首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The consistent geographical and altitudinal distribution of autochthonous block fields (mantle of bedrock weathered in situ) and trimlines in southern Norway suggests a multi-domed and asymmetric Late Weichselian ice sheet. Low-gradient ice-sheet profiles in the southern Baltic region, in the North Sea, and along the outer fjord areas of southern Norway, are best explained by movement of ice on a bed of deforming sediment, although water lubricated sliding or a combination of the two, may not be excluded. The ice-thickness distribution of the Late Weichselian Scandinavian ice sheet is not in correspondence with the modern uplift pattern of Fennoscandia. Early Holocene crustal rebound was apparently determined by an exponential, glacio-isostatic rise. Later, however, crustal movements appear to have been dominated by large-scale tectonic uplift of the Fennoscandian Shield, centred on the Gulf of Bothnia, the region of maximum lithosphere thickness.  相似文献   

2.
P. Stocchi  G. Spada   《Tectonophysics》2009,474(1-2):56
Present-day sea level variations in the Mediterranean depend on various factors, including recent climatic forcing, tectonic activity, anthropogenic effects, and glacio-isostatic adjustment. The latter is governed by mantle rheology and the spatio–temporal distribution of the late-Pleistocene ice sheets and it is expected to produce a long-wavelength pattern of sea level variations across the Mediterranean, mostly determined by the response of the solid earth and of the geoid to loading effects of melt water since the end of deglaciation. Modeling glacio-isostatic effects in this region is necessary for a correct interpretation of tide gauge and GPS time-series, and thereby to constrain both the present-day climate-related sea level rise and regional or local geological, tectonic and human-driven displacements. By an exhaustive exploration of the parameter space of mantle rheology and ice sheet chronologies, in this work we outline upper and lower bounds on the current rate of sea level variation associated with glacial isostatic adjustment in the Mediterranean. This may contribute to a full assessment of coastal vulnerability by sea level rise on a regional and local scale.  相似文献   

3.
This paper investigates the processes governing bedrock bedform evolution in ice sheet and ice stream areas in central West Greenland, and explores the evidence for a cross‐shelf ice stream at the Last Glacial Maximum (LGM). To the east of Sisimiut the formation of streamlined bedforms with high elongation ratios and high bedform density has been controlled by geological structure and topography in slow‐flowing ice sheet areas. At the coast, the effects of regional flow convergence, caused by coastal fjord orientation, routed ice into the Sisimiut/Itilleq area where it formed an ice stream onset zone. This funnelled ice into an offshore trough (Holsteinsborg Dyb), resulting in a southwesterly regional ice flow direction and the formation of a topographically routed ice stream (Holsteinsborg Isbrae). To the south of this, striae and bedform evidence show that local valley glaciers initially flowed east to west across the coast, but were later redirected by the Itilleq Fjord ice which turned southwestward due to diffluent flow and deflection by Holsteinsborg Isbrae. Roches moutonnées in this area have low elongation ratios and high bedform density, but do not provide unequivocal support for ice streaming, as they are a product of both bedrock structure and changes in ice flow direction, rather than enhanced flow velocities. Cosmogenic surface exposure ages limit maximum ice sheet surface elevation to ca. 755–810 m above sea level in this region. Such ice thickness enabled Holsteinsborg Isbrae to reach the mid/outer continental shelf during the LGM, and to contribute to the formation of a trough mouth fan and the Outer Hellefisk moraines. Initial deglaciation across this region was driven by rising sea level and increasing air temperatures prior to the Bølling Interstadial at ca. 14.5 cal. ka BP. Between 12 and 10 cal. ka BP both increased air and ocean temperatures post the Younger Dryas, and peak sea‐level rise up to the marine limit, caused accelerated thinning and marginal retreat through calving, although dating evidence suggests ice streams remained along the inner shelf/coast boundary until at least ca. 10 cal. ka BP, their longevity maintained by increased ice thickness and ice discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
上扬子西部地区磷灰石裂变径迹年龄数据的统计为该区的新生代构造活动建立了宏观的图景,初步构建了区域上新生代构造活动和陆内变形的时空联系。揭示新生代构造活动在时间上存在大约61~43 Ma和大约24 Ma以来两个阶段的显著差异,约24 Ma是上扬子板块西部地区新生代构造活动显著增强的一个重要转折时期。在空间上大致以松潘-安县为界构成南、北分段。构造活动和区域抬升-剥露总体表现为南强北弱,西强东弱的格局。南段是新生代活动的主控区,以强烈地构造抬升和构造改造为主,而北段总体上受制于白垩纪的抬升-剥露,新生代以来主要表现出剥蚀和弱构造改造的特征。新生代的构造活动受制于青藏高原抬升作用向东扩展的影响。上扬子西部地区新生代构造活动在一定程度上制约了该区油气的圈闭环境和成藏条件。  相似文献   

5.
The topographic evolution of the “passive” margins of the North Atlantic during the last 65 Myr is the subject of extensive debate due to inherent limitations of the geological, geomorphological and geophysical methods used for studies of uplift and subsidence. We have compiled a database of sign, time and amplitude (where possible) of topographic changes in the North Atlantic region during the Cenozoic (65–0 Ma). Our compilation is based on published results from reflection seismic studies, AFT (apatite fission track) studies, VR (vitrinite reflectance) trends, maximum burial, sediment supply studies, mass balance calculations and extrapolation of seismic profiles to onshore geomorphological features. The integration of about 200 published results reveal a clear pattern of topographic changes in the North Atlantic region during the Cenozoic: (1) The first major phase of Cenozoic regional uplift occurred in the late Palaeocene–early Eocene (ca 60–50 Ma), probably related to the break-up of the North Atlantic between Europe and Greenland, as indicated by the northward propagation of uplift. It was preceded by middle Palaeocene uplift and over-deepening of some basins of the North Sea and the surrounding areas. (2) A regional increase in subsidence in the offshore marginal areas of Norway, the northern North Sea, the northern British Isles and west Greenland took place in the Eocene (ca 57–35 Ma). (3) The Oligocene and Miocene (35–5 Ma) were characterized by regional tectonic quiescence, with only localised uplift, probably related to changes in plate dynamics. (4) The second major phase of regional uplift that affected all marginal areas of the North Atlantic occurred in the Plio-Pleistocene (5–0 Ma). Its amplitude was enhanced by erosion-driven glacio-isostatic compensation. Despite inconclusive evidence, this phase is likely to be ongoing at present.  相似文献   

6.
The Holocene sea-level high stand or “marine limit” in Wilkes Land, East Antarctica, reached 30 m above present sea level at a few dispersed sites. The most detailed marine limit data have been recorded for the Windmill Islands and Budd Coast at the margin of the Law Dome ice cap, a dome of the East Antarctic Ice Sheet (EAIS). Relative sea-level lowering of 30 m and the associated emergence of the Windmill Islands have occurred since 6900 14C (corr.) yr B.P. Numerical modeling of the Earth's rheology is used to determine the glacio-isostatic component of the observed relative sea-level lowering. Glaciological evidence suggests that most of EAIS thickening occurred around its margin, with expansion onto the continental shelf. Consequently, a regional ice history for the last glacial maximum (LGM) was applied in the glacio-isostatic modeling to test whether the observed relative sea-level lowering was primarily produced by regional ice-sheet changes. The results of the modeling indicate that the postglacial (13,000 to 8000 14C yr B.P) removal of an ice load of between 770 and 1000 m from around the margin of the Law Dome and adjacent EAIS have produced the observed relative sea-level lowering. Such an additional ice load would have been associated with a 40- to 65-km expansion of the Law Dome to near the continental shelf break, together with a few hundred meters of ice thickening on the adjoining coastal slope of the EAIS up to 2000 m elevation. Whereas the observed changes in relative sea level are shown to be strongly influenced by regional ice sheet changes, the glacio-isostatic response at the Windmill Islands results from a combination of regional and, to a lesser extent, Antarctic-wide effects. The correspondence between the Holocene relative sea-level lowering interpreted at the margin of the Law Dome and the lowering interpreted along the remainder of the Wilkes Land and Oates Land coasts (105°–160° E) suggests that a similar ice load of up to 1000 m existed along the EAIS margin between Wilkes Land and Oates Land.  相似文献   

7.
High-resolution bathymetric mapping of the fjords and continental shelf around the Svalbard archipelago shows an extensive pattern of large- and medium-scale submarine landforms formed by differences in ice-flow regimes. Mega-scale glacial lineations, lateral moraines, transverse ridges and glaciotectonic features are superimposed on the large-scale fjord, shelf and cross-shelf trough morphology of the margin. From these landforms we have inferred the flow and dynamics of the last ice sheet on Svalbard. Major fjords and their adjacent cross-shelf troughs have been identified as the main routes for ice streams draining the ice sheet. On the west coast of Svalbard major pathways existed along Bellsund, Isfjorden and Kongsfjorden. Along the northern Svalbard margin most of the ice drained through the Woodfjorden cross-shelf trough and Wijdefjorden-Hinlopen strait. Extensive areas with trough-parallel glacial lineations in the cross-shelf troughs suggest fast ice flow by palaeo-ice streams. Lateral ice-stream moraines, several tens of kilometres in length, have been mapped along the margins of some of the cross-shelf troughs, identifying the border zone between fast ice flow and stagnant or slow-flowing ice on intervening banks. Several general implications can be drawn from the interpretation of the glacier-derived submarine landforms around Svalbard. Firstly, the Late Weichselian ice sheet was partitioned into fast-flowing ice streams separated by slower moving ice. Secondly, our submarine morphological evidence supports earlier sedimentological, stratigraphical and chronological studies in implying that a large ice sheet reached the shelf edge around almost all of western and northern Svalbard in the Late Weichselian. The idea of a relatively restricted ice sheet over Svalbard, with ice-free conditions in some areas of the west coast at the Last Glacial Maximum, is therefore unlikely to be correct. Thirdly, the ice sheet appears to have retreated more rapidly from the cross-shelf troughs and outer fjords, although sometimes this occurred in a punctuated pattern indicated by grounding-zone wedges, and more slowly from the intervening shallower banks. In addition, a grounding zone for the ice sheet has been mapped at the shelf edge 10-20 km off the northwest coast of Svalbard, suggesting that ice did not reach the adjacent Yermak Plateau during the Late Weichselian.  相似文献   

8.
The coast-parallel Flakkerhuk ridge on southern Jameson Land revealed a succession of four marine formations separated by tills and glaciotectonic deformation zones representing glacier advances. Paleontological evidence. supported by 32 luminescence datings, indicates that deposition took place during the Eemian and Early Weichselian. A pronounced rise in sea-level due to glacio-isostatic depression is evidenced within the Late Eemian part of the sequence, indicating buildup of ice commencing while interglacial conditions still prevailed. A diamicton interpreted as a till deposited by a glacier moving from the interior of Jameson Land and overlying the interglacial deposits would seem to suggest the presence of a local ice cap on Jameson Land at the last interglacial/glacial transition. Three ice advances from the fjord onto the coast were identified following the last interglacial. The glaciers at no time advanced beyond 2–3 km inland from the coast in the investigated area. This demonstrates that the glaciers advancing through the Scoresby Sund fjord during the Weichselian were relatively thin, with a low longitudinal gradient. Glacier advances onto the coast were apparently strongly influenced by local topography and relative sea-level. The Flakkerhuk ridge is mainly an erosional landform originating from continued fluvial downcutting of former drainage channels from along the Early Weichselian ice margin. Only the very top of the ridge is considered to he a constructional ice marginal ridge, related to the Flakkerhuk glaciation.  相似文献   

9.
Postglacial land uplift patterns of south Sweden and the Baltic Sea region   总被引:1,自引:0,他引:1  
Comparison of the land uplift pattern for the last 10,300 years, shown by studies of raised shorelines of the Baltic Ice Lake, with the pattern of present-day land uplift of Fennoscandia, shows that significant regional changes of uplift pattern have taken place. Some of these changes seem to be related to a halt in ice retreat during the Younger Dryas cold stage. It is also probable that some observed anomalies in the present uplift are not of glacio-isostatic origin, but are possibly related to structures in the lower lithosphere and upper mantle or large scale tectonics.  相似文献   

10.
Southwestern Finland was covered by the Weichselian ice sheet and experienced rapid glacio-isostatic rebound after early Holocene deglaciation. The present mean overall apparent uplift rate is of the order of 4-5 mm/yr, but immediately after deglaciation the rate of crustal rebound was several times higher. Concurrently with land uplift, relative sea level in the Baltic basin during the past more than 8000 years was also strongly affected by the eustatic changes in sea level. There is ample evidence from earlier studies that during the early Litorina Sea stage on the southeastern coast of Finland around 7000 yr BP (7800 cal. yr BP), the rise in sea level exceeded the rate of land uplift, resulting in a short-lived transgression. Because of a higher rate of uplift, the transgression was even more short-lived or of negligible magnitude in the southwestern part of coastal Finland, but even in this latter case a slowing down in the rate of regression can still be detected. We used evidence from isolation basins to obtain a set of 71 14C dates, and over 30 new sea-level index points. The age-elevation data, obtained from lakes in two different areas and located between c. 64 m and 1.5 m above present sea level, display a high degree of internal consistency. This suggests that the dates are reliable, even though most of them were based on bulk sediment samples. The two relative sea-level curves confirm the established model of relatively gradually decreasing rates of relative sea-level lowering since c. 6100 yr BP (7000 cal. yr BP) and clearly indicate that the more northerly of the two study areas experienced the higher rate of glacio-isostatic recovery. In the southerly study area, changes in diatom assemblages and lithostratigraphy suggest that during the early Litorina Sea stage (8300-7600 cal. yr BP) eustatic sea-level rise exceeded land uplift for hundreds of years. Evidence for this transgression was discovered in a lake with a basin threshold at an elevation of 41 m above sea level, which is markedly higher than any previously known site with evidence for the Litorina transgression in Finland. We also discuss evidence for subsequent short-term fluctuations superimposed on the main trends of relative sea-level changes.  相似文献   

11.
The popular concept of a Late Weichselian ice sheet covering the Barents Shelf and confluent with the Scandinavian and Russian ice sheets is based primarily on the 6500 B.P. isobase which rises to the east over Spitsbergen, and to the west over Franz Joseph Land. Analysis of uplift curves from the Spitsbergen archipelago shows, however, that the strongest early Holocene uplift occurs over northeastern Spitsbergen and eastern Nordaustlandet, falling both to east and west, and that the centre of uplift migrates to the southeast during the Holocene. Direct evidence of glacier fluctuation indicates an important Billefjorden Stage of glaciation at about 11,000 to 10,000 B.P., part of whose extent can be defined by moraines and by abrupt changes in the marine limit. The dominant ice masses of the Billefjorden Stage seem to have formed over eastern Spitsbergen, Edgeøya, Barentsøya and southern Hinlopenstretet, and it is the decay of this ice mass which is primarily responsible for the pattern of early Holocene uplift. Stratigraphic evidence suggests the absence of an important glacial event at 18,000–20,000 B.P., but an important phase of Spitsbergen-centred glaciation at about 40,000 B.P., and a glacial phase at 80,000–120,000 B.P. It is suggested that many raised beach sequences outside the Billefjorden readvance show an upper sequence related to deglaciation at about 40,000 B.P., and a lower, Holocene sequence related to decay of the Billefjorden ice. The anomalous pattern of late Holocene uplift may be related to restrained rebound produced by regeneration of ice on the main islands of the archipelago and unrestrained rebound on Hopen and Kong Karls Land, which were incapable of sustaining large ice masses of their own. A pattern of LateGlacial climatic circulation which may have produced ice masses on the east coast of Spitsbergen, west coast of Novaya Zemlya and north coast of Russia is suggested. It is also suggested that this pattern of glaciation produced features which have been wrongly interpreted as evidence of a Barents ice sheet.  相似文献   

12.
Two large ice fields between 46°30′ and 51°30′S cover the Patagonian Andes. The North and South Patagonian Ice Fields are separated by the transandine depth line at 47°45′ to 48°15′S. Canal and Río Baker run through this depression. The two ice fields are generally considered relics of a continuous ice cap, which covered the entire Patagonian Andes from 39° to 52°S and extended far into the eastern foreland of the Andes. This assumption is not correct for the 200-km-long section of the Andes between Lago Pueyrredón (Lago Cochrane in Chile) (47°15′S) and Lago San Martín (Lago O'Higgins in Chile) (48°45′S). The lack of a continuous ice cap extending far into the east is caused by the transandine depth line, playing a crucial role in the fluvial erosion and the glacial scouring of this tectonic zone. This depression formed a river system (e.g. Río Baker, Río Bravo and Río Mayer) that drains towards the west. Reconstruction of the maximum glacial advance of the last ice age shows that the eastern outlet glaciers of the two ice fields between Lago San Martín and Lago Pueyrredón did not drain towards the east, but rather followed the general gradient of the transandine depth line. In this area the eastern flank of the Andes between Monte San Lorenzo (3770 m) and Sa. de Sangra (2155 m) supported valley glaciers, which were independent of the expanding ice fields. Only a few valley glaciers advanced towards the Patagonian Meseta. The terminal moraines of these glaciers were erroneously interpreted as the eastern edge of a continuous ice cap. North of 47°30′S the outlet glaciers of the NPI advanced 200 km during the LGM and the late glacial advances nearly reached to 71°W. In contrast, south of 49°S glacier expansion was comparatively less: The LGM is situated only 85–115 km east of the present margins of the large outlet glaciers (O'Higgins, Viedma, and Upsala), and no late glacial advance reached 72°W. These considerable differences of glacier expansion were influenced by the northward migration of the westerly precipitation belt during glacial cycles. There is tentative evidence that the glaciers advanced three times in the period from 14 000 to 9 500 14C years BP.  相似文献   

13.
薛娇  姚晓军  张聪  周苏刚  褚馨德 《冰川冻土》2022,44(5):1653-1664
表碛覆盖型冰川是山地冰川的一种特殊类型,表碛的存在使得其对气候变化呈现出不同的响应特征。基于2011—2020年Landsat TM/ETM+/OLI遥感影像和ASTER DEM数据,在综合分析表碛光谱、地形和地表温度特征基础上提出TDSI(temperature NDDI slope ice)方法,并将其用于提取中国境内托木尔冰川等6条大陆型冰川和雅弄冰川等3条海洋型冰川。结果表明:基于TDSI方法提取表碛覆盖型冰川的总体精度为91.23%,其中大陆型和海洋型表碛覆盖冰川的精度分别为91.20%和90.97%。2011—2020年6条大陆型冰川和3条海洋型冰川面积平均减少0.06%和0.11%,而表碛面积分别增加了11.92%和18.35%。大陆型冰川表碛主要分布在其中值海拔以下,而海洋型冰川表碛分布范围更广,近10年间二者均呈现向冰川上部扩张趋势。气温上升是冰川消融退缩和表碛增加的主要原因,同时冰川流速变化和终碛湖演变也对表碛变化有一定影响。  相似文献   

14.
Ascertaining the location of palaeo‐ice streams is crucial in order to produce accurate reconstructions of palaeo‐ice sheets and examine interactions with the ocean–climate system. This paper reports evidence for a major ice stream in Amundsen Gulf, Canadian Arctic Archipelago. Mapping from satellite imagery (Landsat ETM+) and digital elevation models, including bathymetric data, is used to reconstruct flow‐patterns on southwestern Victoria Island and the adjacent mainland (Nunavut and Northwest Territories). Several flow‐sets indicative of ice streaming are found feeding into the marine trough and cross‐cutting relationships between these flow‐sets (and utilising previously published radiocarbon dates) reveal several phases of ice stream activity centred in Amundsen Gulf and Dolphin and Union Strait. A large erosional footprint on the continental shelf indicates that the ice stream (ca. 1000 km long and ca. 150 km wide) filled Amundsen Gulf, probably at the Last Glacial Maximum. Subsequent to this, the ice stream reorganised as the margin retreated back along the marine trough, eventually splitting into two separate low‐gradient lobes in Prince Albert Sound and Dolphin and Union Strait. The location of this major ice stream holds important implications for ice sheet–ocean interactions and specifically, the development of Arctic Ocean ice shelves and the delivery of icebergs into the western Arctic Ocean during the late Pleistocene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Glaciers, ice sheets and ice caps represent tectonic systems driven by gravity. Their movement can be studied in real time and the rheological properties and strength of ice determined from laboratory experiments and field measurements. All glacial ice has primary stratification, exhibited by variations in grain size, bubble content and debris content. As it deforms, with deformation dominated by plastic flow and recrystallization, accompanied locally by fracture under tension, a suite of structures develops that reflects the primary fabric of the ice and the anisotropy that develops as a result of cumulative deformation. Initial variations in solid impurity content and strain dependent anisotropy as a result of a crystallographic fabric give rise to effective viscosity increases or decreases compared to isotropic polycrystalline ice of about a factor of ten. Foliation develops from inherited (mostly stratification) or introduced (mostly ice veins or fracture traces) fabric elements and from dynamic recrystallization. It is largely dependent on the accumulated strain, which is highest at the base and near the margins of glaciers, ice sheets and ice streams. Folds develop largely passively due to initial amplification of irregularities in the primary stratification, to variations in flow with time or to inhomogeneous flow associated with shear zones and ductile accommodation around open fractures. Buckle folds and boudinage, mostly on a small scale, occur where viscosity contrast is large, mostly in basal ice. Thrusting and wrench faulting are documented in surging glaciers but theoretically most unlikely and rare or absent elsewhere. Many structures interpreted as faults are not due to shear failure but rather result from shear displacements during opening and closing of tensile fractures.  相似文献   

16.
Key locations within an extensive area of the northeastern Tibetan Plateau, centred on Bayan Har Shan, have been mapped to distinguish glacial from non‐glacial deposits. Prior work suggests palaeo‐glaciers ranging from valley glaciers and local ice caps in the highest mountains to a regional or even plateau‐scale ice sheet. New field data show that glacial deposits are abundant in high mountain areas in association with large‐scale glacial landforms. In addition, glacial deposits are present in several locations outside areas with distinct glacial erosional landforms, indicating that the most extensive palaeo‐glaciers had little geomorphological impact on the landscape towards their margins. The glacial geological record does indicate extensive maximum glaciation, with local ice caps covering entire elevated mountain areas. However, absence of glacial traces in intervening lower‐lying plateau areas suggests that local ice caps did not merge to form a regional ice sheet on the northeastern Tibetan Plateau around Bayan Har Shan. No evidence exists for past ice sheet glaciation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
18.
大陆剥蚀速率与造山隆升速率研究的某些进展   总被引:5,自引:0,他引:5  
大陆的机械剥蚀速率与区域高度和地表径流量呈正相关关系。化学溶蚀速率与地表径流量呈正相关关系。在大陆地壳无升降运动条件下,现代大陆剥蚀夷平至海平面只需30-300Ma。大陆平均高度受控于地球内部的放射性热能,由于放射性热能的缓慢衰减而引起大陆平均高度的缓慢降低。剧烈构造运动期间,隆升速率可以是剥蚀速率的数倍,由于隆升的阶段性(短期性)和剥蚀的持续性(长期性)使大陆高度长期发生不断的变化。  相似文献   

19.
柴达木盆地西南缘新近纪以来受昆仑山断裂活动影响,地震活动强烈,发育一系列与地震活动有关的软沉积物变形构造,主要包括: 负荷构造、火焰构造、球—枕状构造、地震角砾、震裂缝、层内震褶曲和同沉积微断层等。通过区域地质调查、实测剖面、点上解剖和样品测试分析,初步认为柴达木盆地西南缘区分别于1.8—1.2,Ma、0.8,Ma、0.15,Ma发生过3次强烈构造活动,这些事件均伴随强烈的古地震活动,作为这些隆升事件的沉积和构造响应,盆地更新统中形成了一系列典型软沉积物变形以及相关的震积构造,对于研究青藏高原板内不均匀隆升过程及其隆升构造—地震—沉积效应具有重要意义。  相似文献   

20.
The islands of Tiree and Coll in the Scottish Inner Hebrides are dominated by staircases of glaciated rock-platform surfaces in Lewisian gneiss that are interpreted here as areas of strandflat. The rock platform surfaces exhibit differential glacio-isostatic uplift from east to west and are considered to indicate at least four separate periods of strandflat formation during prolonged intervals of Quaternary cold climate. It is suggested that many of the well-known areas of high rock platform located farther east in the Scottish Inner Hebrides represent eroded remnants of the strandflat surfaces described here. The existence of the Tiree and Coll strandflat surfaces in conjunction with their formation during periods of Quaternary glaciation implies that they were produced during periods when mainland Scotland was ice-covered yet when the western margin of the ice sheet was normally located east of these islands. A prominent Late-glacial raised shoreline also occurs on both islands and declines in altitude to the west, from 22 m in northeastern Coll to 9 m in western Tiree. It is believed that this shoreline, whose regional gradient is 0.39 m km?1, may represent part of the Main Wester Ross Shoreline that was formed in the Northwest Highlands of Scotland during a period of glacial advance that interrupted the decay of the last (Late Devensian) ice sheet. The general similarity in altitude between the Late-glacial shoreline features and rock platform surfaces implies that during each period of Quaternary strandflat formation, relative sea-level returned to the same approximate position. This would appear to indicate that the glacio-isostatic and glacio-eustatic components affecting the positions of relative sea level in Scotland have remained in approximate equilibrium throughout the duration of the Quaternary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号