首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diffusion of water in dacitic and andesitic melts was investigated at temperatures of 1458 to 1858 K and pressures between 0.5 and 1.5 GPa using the diffusion couple technique. Pairs of nominally dry glasses and hydrous glasses containing between 1.5 and 6.3 wt.% dissolved H2O were heated for 60 to 480 s in a piston cylinder apparatus. Concentration profiles of hydrous species (OH groups and H2O molecules) and total water (CH2Ot = sum of OH and H2O) were measured along the cylindrical axis of the diffusion sample using IR microspectroscopy. Electron microprobe traverses show no significant change in relative proportions of anhydrous components along H2O profiles, indicating that our data can be treated as effective binary interdiffusion between H2O and the rest of the silicate melt. Bulk water diffusivity (DH2Ot) was derived from profiles of total water using a modified Boltzmann-Matano method as well as using fittings assuming a functional relationship between DH2Ot and CH2Ot. In dacitic melts DH2Ot is proportional to CH2Ot up to 6 wt.%. In andesitic melts the dependence of DH2Ot on CH2Ot is less pronounced. A pressure effect on water diffusivity could not be resolved for either dacitic or andesitic melt in the range 0.5 to 1.5 GPa. Combining our results with previous studies on water diffusion in rhyolite and basalt show that for a given water content DH2Ot increases monotonically with increasing melt depolymerization at temperatures >1500 K. Assuming an Arrhenian behavior in the whole compositional range, the following formulation was derived to estimate DH2Ot (m2/s) at 1 wt.% H2Ot in melts with rhyolitic to andesitic composition as a function of T (K), P (MPa) and S (wt.% SiO2):
  相似文献   

2.
H2O diffusion in dacitic melt was investigated at 0.48-0.95 GPa and 786-893 K in a piston-cylinder apparatus. The diffusion couple design was used, in which a nominally dry dacitic glass makes one half and is juxtaposed with a hydrous dacitic glass containing up to ∼8 wt.% total water (H2Ot). H2O concentration profiles were measured on quenched glasses with infrared microspectroscopy. The H2O diffusivity in dacite increases rapidly with water content under experimental conditions, similar to previous measurements at the same temperature but at pressure <0.15 GPa. However, compared with the low-pressure data, H2O diffusion at high pressure is systematically slower. H2O diffusion profiles in dacite can be modeled by assuming molecular H2O (H2Om) is the diffusing species. Total H2O diffusivity DH2Ot within 786-1798 K, 0-1 GPa, and 0-8 wt.% H2Ot can be expressed as: where DH2Ot is in m2/s, T is temperature in K, P is pressure in GPa, K = exp(1.49 − 2634/T) is the equilibrium constant of speciation reaction (H2Om+O?2OH) in the melt, X = C/18.015/[C/18.015 + (100 − C)/33.82], C is wt.% of H2Ot, and 18.015 and 33.82 g/mol correspond to the molar masses of H2O and anhydrous dacite on a single oxygen basis. Compared to H2O diffusion in rhyolite, diffusivity in dacite is lower at intermediate temperatures but higher at superliquidus temperatures. This general H2O diffusivity expression can be applied to a broad range of geological conditions, including both magma chamber processes and volcanic eruption dynamics from conduit to the surface.  相似文献   

3.
Effective binary diffusion coefficients of Si during the interdiffusion of hydrous, 3 and 6% H2O, dacitic and rhyolitic melts have been determined at 1.0 GPa, 1100°–1400°C. Water is shown to enhance diffusivities by one to two orders of magnitude above dry Si diffusivities in the same compositional system for SiO2 compositions 65–75wt%. The effect of silica content on diffusion is small and typically within experimental error. With 3% H2O in the melts the Arrhenius equation for Si diffusion at 70% SiO2 is: $${\text{D = }}2.583\operatorname{x} 10^{ - {\text{ }}8} {\text{ }}\exp ( - 126.5/R{\text{T}})$$ where D is the diffusivity in m2/s, the activation energy (126.5) is in kJ/mol, R is in J/mol and T in Kelvin. Although less-well constrained, the Si diffusivity at 70% SiO2 with 6% H2O in the melts can be described by: $${\text{D = }}2.692\operatorname{x} 10^{ - {\text{ }}7} {\text{ }}\exp ( - 131.4/R{\text{T}})$$ The activation energies for diffusion are substantially below the activation energy of 236.4kJ/mol measured during anhydrous interdiffusion in the same system (Baker 1990). The decrease in activation energy with the initial addition of 3% water and the relative insensitivity of the activation energy to the additional water is related to the abundance of OH species in the melt, and the reduction of (Si,Al)-O bond strengths due to the interaction of hydroxyls with the (Si,Al)-O network. Changes in the pre-exponential factor of Arrhenius equations are attributed to the abundance of H2O species in the melts. No decoupling of non-alkalies from SiO2 during interdiffusion of the two melts was observed, although alkalies diffuse much more rapidly than non-alkalies (but were not measured quantitatively in this study) and can become decoupled. Interdiffusion of Si and all non-alkalies is demonstrated to be predictable, at least to within a factor of ten, by the Eyring equation. Using the diffusion data of this study for nonalkalies and of other studies for alkalies and Sr isotopes the contamination of a host rhyolitic magma by dacitic enclaves, 5 and 50 cm radius, has been modeled for temperatures of 1000°, 900°, and 800° C with water contents of 3 and 6%. Even when the effects of phenocrysts on diffusion in the dacitic enclaves are estimated the results of the modeling demonstrate that significant contamination is possible in the case of small enclaves, and even large enclaves have the potential to affect the composition of their host magma in geologically short times.  相似文献   

4.
Diffusion of water was experimentally investigated for melts of albitic (Ab) and quartz-orthoclasic (Qz29Or71, in wt %) compositions with water contents in the range of 0 to 8.5 wt % at temperatures of 1100 to 1200 °C and at pressures of 1.0 and 5.0 kbar. Apparent chemical diffusion coefficients of water (D water) were determined from concentration-distance profiles measured by FTIR microspectroscopy. Under the same P-T condition and water content the diffusivity of water in albitic, quartz-orthoclasic and haplogranitic (Qz28Ab38 Or34, Nowak and Behrens, this issue) melts is identical within experimental error. Comparison to data published in literature indicates that anhydrous composition only has little influence on the mobility of water in polymerized melts but that the degree of polymerization has a large effect. For instance, Dwater is almost identical for haplogranitic and rhyolitic melts with 0.5–3.5 wt % water at 850 °C but it is two orders of magnitude higher in basaltic than in haplogranitic melts with 0.2–0.5 wt % water at 1300 °C. Based on the new water diffusivity data, recently published in situ near-infrared spectroscopic data (Nowak 1995; Nowak and Behrens 1995), and viscosity data (Schulze et al. 1996) for hydrous haplogranitic melts current models for water diffusion in silicate melts are critically reviewed. The NIR spectroscopy has indicated isolated OH groups, pairs of OH groups and H2O molecules as hydrous species in polymerized silicate melts. A significant contribution of isolated OH groups to the transport of water is excluded for water contents above 10 ppm by comparison of viscosity and water diffusion data and by inspection of concentration profiles from trace water diffusion. Spectroscopic measurements have indicated that the interconversion of H2O molecules and OH pairs is relatively fast in silicate glasses and melts even at low temperature and it is inferred that this reaction is an active step for migration of water. However, direct jumps of H2O molecules from one cavity within the silicate network to another one can not be excluded. Thus, we favour a model in which water migrates by the interconversion reaction and, possibly, small sequences of direct jumps of H2O molecules. In this model, immobilization of water results from dissociation of the OH pairs. Assuming that the frequency of the interconversion reaction is faster than that of diffusive jumps, OH pairs and water molecules can be treated as a single diffusing species having an effective diffusion coefficient . The shape of curves of Dwater versus water content implies that increases with water content. The change from linear to exponential dependence of Dwater between 2 and 3 wt % water is attributed to the influence of the dissociation reaction at low water content and to the modification of the melt structure by incorporation of OH groups. Received: 26 March 1996 / Accepted: 23 August 1996  相似文献   

5.
  The diffusivity of water has been investigated for a haplogranitic melt of anhydrous composition Qz28Ab38Or34 (in wt %) at temperatures of 800–1200°C and at pressures of 0.5–5.0 kbar using the diffusion couple technique. Water contents of the starting glass pairs varied between 0 and 9 wt %. Concentration-distance profiles for the different water species (molecular water and hydroxyl groups) were determined by near-infrared microspectroscopy. Because the water speciation of the melt is not quenchable (Nowak 1995; Nowak and Behrens 1995; Shen and Keppler 1995), the diffusivities of the individual species can not be evaluated directly from these profiles. Therefore, apparent chemical diffusion coefficients of water (D water) were determined from the total water profiles using a modified Boltzmann-Matano analysis. The diffusivity of water increases linearly with water content <3 wt % but exponentially at higher water contents. The activation energy decreases from 64 ± 10 kJ/mole for 0.5 wt % water to 46 ± 5 kJ/mole for 4 wt % water but remains constant at higher water contents. A small but systematic decrease of D water with pressure indicates an average activation volume of about 9 cm3/mole. The diffusivity (in cm2/s) can be calculated for given water content (in wt %), T (in K) and P (in kbar) by
in the ranges 1073 K ≤ T ≤ 1473 K; 0.5 kbar ≤ P≤ 5␣kbar; 0.5 wt % ≤ C water ≤ 6 wt %. The absence of alkali concentration gradients in the glasses after the experiments shows that interdiffusion of alkali and H+ or H3O+ gives no contribution to the transport of water in aluminosilicate melts. The H/D interdiffusion coefficients obtained at 800°C and 5 kbar using glass pieces with almost the same molar content of either water or deuterium oxide are almost identical to the chemical diffusivities of water. This indicates that protons are transported by the neutral component H2O under these conditions. Received: 26 March 1996 / Accepted: 23 August 1996  相似文献   

6.
Water speciation in rhyolitic melts with dissolved water ranging from 0.8 to 4 wt% under high pressure was investigated. Samples were heated in a piston-cylinder apparatus at 624-1027 K and 0.94-2.83 GPa for sufficient time to equilibrate hydrous species (molecular H2O and hydroxyl group, H2Om + O ? 2OH) in the melts and then quenched roughly isobarically. The concentrations of both hydrous species in the quenched glasses were measured with Fourier transform infrared (FTIR) spectroscopy. For the samples with total water content less than 2.7 wt%, the equilibrium constant (K) is independent of total H2O concentration. Incorporating samples with higher water contents, the equilibrium constant depends on total H2O content, and a regular solution model is used to describe the dependence. K changes with pressure nonmonotonically for samples with a given water content at a given temperature. The equilibrium constant does not change much from ambient pressure to 1 GPa, but it increases significantly from 1 to 3 GPa. In other words, more molecular H2O reacts to form hydroxyl groups as pressure increases from 1 GPa, which is consistent with breakage of tetrahedral aluminosilicate units due to compression of the melt induced by high pressure. The effect of 1.9 GPa (from 0.94 to 2.83 GPa) on the equilibrium constant at 873 K is equivalent to a temperature effect of 49 K (from 873 K to 922 K) at 0.94 GPa. The results can be used to evaluate the role of speciation in water diffusion, to estimate the apparent equilibrium temperature, and to infer viscosity of hydrous rhyolitic melts under high pressure.  相似文献   

7.
The experimental dissolution of zircon into a zircon-undersaturated felsic melt of variable water content at high pressure in the temperature range 1,020° to 1,500° C provides information related to 1) the solubility of zircon, 2) the diffusion kinetics of Zr in an obsidian melt, and 3) the rate of zircon dissolution. Zirconium concentration profiles observed by electron microprobe in the obsidian glass adjacent to a large, polished zircon face provide sufficient information to calculate model diffusion coefficients. Results of dissolution experiments conducted in the virtual absence of water (<0.2% H2O) yield an activation energy (E) for Zr transport in a melt ofM=1.3 [whereM is the cation ratio (Na+K+2Ca)/(Al·Si)] of 97.7±2.8 kcal-mol?1, and a frequency factor (D 0) of 980 ?580 +1,390 cm2-sec?1. Hydrothermal experiments provide an E=47.3±1.9 kcal-mol?1 andD 0=0.030 ?0.015 +0.030 cm2-sec?1. Both of these results plot close to a previously defined diffusion compensation line for cations in obsidian. The diffusivity of Zr at 1,200° C increases by a factor of 100 over the first 2% of water introduced into the melt, but subsequently rises by only a factor of five to an apparent plateau value of ~2×10?9 cm2-sec?1 by ~6% total water content. The remarkable contrast between the wet and dry diffusivities, which limits the rate of zircon dissolution into granitic melt, indicates that a 50 μm diameter zircon crystal would dissolve in a 3 to 6% water-bearing melt at 750° C in about 100 years, but would require in excess of 200 Ma to dissolve in an equivalent dry system. From this calculation we conclude that zircon dissolution proceeds geologically instantaneously in an undersaturated, water-bearing granite. Estimates of zircon solubility in the obsidian melt in the temperature range of 1,020° C to 1,500° C confirm and extend an existing model of zircon solubility to these higher temperatures in hydrous melts. However, this model does not well describe zircon saturation behavior in systems with less than about 2% water.  相似文献   

8.
Sulfur diffusion in basaltic melts   总被引:1,自引:0,他引:1  
We measured the diffusion coefficients of sulfur in two different basaltic melts at reduced conditions (i.e., in the sulfide stability field), temperatures from 1225°C to 1450°C, pressures of 0.5 and 1 GPa, and water concentrations of 0 and 3.5 wt%. Although each melt is characterized by slightly different sulfur diffusion coefficients, the results can be combined to create a general equation for sulfur diffusion in anhydrous basalts:
  相似文献   

9.
 Diffusion rates for sulfur in rhyolite melt have been measured at temperatures of 800–1100° C, water contents of 0–7.3 wt%, and oxygen fugacities from the quartz-fayalite-magnetite buffer to air. Experiments involved dissolution of anhydrite or pyrrhotite into rhyolite melt over time scales of hours to days. Electron microprobe analysis was used to measure sulfur concentration profiles in the quenched glasses. Regression of the diffusion data in dry rhyolite melt gives Dsulfur=0.05·exp{−221±80RT}, which is one to two orders of magnitude slower than diffusion of other common magmatic volatiles such as H2O, CO2 and Cl-. Diffusion of sulfur in melt with 7 wt% dissolved water is 1.5 to 2 orders of magnitude faster than diffusion in the anhydrous melt, depending on temperature. Sulfur is known to dissolve in silicate melts as at least two different species, S2− and S6+, the proportions of which vary with oxygen fugacity; despite this, oxygen fugacity does not appear to affect sulfur diffusivity except under extremely oxidizing conditions. This result suggests that diffusion of sulfur is controlled by one species over a large range in oxygen fugacity. The most likely candidate for the diffusing species is the sulfide ion, S2−. Re-equilibration between S2− and S6+ in oxidized melts must generally be slow compared to S2− diffusion in order to explain the observed results. In a silicic melt undergoing degassing, sulfur will tend to be fractionated from other volatile species which diffuse more rapidly. This is consistent with analyses of tephra from the 1991 eruption of Mount Pinatubo, Philippines, and from other high-silica volcanic eruptions. Received: 26 April 1995 / Accepted: 1 November 1995  相似文献   

10.
11.
Users of the obsidian hydration dating method have routinely assumed that artifacts which originate from the same geological flow will be of the same chemical composition and thus hydrate at the same rate under equivalent conditions of temperature and relative humidity. Recent laboratory experimentation into the hydration process has shown that the intrinsic water content of the glass is the dominant factor in establishing the rate of hydration. Water content determinations on a large suite of samples from numerous prehistoric quarries within the Coso volcanic field, California, indicated that water content values, and thus hydration rate, varied significantly on a within flow basis. It is recommended that water determinations be made on individual artifacts prior to obsidian hydration dating. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The effective binary diffusion coefficient (EBDC) of silicon has been measured during the interdiffusion of peralkaline, fluorine-bearing (1.3 wt% F), hydrous (3.3 and 6 wt% H2O), dacitic and rhyolitic melts at 1.0 GPa and temperatures between 1100°C and 1400°C. From Boltzmann-Matano analysis of diffusion profiles the diffusivity of silicon at 68 wt% SiO2 can be described by the following Arrhenius equations (with standard errors): $$\begin{gathered} {\text{with 1}}{\text{.3 wt\% F and 3}}{\text{.3\% H}}_{\text{2}} {\text{O:}} \hfill \\ {\text{D}}_{{\text{Si}}} = \begin{array}{*{20}c} { + {\text{3}}{\text{.59}}} \\ {{\text{3}}{\text{.66}} \times {\text{10}}^{ - {\text{9}}} } \\ { - {\text{1}}{\text{.86}}} \\ \end{array} {\text{exp}}\left( {{{ - {\text{86}}{\text{.1}} \pm {\text{8}}{\text{.9}}} \mathord{\left/ {\vphantom {{ - {\text{86}}{\text{.1}} \pm {\text{8}}{\text{.9}}} {{\text{RT}}}}} \right. \kern-\nulldelimiterspace} {{\text{RT}}}}} \right) \hfill \\ {\text{with 1}}{\text{.3 wt\% F and 6}}{\text{.0\% H}}_{\text{2}} {\text{O:}} \hfill \\ {\text{D}}_{{\text{Si}}} = \begin{array}{*{20}c} { + {\text{3}}{\text{.59}}} \\ {{\text{3}}{\text{.51}} \times {\text{10}}^{ - {\text{8}}} } \\ { - {\text{1}}{\text{.77}}} \\ \end{array} {\text{exp}}\left( {{{ - {\text{109}}{\text{.5}} \pm {\text{8}}{\text{.9}}} \mathord{\left/ {\vphantom {{ - {\text{109}}{\text{.5}} \pm {\text{8}}{\text{.9}}} {{\text{RT}}}}} \right. \kern-\nulldelimiterspace} {{\text{RT}}}}} \right) \hfill \\ \end{gathered} $$ where D is in m2s?1 and activation energies are in kJ/mol. Diffusivities measured at 64 and 72 wt% SiO2 are only slightly different from those at 68 wt% SiO2 and frequently all measurements are within error of each other. Silicon, aluminum, iron, magnesium, and calcium EBDCs were also calculated from diffusion profiles by error function inversion techniques assuming constant diffusivity. With one exception, silicon EBDCs calculated by error function techniques are within error of Boltzmann-Matano EBDCs. Average diffusivities of Fe, Mg, and Ca were within a factor of 2.5 of silicon diffusivities whereas Al diffusivities were approximately half those of silicon. Alkalies diffused much more rapidly than silicon and non-alkalies, however their diffusivities were not quantitatively determined. Low activation energies for silicon EBDCs result in rapid diffusion at magmatic temperatures. Assuming that water and fluorine exert similar effects on melt viscosity at high temperatures, the viscosity can be calculated and used in the Eyring equation used to determine diffusivities, typically to within a factor of three of those measured in this study. This correlation between viscosity and diffusivity can be inverted to calculate viscosities of fluorine- and water-bearing granitic melts at magmatic temperatures; these viscosities are orders of magnitude below those of hydrous granitic melts and result in more rapid and effective separation of granitic magmas from partially molten source rocks. Comparison of Arrhenius parameters for diffusion measured in this study with Arrhenius parameters determined for diffusion in similar compositions at the same pressure demonstrates simple relationships between Arrhenius parameters, activation energy-Ea, kJ/mol, pre-exponential factor-Do, m2s?1, and the volatile, X=F or OH?, to oxygen, O, ratio of the melt {(X/X+O)}: $$\begin{gathered} {\text{E}}a = - {\text{1533\{ }}{{\text{X}} \mathord{\left/ {\vphantom {{\text{X}} {\left( {{\text{X}} + {\text{O}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{X}} + {\text{O}}} \right)}}{\text{\} }} + {\text{213}}{\text{.3}} \hfill \\ {\text{D}}_{\text{O}} = {\text{2}}{\text{.13}} \times {\text{10}}^{ - {\text{6}}} {\text{exp}}\left[ { - {\text{6}}{\text{.5\{ }}{{\text{X}} \mathord{\left/ {\vphantom {{\text{X}} {\left( {{\text{X}} + {\text{O}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{X}} + {\text{O}}} \right)}}{\text{\} }}} \right] \hfill \\ \end{gathered} $$ These relationships can be used to estimate diffusion in various melts of dacitic to rhyolitic composition containing both fluorine and water. Calculations for the contamination of rhyolitic melts by dacitic enclaves at 800°C and 700°C provide evidence for the virtual inevitability of diffusive contamination in hydrous and fluorine-bearing magmas if they undergo magma mixing of any form.  相似文献   

13.
Viscosity of silicate melts is a critical property for understanding volcanic and igneous processes in the Earth. We investigate the pressure effect on the viscosity of rhyolitic melts using two methods: indirect viscosity inference from hydrous species reaction in melts using a piston cylinder at pressures up to 2.8 GPa and direct viscosity measurement by parallel-plate creep viscometer in an internally-heated pressure vessel at pressures up to 0.4 GPa. Comparison of viscosities of a rhyolitic melt with 0.8 wt% water at 0.4 GPa shows that both methods give consistent results. In the indirect method, viscosities of hydrous rhyolitic melts were inferred based on the kinetics of hydrous species reaction in the melt upon cooling (i.e., the equivalence of rheologically defined glass transition temperature and chemically defined apparent equilibrium temperature). The cooling experiments were carried out in a piston-cylinder apparatus using hydrous rhyolitic samples with 0.8-4 wt% water. Cooling rates of the kinetic experiments varied from 0.1 K/s to 100 K/s; hence the range of viscosity inferred from this method covers 3 orders of magnitude. The data from this method show that viscosity increases with increasing pressure from 1 GPa to 3 GPa for hydrous rhyolitic melts with water content ?0.8 wt% in the high viscosity range. We also measured viscosity of rhyolitic melt with 0.13 wt% water using the parallel-plate viscometer at pressures 0.2 and 0.4 GPa in an internally-heated pressure vessel. The data show that viscosity of rhyolitic melt with 0.13 wt% water decreases with increasing pressure. Combining our new data with literature data, we develop a viscosity model of rhyolitic melts as a function of temperature, pressure and water content.  相似文献   

14.
The diffusion properties of Na, Cs, Ba, Fe and Eu ions have been determined experimentally for a pantellerite melt and of these ions plus Li, Mn and Co in pitchstone melt, using the radiotracer residual-activity method, and narrow platinum capillaries, over the temperature range 1,200–1,400° C. In addition, Eu diffusion in a basaltic and an andesitic melt was determined. Diffusion of all cations follows an Arrhenius relationship, activation energy values being high for diffusion in the pantellerite melt (e.g. Eu: 100 kcal mol–1) except in the case of Na (24.3 kcal mol–1). Activation energies of diffusion in the pitchstone melt are similar to values recorded earlier for andesitic and basaltic melts.The new data are used, along with previously published data for diffusion in other composition melts, to examine the compositional and structural controls on diffusion. The range of diffusivities shows a marked change with melt composition; over two orders of magnitude for a basaltic melt, and nearly four orders for a pantellerite melt (both at 1,300° C). Diffusivity of all cations (except Li and Na) correlates positively with the proportion of network modifying cations. In the case of Li and Na the correlation is negative but the diffusivity of these ions correlates positively with the proportion of Na or of Na + K ions in the bulk melt. Diffusion behaviour in the pantellerite melt departs from the relationships shown by the data for other melt compositions, which could be partly explained by trivalent ions (such as Fe) occupying network forming positions. The diffusivity of alkali metal ions is strongly dependent on ionic radius, but this is not the case with the divalent and trivalent ions; diffusivity of these ions remains relatively constant with change in radius but decreases with increase in ionic charge.A compensation diagram shows four distinct but parallel trends for the majority of the cations in four melt types but the data for Li and Na plot on a separate trend. This and the other relationships are used to elucidate possible mechanisms of diffusion. Exchange mechanisms appear to be common, with the preservation of local charge balance. Li and Na diffuse by a distinct mechanism which involves exchange of similar or identical ions. The diffusion behaviour of the smaller alkali metal ions is sufficiently distinct from all other cations to indicate that diffusion could be an important factor in the geochemical fractionation of the alkali elements.s  相似文献   

15.
Water diffusion is one of the most important characteristics of many processes dealt with in magmatic geochemistry, petrology, and volcanology. We have experimentally examined water diffusion in Fe-free andesite and basalt melts (stoichiometric mixtures of the minerals albite + diopside + wollastonite) at 3 and 100 MPa, 1300×C, up to approximately 4 wt % water in the melts, and a total (lithostatic) pressure of 100 MPa on a high gas pressure apparatus equipped with a unique internal device. The experiments were conducted simultaneously with the use of two different methods: diffusion hydration and couples. Water solubility in the melts and water concentrations along the diffusion profiles (C H 2 O) were determined by quantitative IR microspectroscopy, using the Beer-Lambert law. A structural chemical model is proposed for calculating and predicting the concentration dependence of the molar absorption coefficient of the hydroxyl group and water molecules in andesite and basalt glasses. The diffusion coefficients of water (D H 2 O) are derived by the mathematical analysis of concentration profiles and the analytical solution of the second Fick diffusion law. Preliminary results indicated D H 2 O is roughly one order of magnitude higher in basaltic melts than in andesitic ones (at the same temperatures and P H 2 O) and significantly (exponentially) increases with increasing water concentrations in andesitic and basaltic melts. The newly obtained experimental data are proved to be fully consistent with the results obtained on the D H 2 O dependence on C H 2 O in melts of acid rocks (rhyolite and obsidian). The derived quantitative dependence between D H 2 O and melt viscosity is used to develope principles of a new method for predicting and calculating the temperature, concentration, and pressure dependences of D H 2 O in magmatic melts of the of acid-basic series (up to 3 wt % C H 2 O) at crustal T, P parameters.  相似文献   

16.
Water is an important volatile component in andesitic eruptions and deep-seated andesitic magma chambers. We report an investigation of H2O speciation and diffusion by dehydrating haploandesitic melts containing ?2.5 wt.% water at 743-873 K and 100 MPa in cold-seal pressure vessels. FTIR microspectroscopy was utilized to measure species [molecular H2O (H2Om) and hydroxyl group (OH)] and total H2O (H2Ot) concentration profiles on the quenched glasses from the dehydration experiments. The equilibrium constant of the H2O speciation reaction H2Om+O?2OH, K = (XOH)2/(XH2OmXO) where X means mole fraction on a single oxygen basis, in this Fe-free andesite varies with temperature as ln K = 1.547-2453/T where T is in K. Comparison with previous speciation data on rhyolitic and dacitic melts indicates that, for a given water concentration, Fe-free andesitic melt contains more hydroxyl groups. Water diffusivity at the experimental conditions increases rapidly with H2O concentration, contrary to previous H2O diffusion data in an andesitic melt at 1608-1848 K. The diffusion profiles are consistent with the model that molecular H2O is the diffusion species. Based on the above speciation model, H2Om and H2Ot diffusivity (in m2/s) in haploandesite at 743-873 K, 100 MPa, and H2Ot ? 2.5 wt.% can be formulated as
  相似文献   

17.
The speciation of water in silicate melts   总被引:1,自引:0,他引:1  
Previous models of water solubility in silicate melts generally assume essentially complete reaction of water molecules to hydroxyl groups. In this paper a new model is proposed that is based on the hypothesis that the observed concentrations of molecular water and hydroxyl groups in hydrous silicate glasses reflect those of the melts from which they were quenched. The new model relates the proportions of molecular water and hydroxyl groups in melts via the following reaction describing the homogeneous equilibrium between melt species: H2Omolecular (melt) + oxygen (melt) = 2OH (melt). An equilibrium constant has been formulated for this reaction and species are assumed to mix ideally. Given an equilibrium constant for this reaction of 0.1–0.3, the proposed model can account for variations in the concentrations of molecular water and hydroxyl groups in melts as functions of the total dissolved water content that are similar to those observed in glasses. The solubility of molecular water in melt is described by the following reaction: H2O (vapor) = H2Omolecular (melt).These reactions describing the homogeneous and heterogeneous equilibria of hydrous silicate melts can account for the following observations: the linearity between fH2O and the square of the mole fraction of dissolved water at low total water contents and deviations from linearity at high total water contents; the difference between the partial molar volume of water in melts at low total water contents and at high total water contents; the similarity between water contents of vapor-saturated melts of significantly different compositions at high pressures versus the dependence on melt composition of water solubility in silicate melts at low pressures; and the variations of viscosity, electrical conductivity, the diffusivity of “water,” the diffusivity of cesium, and phase relationships with the total dissolved water contents of melts.This model is thus consistent with available observations on hydrous melt systems and available data on the species concentrations of hydrous glasses and is easily tested, since measurements of the concentrations of molecular water and hydroxyl groups in silicate glasses quenched from melts equilibrated over a range of conditions and total dissolved water contents are readily obtainable.  相似文献   

18.
Chemical diffusion coefficients for oxygen in melts of Columbia River basalt (Ice Harbor Dam flow) and Mt. Hood andesite have been determined at 1 atm. The diffusion model is that of sorption or desorption of oxygen into a sphere of uniform initial concentration from a constant and semi-infinite atmosphere. The experimental design utilizes a thermogravimetric balance to monitor the rate of weight change arising from the response of the sample redox state to an imposed fO2. Oxygen diffusion coefficients are approximately an order-ofmagnitude greater for basaltic melt than for andesitic melt. At 1260° C, the oxygen diffusion coefficients are: D=1.65×10–6cm2/s and D=1.43×10–7cm2/s for the basalt and andesite melts, respectively. The high oxygen diffusivity in basaltic melt correlates with a high ratio of nonbridging oxygen/tetrahedrally coordinated cations, low melt viscosity, and high contents of network-modifying cations. The dependence of the oxygen diffusion coefficient on temperature is: D=36.4exp(–51,600±3200/RT)cm2/s for the basalt and D=52.5exp(–60,060±4900/RT)cm2/s for the andesite (R in cal/deg-mol; T in Kelvin). Diffusion coefficients are independent of the direction of oxygen diffusion (equilibrium can be approached from extremely oxidizing or reducing conditions) and thus, melt redox state. Characteristic diffusion distances for oxygen at 1260° C vary from 10-2 to 102 m over the time interval of 1 to 106 years. A compensation diagram shows two distinct trends for oxygen chemical diffusion and oxygen tracer diffusion. These different linear relationships are interpreted as supporting distinct oxygen transport mechanisms. Because oxygen chemical diffusivities are generally greater than tracer diffusivities and their Arrhenius activation energies are less, transport mechanisms involving either molecular oxygen or vacancy diffusion are favored.  相似文献   

19.
Two types of laboratory experiments were used to quantify magnesium isotopic fractionations associated with chemical and thermal (Soret) diffusion in silicate liquids. Chemical diffusion couples juxtaposing a molten natural basalt (SUNY MORB) and a molten natural rhyolite (Lake County Obsidian) were run in a piston cylinder apparatus and used to determine the isotopic fractionation of magnesium as it diffused from molten basalt to molten rhyolite. The thermal diffusion experiments were also run in a piston cylinder apparatus but with a sample made entirely of molten SUNY MORB displaced from the hotspot of the assembly furnace so that the sample would have a temperature difference of about 100-200 °C from one end to the other. The chemical diffusion experiments showed fractionations of 26Mg/24Mg by as much as 7‰, which resulted in an estimate for the mass dependence of the self-diffusion coefficients of the magnesium isotopes corresponding to D26Mg/D24Mg=(24/26)β with β = 0.05. The thermal diffusion experiments showed that a temperature difference of about 100 °C resulted in the MgO, CaO, and FeO components of the basalt becoming slightly enriched by about 1 wt% in the colder end while SiO2 was enriched by several wt% in the hotter end. The temperature gradient also fractionated the magnesium isotopes. A temperature difference of about 150 °C produced an 8‰ enrichment of 26Mg/24Mg at the colder end relative to the hotter end. The magnesium isotopic fractionation as a function of temperature in molten basalt corresponds to 3.6 × 10−2‰/°C/amu.  相似文献   

20.
The Adam-Gibbs equations describing relaxation in silicate melts are applied to diffusion of trace components of multicomponent liquids. The Adam-Gibbs theory is used as a starting point to derive an explicit relation between viscosity and diffusion including non-Arrhenian temperature dependence. The general form of the equation is Diη = Aiexp{Δ(scEi)/TSc}, where D is diffusivity, η is melt viscosity, T is absolute temperature, Δ(scEi) is the difference between the products of activation energies and local configurational entropies for viscous and diffusive relaxation, Ai is a constant that depends on the characteristics of the diffusing solute particles, and Sc is configurational entropy of the melt. The general equation will be impractical for most predictive purposes due to the paucity of configurational entropy data for silicate melts. Under most magmatic conditions the proposed non-Arrhenian behaviour can be neglected, allowing the general equation to be simplified to a generalized form of the Eyring equation to describe diffusion of solutes that interact weakly with the melt structure: Diη/T = Qiexp{ΔEi/RT}, where Qi and ΔEi depend on the characteristics of the solute and the melt structure. If the diffusing solute interacts strongly with the melt structure or is a network-forming cation itself, then ΔEi = 0, and the relation between viscosity and diffusion has the functional form of the classic Eyring and Stokes-Einstein equations; Diη/T = Qi. If the diffusing solute can make diffusive jumps without requiring cooperative rearrangement of the melt structure, the diffusivity is entirely decoupled from melt viscosity and should be Arrhenian, i.e., Di = Qiexp{Bi/T}. A dataset of 594 published diffusivities in melts ranging from the system CAS through diopside, basalt, andesite, anhydrous rhyolite, hydrous rhyolite, and peralkaline rhyolite to albite, orthoclase, and jadeite is compared with the model equations. Alkali diffusion is completely decoupled from melt viscosity but is related to melt structure. Network-modifying cations with field strength Zi2/r between 1 and 10 interact weakly with the melt network and can be modelled with the extended form of the Eyring equation. Diffusivities of cations with high field strength have activation energies essentially equal to that of viscous flow and can be modelled with a simple reciprocal Eyring-type dependence on viscosity. The values of Qi, ΔEi and Bi for each cation are different and can be related to the cation charge and radius as well as the composition of the melt through the parameters Zi2/r, M/O, and Al/(Na + K + H). I present empirical fit parameters to the model equations that permit prediction of cation diffusivities given only charge and radius of the cation and temperature, composition and viscosity of the melt, for the entire range of temperatures accessible to magmas near to or above their liquidus, for magmas ranging in composition from basalt through andesite to hydrous or anhydrous rhyolite. Pressure effects are implicitly accounted for by corrections to melt viscosity. Ninety percent of diffusivities predicted by the models are within 0.6 log units of the measured values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号