首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mass heterogeneities in the earth's mantle are retrieved from the gravity data and the topography of the core-mantle boundary as well as the topography of the earth's surface. A mantle circulation induced by the heterogeneities is modelled by solving the Stokes problem for incompressible Newtonian fluid. The derived models of mantle motions correlate well with the plate tectonics and point at a close relation between the surface tectonic activity and the processes in the vicinity of the core-mantle boundary.  相似文献   

2.
New, unique information on the inertial and dissipative coupling of the liquid core and the mantle has been retrieved from modern high-precision (radiointerferometer and GPS) data on tidal variations in the rotation velocity and nutation of the Earth. Comparison of theoretical and observed data provided new estimates for the dynamic flattening of the outer liquid and the inner solid cores, mantle quality factor, viscosity of the liquid core, and electromagnetic coupling of the liquid core and the mantle [Molodensky, 2004, 2006]. As was shown in the first part of the paper [Molodensky, 2008] (further referred to as [I]), generation of eddy flows in Proudman-Taylor columns, whose orientation is controlled by the topography of the liquid core-mantle boundary, should be taken into account for correct estimation of the inertial coupling (see formulas (8) and (34) in [I]). The range of periods within which this effect plays a significant role is determined by the decay time of these flows. This time is estimated in the paper for the case where dissipation is related to viscous friction at the core-mantle boundary or with the electromagnetic coupling of the liquid core and the mantle. Because of significant uncertainties in modern data on the viscosity of the liquid core, the magnetic field intensity at the core-mantle boundary, and the electrical conductivity of the lower mantle, the dissipative coupling of the liquid core and the mantle cannot be calculated as yet. However, as shown in the paper, the decay time of eddy flows is connected with the attenuation time of subdiurnal free nutation and with the liquid core viscosity. This enables the estimation of the frequency dependence of the dissipative coupling in a fairly wide range. It is shown that the range of periods for which relations (8) and (34) in [I] are valid encompasses the best-studied length-of-day variations and, therefore, these relations are applicable to analysis of the majority of modern data.  相似文献   

3.
Quantifying the density contrasts of the Earth's inner core boundary(ICB) is crucial to understand core-mantle coupling and the generation of the geodynamo. The PKiKP/PcP amplitude ratio is commonly used to obtain the density contrast at the ICB, but its applications are limited by scattered observed data. In this study, we selected the PKiKP and PcP phases reflected at the same region of inner-core and core-mantle boundaries beneath Northeast Asia from different earthquakes for the first time, and the observations suggested that the PKiKP/PcP amplitude ratio is widely scattered. We also compared the PKiKP and PcP amplitudes, which demonstrated that the scatter cannot be attributed only to ICB anomalies but might also arise from raypath differences and heterogeneities throughout the crust and mantle. By fitting the observed PKiKP/PcP amplitude ratio, we obtained a density contrast of approximately 0.65 g cm~(-3) and a compressional velocity contrast of approximately 0.87 km s~(-1) at the ICB beneath Northeast Asia. The larger contrast values indicate the possible occurrence of local crystallization occurring at the inner core surface.  相似文献   

4.
Short period recordings of PcP at the SRO station ANTO have been observed at epicentral distance of 13.5° from presumed underground explosions in western Kazahk, USSR. The core reflections are narrow band (0.6 to 2.4 Hz), short duration (3 sec) signals. Comparison of these near normally incident reflections to P waveforms observed at greater distances reveals that the PcP spectra are peaked with respect to the more representative P-wave spectra. The 1.2 Hz spectral peak is also observed for PcP waves recorded at 50 degrees. Corrections for frequency independent mantle Q attnuation models only increase the high frequency deficiency of the PcP spectra at frequencies above 1.2 Hz. A plausible explanation calls for finer structural features of core-mantle boundary (CMB) than hitherto suggested. The influence of small scale lateral heterogeneities, however, cannot be completely ruled out. (Mantle-core boundary, near normal PcP reflection.)  相似文献   

5.
The amplitudes and phases of forced nutation and diurnal earth tides depend significantly on the moment of forces between the liquid core and mantle of the Earth, resulting from the differential rotation of the core. The solution to the dynamic problem of rotation of an imperfectly elastic mantle with an imperfectly liquid core and an ocean indicates that the predominant role is played by the so-called core-mantle inertial coupling (related to the effect of hydrodynamic pressure in the liquid core on the ellipsoidal core-mantle boundary). The magnitude of this coupling depends significantly not only on the dynamic flattening of the liquid core but also on the elastic and inelastic properties of the mantle, as well as on the amplitudes and phases of oceanic tides. In this paper, the effects of oceanic tides on the magnitude of inertial coupling between the liquid core and the mantle and on the period and damping decrement of free nearly diurnal nutation are estimated.  相似文献   

6.
Clear PKKP, a P wave reflects off the core-mantle boundary on the core side, is recorded by the transcontinental USArray from two deep earthquakes occurred in South America and Tonga, and one intermediate-depth earthquake in the Hindu Kush region. We compare the PKKP waveforms with the direct P waves to investigate the fine structures near the core-mantle boundary, with a primary focus on the core side. We find no evidence for the existence of a sedimentary layer of lighter elements with a thickness above a few hundreds of meters beneath the reflection points of the two deep events, which are located at the Ninety-East Ridge and South Africa. On the other hand the PKKP wave duration of the Hindu Kush event is almost twice as long as that of the P wave, suggesting that multiple reflections may be occurring at the core-mantle boundary located beneath the Antarctic, which is located inside the so-called tangent cylinder of the outer core. The tangent cylinder is an imaginary cylindrical region suggested by geodynamics studies, which has different flow pattern and may have a higher concentration in lighter elements as compared to the rest of the outer core. One possible explanation of the elongated PKKP is a thin distinct layer with a thickness of a few kilometers at the top of the outer core, suggesting that precipitation of lighter elements may occur at the core-mantle boundary. Our data also indicate an extremely low QP of 312, approximately 40% of the PREM average (~780), within the large-scale low-velocity anomaly in the lowermost mantle beneath Pacific.  相似文献   

7.
云南强震活动的多层次动力源分析   总被引:2,自引:2,他引:2  
对云南地区多层次动力过程作了分析研究,结果表明,若以两大板块之间在边界上的相互作用为最高层次的动力作用,云南地区现代构造运动至少包括三个层次的动力作用过程:(1)印度板块和亚欧板块两大地壳板块在喜马拉雅碰撞带东部弧顶和东翼相互作用产生的边界动力源对云南地区产生的直接影响和间接作用;还有菲律宾海板块对亚欧板块的北西西向的推挤,通过华南地区对云南东部的间接作用,构成了云南地区现代构造运动第一层次动力作用;(2)以康滇菱形断块为主体,包括川青断块、滇西南断块带等板内断块的整体向南南东—南东方向的相对移动产生的动力作用,是第二层次的动力作用;(3)由于板内断块边界断裂运动速率的差异,主要是水平滑动速率差异造成的板内断块内部次级断块移动产生的动力作用,是第三层次的动力作用。对印度板块和亚欧板块两大地壳板块碰撞挤压带东部弧顶和东翼相互作用产生的边界动力源与云南及邻区构造运动、构造应力场分布格局和强震活动关系作了分析研究,认为云南及邻区多层次动力作用过程,是强震活动时空分布的主要原因。  相似文献   

8.
我们的目的是说明大地测量学的近代发展如何为解决地球动力学的基本问题提供新的工具。例如:1.全球规模的重力场的知识将给出关于地幔中过渡带位置的信息,或关于地核-地幔交界面的地形的资料;2.在地球表面上的高精度定位将允许测量构造板块的位移,同时将对地震预报作出贡献;3.用新技术所确定的极移的分析,将能阐明其阻尼问题,维持这一运动的能源问题以及地核-地幔耦合等问题。  相似文献   

9.
核幔耦合对地球自由核章动的激发影响   总被引:1,自引:0,他引:1       下载免费PDF全文
地球自由核章动(FCN)是地幔与液核相互作用的重要动力学现象,其激发机制涉及地表流体层、地幔和地核等圈层之间的耦合,此前研究多利用地表流体层角动量数据单独研究其对FCN的激发,对核幔耦合的影响考虑不足.本文基于角动量守恒理论分析了核幔耦合对FCN周期及振幅的影响,并结合多个大气及海洋角动量函数时间序列首次估算了核幔耦合在FCN激发过程中的贡献.结果表明核幔耦合对FCN周期产生的固定和时变影响对FCN激发的作用均不可忽视,尤其时变影响可达几十个微角秒,对于进一步解释FCN时变特征非常重要;核幔耦合对FCN振幅的直接影响是地表流体层的激发与实测FCN不相符的主要原因,黏滞、电磁和地形等耗散耦合的存在对地表流体的激发振幅有67%左右的减弱效果.  相似文献   

10.
Within the framework of a model of liquid immiscibility in the outer core, we calculate a stably stratified layer about 11 km thick near the core-mantle boundary and discuss its reflection and scattering properties for seismic waves.  相似文献   

11.
The generation of interplate earthquakes can be regarded as a process of tectonic stress accumulation and release, driven by relative plate motion. We completed a physics-based simulation system for earthquake generation cycles at plate interfaces in the Japan region, where the Pacific plate is descending beneath the North American and Philippine Sea plates, and the Philippine Sea plate is descending beneath the North American and Eurasian plates. The system is composed of a quasi-static tectonic loading model and a dynamic rupture propagation model, developed on a realistic 3-D plate interface model. The driving force of the system is relative plate motion. In the quasi-static tectonic loading model, mechanical interaction at plate interfaces is rationally represented by the increase of tangential displacement discontinuity (fault slip) across them on the basis of dislocation theory for an elastic surface layer overlying Maxwell-type viscoelastic half-space. In the dynamic rupture propagation model, stress changes due to fault slip motion on non-planar plate interfaces are evaluated with the boundary integral equation method. The progress of seismic (dynamic) or aseismic (quasi-static) fault slip on plate interfaces is governed by a slip- and time-dependent fault constitutive law. As an example, we numerically simulated earthquake generation cycles at the source region of the 1968 Tokachi-oki earthquake on the North American-Pacific plate interface. From the numerical simulation, we can see that postseismic stress relaxation in the asthenosphere accelerates stress accumulation in the source region. When the stress state of the source region is close to a critical level, dynamic rupture is rapidly accelerated and develops over the whole source region. When the stress state is much lower than the critical level, the rupture is not accelerated. This means that the stress state realized by interseismic tectonic loading essentially controls the subsequent dynamic rupture process.  相似文献   

12.
Summary The aim of this paper is to present the formulations which can be used in calculating reflection and transmission coefficients when the rigidity in the core is taken into consideration. The theoretical curves presented can be used as a guide for studies of the physical parameters of the core-mantle boundary. It is hoped that these curves may lead to a clarification of the great differences between observed data and theoretical calculations, when the geometrical spreading and attenuation are taken into account.The Thomson-Haskell matrix formulations are used to calculate the reflection and transmission coefficients for a multi-layered medium imbedded between two half-spaces representing the solid mantle and a rigid core. A rigid core is defined here as having a rigidity in the range 1010<<1011 cgs units. For five proposed models of the core-mantle boundary the rigidity in the core is varied and the results are compared with those for a liquid core.  相似文献   

13.
Statistical properties of small-scale inhomogeneities (wavelengths between 20 and 70 km) near the core-mantle boundary are inferred from scattered core waves. Observations of scattered core waves at large seismic arrays and worldwide networks indicate that the inhomogeneities have a global nature with similar characteristics. However, there may exist a few regions having markedly stronger or weaker strengths. Scattering by volumetric inhomogeneities of about 1% inP-wave velocity in the lower mantle or by about 300 m of topographic relief of the core-mantle boundary can explain the observations. At present it is not possible to rule out either of these two alternatives, or a combination of both.  相似文献   

14.
Seismicity constraints on stress regimes along Sinai subplate boundaries   总被引:1,自引:0,他引:1  
The relative movement between African, Arabian and Eurasian plates has significantly controlled the tectonic process of Sinai subplate region, although its kinematics and precise boundaries are still doubtful. The respective subplate bounded on both sides by the Aqaba-Dead Sea transform fault to the east and the Gulf of Suez, the only defined part, to the west. Seismicity parameters, moment magnitude relation and fault plane solutions were combined to determine the active tectonics along the aforementioned boundaries. Seven shallow seismogenic zones were defined by the heterogeneity in stress field orientations. Along the eastern boundary, the average fault plane solution obtained from the moment tensor summation (MTS) reveals a sinistral strike-slip faulting mechanism. The corresponding seismic strain rate tensor showed that the present tectonic stress producing earthquakes along the boundary is dominated by both NW-SE compression and NE-SW dilatation. Towards the north, the average focal mechanism showed a normal faulting mechanism of N185°E compression and an N94°E extension in the Carmel Fairi seismic zone. On the other hand, the active crustal deformation along the western boundary (Gulf of Suez region) showed a prevailing tensional stress regime of NE to ENE orientations; producing an average fault plane solution of normal faulting mechanism. The seismic strain rate tensor reveals a dominant stress regime of N58°E extension and N145°E compression in consistence with the general tectonic nature in northeastern Africa. Finally, the extensional to strike-slip stress regimes obtained in the present study emphasize that the deformation accommodated along the Sinai subplate boundaries are in consistence with the kinematics models along the plate boundaries representing the northern extremity part of the Red Sea region.  相似文献   

15.
Seismic studies of the lowermost mantle suggest that the core-mantle boundary (CMB) region is strongly laterally heterogeneous over both local and global scales. These heterogeneities are likely to be associated with significant lateral viscosity variations that may influence the shape of the long-wavelength non-hydrostatic geoid. In the present paper we investigate the effect of these lateral viscosity variations on the solution of the inverse problem known as the inferences of viscosity from the geoid. We find that the presence of lateral viscosity variations in the CMB region can significantly improve the percentage fit of the predicted data with observations (from 42 to 70% in case of free-air gravity) while the basic characterisics of the mantle viscosity model, namely the viscosity increase with depth and the rate of layering, remain more or less the same as in the case of the best-fitting radially symmetric viscosity models. Assuming that viscosity is laterally dependent in the CMB region, and radially dependent elsewhere, we determine the largescale features of the viscosity structure in the lowermost mantle. The viscosity pattern found for the CMB region shows a high density of hotspots above the regions of higher-than-average viscosity. This result suggests an important role for petrological heterogeneities in the lowermost mantle, potentially associated with a post-perovskite phase transition. Another potential interpretation is that the lateral viscosity variations derived for the CMB region correspond in reality to lateral variations in the mechanical conditions at the CMB boundary or to large-scale undulations of a chemically distinct layer at the lowermost mantle.  相似文献   

16.
旋转椭球型地球的固体地幔与液态地核间相互作用而产生的逆向本征模通常称之为地球自由核章动,自由核章动的品质因子(Q值)能有效反映核幔边界层能量耗散特征,与核幔边界的黏滞度密切相关.本文首次利用全球地球动力学计划网络23个台站27组高密度采样的高精度超导重力仪器观测数据,采用迭积技术,确定了自由核章动参数Q值,进而计算了核幔边界的黏滞系数.数值结果说明获得的核幔边界动力学黏滞系数达到103 Pa·s量级,与加拿大科学家Smylie等利用VLBI观测资料获得的最新结果一致,这说明重力技术是有效应用于研究地球深内部结构的重要手段之一.  相似文献   

17.
The following general question is addressed: what can be learned about a planetary interior from measurements of the global planetary magnetic field at (or near) its surface? The discussion is placed in the context of Earth, for clarity, but the considerations apply to terrestrial planets in general (so long as the observed magnetism is either predominantly of internal origin, or else external source effects can be successfully filtered out of the observations). Attention is given to the idealized but typical situation of a rotating but spherically symmetric planet containing a highly conducting uniform fluid core surrounded by a nearly insulating rigid mantle, whose conductivity, a function of at most radius only, falls monotonically from its largest value at the base of the planetary mantle to zero at the planetary surface; the largest value of mantle conductivity as well as the mean value for the whole mantle and the mantle conductance are assumed small compared to the corresponding values of the core. Exterior to the planet is vacuum in the sense of an electrically uncharged insulator. The core fluid is inviscid, Boussinesq and gravitationally driven.Complete and perfect observations of either the instantaneous internal vector magnetic field together with its secular variation at a single epoch, or more realistically, the instantaneous internal vector magnetic field alone at two separated epochs are presumed available; the time separation between measurement epochs is long compared the Ohmic diffusion time of the planetary mantle, but small compared to that of the liquid core.Under such circumstances we describe how information about each of the following planetary properties can, in principle (though not without practical difficulty) be retrieved from the observations: (1) depth of the core-mantle boundary (a result of Hide); (2) depth to the current and motion sources responsible for the planetary dynamo; (3) presence or absence of small-scale turbulence in the upper reaches of the core; (4) large-scale horizontal fluid motion at the top of the core; (5) strength of horizontal currents, zonal magnetic fields, Coriolis and Lorentz forces at the top of the core; and (6) current system in the mantle and strength of electromagnetic core-mantle coupling.  相似文献   

18.
Convection in the Earth’s core is usually studied in the Boussinesq approximation in which the compressibility of the liquid is ignored. The density of the Earth’s core varies from ICB to CMB by approximately 20%. The question of whether we need to take this variation into account in core convection and dynamo models is examined. We show that it is in the thermodynamic equations that differences between compressible and Boussinesq models become most apparent. The heat flux conducted down the adiabat is much smaller near the inner core boundary than it is near the core-mantle boundary. In consequence, the heat flux carried by convection is much larger nearer the inner core boundary than it is near the core-mantle boundary. This effect will have an important influence on dynamo models. Boussinesq models also assume implicitly that the rate of working of the gravitational and buoyancy forces, as well as the Ohmic and viscous dissipation, are small compared to the heat flux through the core. These terms are not negligible in the Earth’s core heat budget, and neglecting them makes it difficult to get a thermodynamically consistent picture of core convection. We show that the usual anelastic equations simplify considerably if the anelastic liquid approximation, valid if αT?1, where α is the coefficient of expansion and T a typical core temperature, is used. The resulting set of equations are not significantly more difficult to solve numerically than the usual Boussinesq equations. The relationship of our anelastic liquid equations to the Boussinesq equations is also examined.  相似文献   

19.
划分大陆活动地块的重要标志之一是它们在地壳结构间的差异。大陆不同地块具有不同的地壳结构特征。这些结构和构造上的不同反映了它们在地壳内部的变形特征和动力过程的差异。文中利用深地震宽角反射 /折射剖面的结果 ,讨论了青藏高原东北缘东昆仑巴颜喀拉地块、鄂尔多斯地块和华北地块唐山震区地壳结构的差异。它们分别是变形强烈的活动地块、内部变形小相对稳定的地块和现代发生过强震的活动地块。在地壳结构上它们之间的差别是明显的。这些差异表现在地壳的分层性质、上地壳和下地壳的结构、地壳结构的不均匀尺度、壳 /幔分界的性质、壳内低速层的分布、地壳界面、特别是莫霍面的构造形态等方面  相似文献   

20.
PKKP signals from Novaya Zemlya recorded at LASA at distances around 60° show consistent anomalies in both slowness and azimuth. The observed anomaly suggests that the signal is a BC branch arrival, although the arrival time corresponds to the DF branch. The BC branch, however, does not extend back to this distance. The azimuth of approach is in the range 229–245°, instead of the expected 186°. These anomalies are associated only with PKKP; analysis of the core phases PKiKP and P′P′ (BC) from the same events show that they arrived at LASA with the appropriate slownesses and azimuths.The PKKP signals can be interpreted as “scattered” PKKP; the scattering occurs on underside reflection at the core-mantle boundary and is probably caused by topographic irregularities on the boundary itself. The calculated scattering region has a surface projection at about 60°S, 134°E, which is outside the diametral plane through source and receiver, and about 21° from the expected PKKP reflection point at 76°S, 95°E.Both the “direct” and “scattered” arms of the PKKP signal have a PK path close to that of the “C” end of the BC branch. The unexpectedly large amplitude of the arrival suggests that there may be a focusing of energy at C, which would indicate a change in velocity gradient just above the inner core boundary. The observations nevertheless require, on the scattering interpretation, lateral variations in the topography of the core-mantle boundary and a region of relatively large topography responsible for the anomalous PKKP observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号