首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从最小二乘配置方法的基本原理出发,以我国某地区范围内1km分辨率的大地水准面高模型数据为例,根据实用公式计算了试验区大地水准面高的协方差值后,采用多项式函数模型和高斯函数模型分别拟合了该地区大地水准面高的局部协方差函数,并对试验区内18个检核点做了推估计算。根据推估值(Nfit)与实测值(NGPSL)的比较分析表明,虽然多项式协方差函数模型略优于高斯协方差函数模型,但它们都能以厘米级的精度拟合局部大地水准面,这表明了配置法用于精化厘米级大地水准面的有效性。  相似文献   

2.
为解决世界各国高程基准差异的问题,提出联合卫星重力场模型、地面重力数据、GNSS大地高、局部高程基准的正高或正常高,按大地边值问题法确定局部高程基准重力位差的方法。首先推导了利用传统地面"有偏"重力异常确定高程基准重力位差的方法;接着利用改化Stokes核函数削弱"有偏"重力异常的影响,并联合卫星重力场模型和地面"有偏"重力数据,得到独立于任何局部高程基准的重力水准面,以此来确定局部高程基准重力位差;最后利用GNSS+水准数据和重力大地水准面确定了美国高程基准与全球高程基准W0的重力位差为-4.82±0.05 m2s-2。  相似文献   

3.
最小二乘配置法中局部协方差函数的计算   总被引:3,自引:1,他引:2  
文汉江 《测绘科学》2000,25(3):37-39
随着 GPS日益广泛的应用及精度的不断提高 ,在有些实际应用中利用 GPS来代替传统的水准测量进行高程控制已成为可能 ,这也进一步提出了对高精度大地水准面的需求。快速傅立叶变换 (FFT)是目前计算大地水准面比较常用的方法之一 ,但需要将重力观测量进行内插得到规则格网上的平均重力异常。利用最小二乘配置法计算大地水准面可直接利用已有的观测值进行计算 ,同时可综合利用不同类型的数据 ,如重力异常和垂线偏差等计算大地水准面 ,因此最小二乘配置法仍有广泛的应用 ,但制约最小二乘配置应用的关键问题是局部协方差函数的计算。将主要讨论最小二乘配置法中局部协方差函数的计算 ,使所用的协方差函数能更好地反映已知的数据 ,从而获得更精确的结果。  相似文献   

4.
The height datum problem and the role of satellite gravity models   总被引:1,自引:0,他引:1  
Regional height systems do not refer to a common equipotential surface, such as the geoid. They are usually referred to the mean sea level at a reference tide gauge. As mean sea level varies (by ±1 to 2 m) from place to place and from continent to continent each tide gauge has an unknown bias with respect to a common reference surface, whose determination is what the height datum problem is concerned with. This paper deals with this problem, in connection to the availability of satellite gravity missions data. Since biased heights enter into the computation of terrestrial gravity anomalies, which in turn are used for geoid determination, the biases enter as secondary or indirect effect also in such a geoid model. In contrast to terrestrial gravity anomalies, gravity and geoid models derived from satellite gravity missions, and in particular GRACE and GOCE, do not suffer from those inconsistencies. Those models can be regarded as unbiased. After a review of the mathematical formulation of the problem, the paper examines two alternative approaches to its solution. The first one compares the gravity potential coefficients in the range of degrees from 100 to 200 of an unbiased gravity field from GOCE with those of the combined model EGM2008, that in this range is affected by the height biases. This first proposal yields a solution too inaccurate to be useful. The second approach compares height anomalies derived from GNSS ellipsoidal heights and biased normal heights, with anomalies derived from an anomalous potential which combines a satellite-only model up to degree 200 and a high-resolution global model above 200. The point is to show that in this last combination the indirect effects of the height biases are negligible. To this aim, an error budget analysis is performed. The biases of the high frequency part are proved to be irrelevant, so that an accuracy of 5 cm per individual GNSS station is found. This seems to be a promising practical method to solve the problem.  相似文献   

5.
The well-known statistical tool of variance component estimation (VCE) is implemented in the combined least-squares (LS) adjustment of heterogeneous height data (ellipsoidal, orthometric and geoid), for the purpose of calibrating geoid error models. This general treatment of the stochastic model offers the flexibility of estimating more than one variance and/or covariance component to improve the covariance information. Specifically, the iterative minimum norm quadratic unbiased estimation (I-MINQUE) and the iterative almost unbiased estimation (I-AUE) schemes are implemented in case studies with observed height data from Switzerland and parts of Canada. The effect of correlation among measurements of the same height type and the role of the systematic effects and datum inconsistencies in the combined adjustment of ellipsoidal, geoid and orthometric heights on the estimated variance components are investigated in detail. Results give valuable insight into the usefulness of the VCE approach for calibrating geoid error models and the challenges encountered when implementing such a scheme in practice. In all cases, the estimated variance component corresponding to the geoid height data was less than or equal to 1, indicating an overall downscaling of the initial covariance (CV) matrix was necessary. It was also shown that overly optimistic CV matrices are obtained when diagonal-only cofactor matrices are implemented in the stochastic model for the observations. Finally, the divergence of the VCE solution and/or the computation of negative variance components provide insight into the selected parametric model effectiveness.  相似文献   

6.
针对EGM2008重力场模型辅助跨障碍GPS高程传递控制网布设方案进行研究,分别对GPS高程传递控制网进行不同点数的椭球高约束计算,将传递高程与实测高程进行比较,结果表明:跨越2~3 km的障碍GPS高程传递的精度能够达到0.010 m,GPS高程传递控制网中以约束一点椭球高为宜,增加椭球高约束个数并不能提高高程传递的精度。  相似文献   

7.
We propose a methodology for the combination of a gravimetric (quasi-) geoid with GNSS-levelling data in the presence of noise with correlations and/or spatially varying noise variances. It comprises two steps: first, a gravimetric (quasi-) geoid is computed using the available gravity data, which, in a second step, is improved using ellipsoidal heights at benchmarks provided by GNSS once they have become available. The methodology is an alternative to the integrated processing of all available data using least-squares techniques or least-squares collocation. Unlike the corrector-surface approach, the pursued approach guarantees that the corrections applied to the gravimetric (quasi-) geoid are consistent with the gravity anomaly data set. The methodology is applied to a data set comprising 109 gravimetric quasi-geoid heights, ellipsoidal heights and normal heights at benchmarks in Switzerland. Each data set is complemented by a full noise covariance matrix. We show that when neglecting noise correlations and/or spatially varying noise variances, errors up to 10% of the differences between geometric and gravimetric quasi-geoid heights are introduced. This suggests that if high-quality ellipsoidal heights at benchmarks are available and are used to compute an improved (quasi-) geoid, noise covariance matrices referring to the same datum should be used in the data processing whenever they are available. We compare the methodology with the corrector-surface approach using various corrector surface models. We show that the commonly used corrector surfaces fail to model the more complicated spatial patterns of differences between geometric and gravimetric quasi-geoid heights present in the data set. More flexible parametric models such as radial basis function approximations or minimum-curvature harmonic splines perform better. We also compare the proposed method with generalized least-squares collocation, which comprises a deterministic trend model, a random signal component and a random correlated noise component. Trend model parameters and signal covariance function parameters are estimated iteratively from the data using non-linear least-squares techniques. We show that the performance of generalized least-squares collocation is better than the performance of corrector surfaces, but the differences with respect to the proposed method are still significant.  相似文献   

8.
 It is suggested that a spherical harmonic representation of the geoidal heights using global Earth gravity models (EGM) might be accurate enough for many applications, although we know that some short-wavelength signals are missing in a potential coefficient model. A `direct' method of geoidal height determination from a global Earth gravity model coefficient alone and an `indirect' approach of geoidal height determination through height anomaly computed from a global gravity model are investigated. In both methods, suitable correction terms are applied. The results of computations in two test areas show that the direct and indirect approaches of geoid height determination yield good agreement with the classical gravimetric geoidal heights which are determined from Stokes' formula. Surprisingly, the results of the indirect method of geoidal height determination yield better agreement with the global positioning system (GPS)-levelling derived geoid heights, which are used to demonstrate such improvements, than the results of gravimetric geoid heights at to the same GPS stations. It has been demonstrated that the application of correction terms in both methods improves the agreement of geoidal heights at GPS-levelling stations. It is also found that the correction terms in the direct method of geoidal height determination are mostly similar to the correction terms used for the indirect determination of geoidal heights from height anomalies. Received: 26 July 2001 / Accepted: 21 February 2002  相似文献   

9.
ABSTRACT

Forests of the Sierra Nevada (SN) mountain range are valuable natural heritages for the region and the country, and tree height is an important forest structure parameter for understanding the SN forest ecosystem. There is still a need in the accurate estimation of wall-to-wall SN tree height distribution at fine spatial resolution. In this study, we presented a method to map wall-to-wall forest tree height (defined as Lorey’s height) across the SN at 70-m resolution by fusing multi-source datasets, including over 1600 in situ tree height measurements and over 1600?km2 airborne light detection and ranging (LiDAR) data. Accurate tree height estimates within these airborne LiDAR boundaries were first computed based on in situ measurements, and then these airborne LiDAR-derived tree heights were used as reference data to estimate tree heights at Geoscience Laser Altimeter System (GLAS) footprints. Finally, the random forest algorithm was used to model the SN tree height from these GLAS tree heights, optical imagery, topographic data, and climate data. The results show that our fine-resolution SN tree height product has a good correspondence with field measurements. The coefficient of determination between them is 0.60, and the root-mean-squared error is 5.45?m.  相似文献   

10.
局部重力场最小二乘配置通用表示技术   总被引:1,自引:1,他引:1  
在分析局部重力场最小二乘配置法技术特点的基础上,推导出一种能综合多种类型、不同高度重力场元经验协方差函数的通用表达方法,以期实现局部重力场元的内插、外推、延拓或其他不同高度的重力场元估计一体化。分析了最小二乘配置技术的一些性能以及算法实现中应注意的问题。  相似文献   

11.
The accuracy of the gravity field approximation depends on the amount of the available data and their distribution as well as on the variation of the gravity field. The variation of the gravity field in the Greek mainland, which is the test area in this study, is very high (the variance of point free air gravity anomalies is 3191.5mgal 2). Among well known reductions used to smooth the gravity field, the complete isostatic reduction causes the best possible smoothing, however remain strong local anomalies which disturb the homogeneity of the gravity field in this area. The prediction of free air gravity anomalies using least squares collocation and regional covariance function is obtained within a ±4 ... ±19mgal accuracy depending on the local peculiarities of the free air gravity field. By taking into account the topography and its isostatic compensation with the usual remove-restore technique, the accuracy of the prediction mentioned obove was increased by about a factor of 4 and the prediction results become quite insensitive to the covariance function used (local or regional). But when predicting geoidal heights, in spite of using the smoothed field, the prediction results remain still depend on the covariance function used in such a way that differences up to about 50cm/100km result between relative geoidal heights computed with regional or local covariance functions.  相似文献   

12.
Vertical velocities of 30 European permanent Global Positioning System (GPS) stations at or close to tide gauge sites are estimated from more than 3 years of continuous observations. The results of two different solution strategies are presented and compared. The first approach accumulates the daily free network normal equations, the second introduces all sets of daily ellipsoidal height estimates and their covariance matrix into a subsequent common least squares adjustment. In both solutions, mean station heights at a reference epoch, linear vertical velocities, height discontinuities and short period height offsets are estimated. The second approach solves in addition for periodic annual signals and for site-specific pressure loading coefficients. The vertical velocities range from +8 mm/year in the center of the Fennoscandian uplift area to –4 mm/year at a few subsiding locations. Apart from these extrema, most of the sites experience only very small vertical motions. The standard deviations from the second approach providing more realistic error estimates are well below 0.15 mm/year. Some specific data problems are discussed.  相似文献   

13.
The Geoscience Laser Altimeter System (GLAS) aboard Ice, Cloud and land Elevation Satellite (ICESat) is a spaceborne LiDAR sensor. It is the first LiDAR instrument which can digitize the backscattered waveform and offer near global coverage. Among others, scientific objectives of the mission include precise measurement of vegetation canopy heights. Existing approaches of waveform processing for canopy height estimation suggest Gaussian decomposition of the waveform which has the limitation to properly characterize significant peaks and results in discrepant information. Moreover, in most cases, Digital Terrain Models (DTMs) are required for canopy height estimation. This paper presents a new automated method of GLAS waveform processing for extracting vegetation canopy height in the absence of a DTM. Canopy heights retrieved from GLAS waveforms were validated with field measured heights. The newly proposed method was able to explain 79% of variation in canopy heights with an RMSE of 3.18 m, in the study area. The unexplained variation in canopy heights retrieved from GLAS data can be due to errors introduced by footprint eccentricity, decay of energy between emitted and received signals, uncertainty in the field measurements and limited number of sampled footprints.Results achieved with the newly proposed method were encouraging and demonstrated its potential of processing full-waveform LiDAR data for estimating forest canopy height. The study also had implications on future full-waveform spaceborne missions and their utility in vegetation studies.  相似文献   

14.
When height networks are being adjusted, many geodesists advocate the approach where the adjustment should be done by using geopotential numbers rather than the orthometric or normal heights used in practice. This is based on a conviction that neither orthometric nor normal heights can be used for the adjustment because these height systems are not holonomic, meaning–among other things–that height increments (orthometric or normal) when summed around a closed loop do not sum up to zero. If this was the case, then the two height systems could not be used in the adjustment; the non-zero loop closure would violate the basic, usually unspoken, assumption behind the adjustment, namely that the model claiming that height differences are observable is correct. In this paper, we prove in several different ways that orthometric and normal heights are theoretically just as holonomic as the geopotential numbers are, when they are obtained from levelled height differences using actual gravity values. This disposes of the argument that geopotential numbers should be used in the adjustment. Both orthometric and normal heights are equally qualified to be used in the adjustment directly.  相似文献   

15.
The contribution of bathymetry to the prediction of quantities related to the gravity field (e.g., gravity anomalies, geoid heights) is discussed in an extended test area of the central Mediterranean Sea. Sea gravity anomalies and a priori statistical characteristics of depths are used in a least-squares collocation procedure in order to produce new depths, giving a better smoothing of the gravity field when using a remove-restore procedure. The effect of the bottom topography on gravity-field modeling is studied using both the original and the new depths through a residual terrain modeling reduction. The numerical tests show a considerable smoothing of the sea gravity anomalies and the available altimeter heights when the new depth information is taken into account according to the covariance analysis performed. Moreover, geoid heights are computed by combining the sea gravity anomalies either with the original depths or with the new ones, using as a reference surface the OSU91A geopotential model. Comparing the computed geoid heights with adjusted altimeter sea-surface heights (SSHs), better results are obtained when subtracting the attraction of the new depth information. Similar results are obtained when predicting gravity anomalies from altimeter SSHs where the terrain effect on altimetry is based on the new bottom topography. Received: 10 September 1996 / Accepted: 4 August 1997  相似文献   

16.
We investigated a current numerical weather model, known as MAPS (Mesoscale Analysis and Prediction System), to determine if it could precisely define the behavior of GPS signals in the tropospere, ultimately leading to improved GPS-determined ellipsoidal heights. MAPS is the research version of the Rapid Update Cycle (RUC2) generated by NOAA's Forecast System Laboratory. MAPS is generated on an hourly basis and provides coverage in the contiguous United States at a 40-km grid spacing. We processed numerous subsets of GPS data collected over a months-long period on 23 static baselines ranging in length from 62 to 304 km. The GPS data were processed in 1/2-hr, 1-hr, 2-hr, and 4-hr session lengths. The primary effort was to compare the precision of heights obtained using a commonly adopted seasonal weather model with the precision of heights obtained using the MAPS weather model. Our analysis shows that the current version of MAPS can lead to improvement in GPS height precision when session lengths are shorter than two hours. For sessions longer than two hours, comparably precise heights may be obtained using a less accurate seasonal model by introducing appropriate nuisance parameters into the height estimation process. ? 2001 John Wiley & Sons, Inc.  相似文献   

17.
The utility of a stepped statistical surface for either choropleth style or absolute quantity themes depends on how accurately readers can estimate prism heights, and whether prism volumes affect those estimates. Testing of a stepped surface through comparison of state pairs without benefit of legend revealed that most readers respond to prism heights, not volumes. The association of values with heights is consistent for a variety of data areas and for three different themes. Even for an absolute quantity, which logically can be represented by volume, the surface, scaled by height, conveyed magnitudes with as much accuracy as scaled circles used for the same data. Altogether, the results show a stepped surface scaled by height to be a versatile device, and suggest that a surface representing values by volumes might be misinterpreted.  相似文献   

18.
Knudsen 《Journal of Geodesy》1987,61(2):145-160
The estimation of a local empirical covariance function from a set of observations was done in the Faeroe Islands region. Gravity and adjusted Seasat altimeter data relative to theGPM2 spherical harmonic approximation were selected holding one value in celles of1/8°×1/4° covering the area. In order to center the observations they were transformed into a locally best fitting reference system having a semimajor axis1.8 m smaller than the one ofGRS80. The variance of the data then was273 mgal 2 and0.12 m 2 respectively. In the calculations both the space domain method and the frequency domain method were used. Using the space domain method the auto-covariances for gravity anomalies and geoid heights and the cross-covariances between the quantities were estimated. Furthermore an empirical error estimate was derived. Using the frequency domain method the auto-covariances of gridded gravity anomalies was estimated. The gridding procedure was found to have a considerable smoothing effect, but a deconvolution made the results of the two methods to agree. The local covariance function model was represented by a Tscherning/Rapp degree-variance model,A/((i−1)(i−2)(i+24))(R B /R E )2i+2, and the error degree-variances related to the potential coefficient setGPM2. This covariance function was adjusted to fit the empirical values using an iterative least squares inversion procedure adjusting the factor A, the depth to the Bjerhammar sphere(R E R B ), and a scale factor associated with the error degree-variances. Three different combinations of the empirical covariance values were used. The scale factor was not well determined from the gravity anomaly covariance values, and the depth to the Bjerhammar sphere was not well determined from geoid height covariance values only. A combination of the two types of auto-covariance values resulted in a well determined model.  相似文献   

19.
协方差函数拟合高程异常方法探析   总被引:1,自引:0,他引:1  
采用协方差拟合推估模型拟合GPS高程异常,在介绍协方差拟合推估模型的基础上,讨论了几种确定协方差函数的模型,并结合数据对各种拟合方法进行了比较分析.  相似文献   

20.
This paper addresses implementation issues in order to apply non-stationary least-squares collocation (LSC) to a practical geodetic problem: fitting a gravimetric quasigeoid to discrete geometric quasigeoid heights at a local scale. This yields a surface that is useful for direct GPS heighting. Non-stationary covariance functions and a non-stationary model of the mean were applied to residual gravimetric quasigeoid determination by planar LSC in the Perth region of Western Australia. The non-stationary model of the mean did not change the LSC results significantly. However, elliptical kernels in non-stationary covariance functions were used successfully to create an iterative optimisation loop to decrease the difference between the gravimetric quasigeoid and geometric quasigeoid at 99 GPS-levelling points to a user-prescribed tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号