds are penetrated by UV radiation far deeper than expected from simple homogeneous models. The interaction of H II regions around young massive stars with a clumpy medium is another area of interest. Molecular clouds are well established to be clumpy on length scales down to the limits of observational resolution. Clumps can act as localized reservoirs of gas which can be injected into the surroundings by photoionization and/or hydrodynamic ablation (Dyson et al., 1995; Mathis et al., 1998). The calculation of radiation transport in hot, clumpy materials is a challenging problem. Approximate, statistical treatments of this problem have been developed by several workers, but their application has not been tested in detail. We describe laboratory experiments, using the Omega laser to test modelling of radiation transport through clumpy media in the form of inhomogeneous plasmas.  相似文献   

19.
We investigate the conditions of star formation in the Large Magellanic Cloud (LMC). We have conducted a survey for water maser emission arising from massive young stellar objects in the 30 Doradus region (N 157) and several other H  ii regions in the LMC (N 105A, N 113 and N 160A). We have identified a new maser source in 30 Dor at the systemic velocity of the LMC. We have obtained 3–4 μm spectra, with the European Southern Observatory (ESO)-Very Large Telescope (VLT), of two candidate young stellar objects. N 105A IRS1 shows H recombination line emission, and its Spectral Energy Distribution (SED) and mid-infrared colours are consistent with a massive young star ionizing the molecular cloud. N 157B IRS1 is identified as an embedded young object, based on its SED and a tentative detection of water ice. The data on these four H  ii regions are combined with mid-infrared archival images from the Spitzer Space Telescope to study the location and nature of the embedded massive young stellar objects and signatures of stellar feedback. Our analysis of 30 Dor, N 113 and N 160A confirms the picture that the feedback from the massive O- and B-type stars, which creates the H  ii regions, also triggers further star formation on the interfaces of the ionized gas and the surrounding molecular cloud. Although in the dense cloud N 105A star formation seems to occur without evidence of massive star feedback, the general conditions in the LMC seem favourable for sequential star formation as a result of feedback. In an Appendix , we present water maser observations of the galactic red giants R Doradus and W Hydrae.  相似文献   

20.
We analyze the gravitational stability of a shocked interstellar gas layer and show how such a layer fragments into protostellar condensations whilst it is still confined mainly by ram pressure. As a consequence, the resulting protostars are massive and well separated. Our analysis is completely general and applies both to layers resulting from collisions between molecular cloud clumps, and to shells swept up by expanding nebulae. We present a numerical simulation of the former scenario, which produces a cluster of 35 massive stars resembling an OB subgroup, with most of the stars in binary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号