首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compiled a database containing more than 480000 determinations for 73 elements in melt inclusions in minerals and quenched glasses of volcanic rocks. These data were used to estimate the mean contents of major, volatile, and trace elements in igneous melts from main geodynamic settings. The following settings were distinguished: (I) oceanic spreading zones (mid-ocean ridges); (II) zones of mantle plume activity on oceanic plates (oceanic islands and plateaus); (III) and (IV) settings related to subduction processes, including (III) zones of island-arc magmatism generated on the oceanic crust and (IV) magmatic zones of active continental margins involving the continental crust into magma generation processes; (V) intracontinental rifts and continental hot spots; and (VI) back-arc spreading centers. The histogram of SiO2 contents in the natural igneous melts of all geodynamic settings exhibits a bimodal distribution with two maxima at SiO2 contents of 50–52 wt % and 72–74 wt %. The range 62–64 wt % SiO2 comprises the minimum number of determinations. Primitive mantle-normalized spidergrams were constructed for average contents of elements in the igneous melts of basic, intermediate, and acidic compositions from settings I–V. The diagrams reflect the characteristic features of melt compositions for each geodynamic setting. On the basis of the analysis of data on the composition of melt inclusions and glasses of rocks, average ratios of incompatible trace and volatile components (H2O/Ce, K2O/Cl, Nb/U, Ba/Rb, Ce/Pb, etc.) were estimated for the igneous melts of all of the settings. Variations of these ratios were determined, and it was shown that, in most cases, the ratios of incompatible elements are significantly different between settings. The difference is especially pronounced for the ratios of elements with different degrees of incompatibility (e.g., Nb/Yb) and for some ratios with volatile components (e.g., K2O/H2O).  相似文献   

2.
Mean concentrations of major components, trace elements, and volatile components in magmatic melts from Earth’s major geodynamic environments are estimated using our database (which comprises more than 1200000 analyses for 75 chemical elements—state for the beginning of 2016) on melt inclusions and quench glasses of rocks). The geodynamic environments are classified into (I) environments of oceanic plate spreading (mid-oceanic ridges), (II) areas affected by mantle plumes in oceanic plates (oceanic islands and lava plateaus), (III and IV) subduction-related environments (III are magmatic zones in island arcs, and IV are magmatic zones in active continental margins, in which magma-generating processes involve the continental crust), (V) continental rifts in areas with continental hotspots, and (VI) backarc spreading zones. The distribution of SiO2 concentrations (>71000 analyses) in natural magmatic melts in all geodynamic environments is obviously bimodal, with maxima at 50–52 and 72–76 wt % SiO2. Herein we discuss only mafic melts (40–54 wt % SiO2). Mean concentrations and confidence levels are calculated for each geodynamic environment for the first time in three variants: from melt inclusions in minerals, from quench glasses in rocks, and from all data. Systematic variations in the mean compositions of melt inclusions and glasses in rocks are detected for all geodynamic environments. Primitive mantle-normalized multielemental patterns for mean concentrations of elements are constructed for magmatic melts from all geodynamic environments, and the mean ratios and their variations are calculated for trace incompatible and volatile components (H2O/Ce, K2O/Cl, La/Y, Nb/U, Ba/Rb, Ce/Pb, etc.) in melts from all environments.  相似文献   

3.
Our database of published contents of volatile, major, and trace elements in melt inclusions in minerals and quenched glasses of volcanic rocks was used to calculate the mean compositions of alkaline and subalkaline melts of ocean islands. The data array included ~10300 determinations from more than 200 publications. The alkaline basic melts (mean Na2O + K2O is 4.75 wt %) are strongly enriched compared with the subalkaline melts (mean Na2O + K2O is 2.70 wt %) in volatile components (0.96 and 0.37 wt % H2O, 650 and 190 ppm Cl, 1480 and 320 ppm F, and 930 and 530 ppm S, respectively) and many trace elements. For instance, the alkaline and subalkaline melts contain 31.8 and 7.2 ppm Rb, 50.1 and 9.6 ppm Nb, and 39.9 and 5.7 ppm La, respectively. Such relations were not observed for V, Cr, Co, Cu, Ga, and Sc. As to the major elements, the alkaline melts show significantly higher contents of Ti, Fe, and P, but lower contents of Si and Mg compared with the subalkaline melts. The enrichment of the alkaline melts in many trace elements compared with the subalkaline melts is retained also in silicic melts. The distribution of trace elements suggests a higher contribution of pyroxenite material during the formation of alkaline melts.  相似文献   

4.
Chlorine in submarine volcanic glasses from the eastern manus basin   总被引:4,自引:0,他引:4  
Submarine volcanic glasses from the eastern Manus Basin of Papua New Guinea, ranging from basalt to rhyodacite, clarify the geochemical behavior of Cl in arc-type magmas. For the Manus samples, Cl is well correlated with non-volatile highly incompatible trace elements, suggesting it was not highly volatile and discounting significant seawater contamination. The Cl partition coefficient is close to but slightly lower than that of Nb and K2O, a behavior similar to that in mid-ocean ridge basalts (MORB) and ocean island basalts (OIB). The similar incompatibilities of Cl and Nb imply that the Cl/Nb values of the eastern Manus Basin glasses reflect their magma source. For glasses from other west Pacific back-arc basins, Cl/Nb, Ba/Nb, and U/Nb increase towards the subduction trench, indicating increased contribution of a component enriched in Cl, Ba, and U, likely from subduction-released slab fluids. It is estimate that ∼80% of the Cl in the Manus arc-type glasses was added directly from subducted slab-derived fluids. We have also modeled Cl behavior during magma evolution in general. Our results show that the behavior of Cl in magma is strongly influenced by pressure, initial H2O content, and the degree of magmatic fractionation. At early stages of magmatic evolution, for magmas with initial H2O content of <4.0 wt%, Cl is highly incompatible under all pressures. By contrast, for more evolved magmas at moderately high pressure and high H2O contents, considerable amounts of Cl can be extracted from the magma once H2O saturation is reached. Accordingly, Cl is usually highly incompatible in MORB and OIB because of their low H2O contents and relatively low degrees of fractional crystallization. The behavior of Cl in arc magmas is more complicated, ranging from highly incompatible to compatible depending on H2O content and depth of magma chambers. The behavior of Cl in the eastern Manus Basin magmas is consistent with low H2O contents (1.1-1.7 wt%) and evolution at low pressures (<0.1 GPa). Modeling results also indicate that Cl will behave differently in intrusive rocks compared to volcanic rocks because of the different pressures involved. This may have a strong influence on the mechanisms of ore genesis in these two tectonic settings.  相似文献   

5.
Using our database of the compositions of melt inclusions and quenched glasses of basaltic magmas from mid-ocean ridges (MORB), the average concentrations and ratios of H2O, Cl, F, S, K2O, Ce, and Dy were determined in these magmas. Assuming that the concentration ratios of volatile components to K2O are constant in the MORB magmas and their sources (depleted mantle, DM), and taking an average K2O content in the DM of 72 ppm, the following average contents were estimated for the DM: 158 ppm H2O, 6.6 ppm Cl, and 8.3 ppm F. Using an S/Dy ratio of 212 for MORB melts and a Dy concentration of 0.531 ppm in the DM, the concentration of S in the DM was estimated as 113 ppm. Our value for the average content of Cl is much higher than estimates obtained by other authors. This discrepancy could be due either to the assimilation of crustal (and hydrospheric) Cl by MORB magmas or to the deep mantle recycling of Cl. The latter mechanism is supported by the statistically significant positive correlation of Cl with K2O, H2O, and F. Such a correlation is not consistent with the hypothesis of basaltic magma contamination by seawater-derived chloride brines. Similar to other surface processes, the assimilation of crustal material operates within the existing global correlations and disturbs them. Based on the average integrated degree of mantle melting and the average degree of MORB magma differentiation (0.05), the average contents of potassium and volatile components in N-MORB and E-MORB mantle sources were estimated as 39 and 126 ppm K2O, 103 and 197 ppm H2O, 4.0 and 10.7 ppm Cl, and 3.9 and 9.1 ppm F, respectively. It is not likely that normal MORB magmas can be derived from depleted mantle that experienced a previous partial melting event (for instance, during the extraction of the primordial continental crust in the Early Precambrian), which was referred to as the ultradepleted mantle. Ordinary (not ultradepleted) MORB magmas can be derived either by the melting of a zone enriched DM (for instance, progressively enriched in incompatible components with depth), which is hardly possible, or by the continuous addition (mixing) of an enriched component to the ultradepleted mantle at the expense of sediments and crustal materials involved in deep recycling.  相似文献   

6.
Various enriched recycled oceanic components in the source of Cenozoic intra-plate alkaline basalts from eastern China were identified by previous studies. Due to the existence of a stagnant subducted Pacific slab in the mantle transition zone beneath eastern China, it is logical to connect the stagnant slab to the recycled oceanic materials. However, the recycled oceanic materials could also result from ancient subduction events (e.g., Paleo-Tethyan, Paleo-Asian or Izanagi plate subduction) because enriched geochemical signatures of a recycled slab can be preserved in the mantle for longer than 1 Gyr. Investigating the temporal variations of the recycled oceanic materials in the mantle source is a useful way to trace the origin of the basalts. In this article, we have conducted a detailed geochemical study, including major and trace elements and Sr–Nd–Pb isotopes, on two alkaline basalt groups from Zhejiang, SE China, which erupted 26–17 Ma and after 11 Ma, respectively. In particular, we recovered the H2O content of the initial magmas based on the H2O content of the clinopyroxene (cpx) phenocrysts and the partition coefficients of H2O between cpx and basaltic melts. The H2O contents of the Zhejiang basalts range from 1.3 to 2.6 (wt.%), which fall within the range of back-arc basin or island arc basalts. The older basalts are more alkaline and have lower Si and Al contents; higher trace element concentrations; higher La/Yb, Ce/Pb and Nb/La ratios; lower H2O/Ce and Ba/Th ratios; and stronger negative K, Pb, Hf and Ti anomalies than the younger ones. The co-relationships between Ba/La, H2O/Ce, Nb/La, Ce/Pb and Ba/Th in the two groups of the Zhejiang basalts indicate that a recycled dehydrated oceanic alkaline basalt component is needed in the source of the older rocks, along with a depleted mantle component. Meanwhile, an additional recycled dehydrated sediment component was required in the source of the younger rocks. The temporal change in the recycled oceanic materials in the mantle sources of Zhejiang Cenozoic basalts demonstrates that the recycled components can only originate in the stagnant Pacific slab that is the only plate subducted since 100 Ma in this area.  相似文献   

7.
WALLACE  PAUL J. 《Journal of Petrology》2002,43(7):1311-1326
Submarine pillow basalts (34 Ma) recovered from the NorthernKerguelen Plateau at ODP Site 1140 contain abundant unalteredglass, providing the first opportunity to measure the volatilecontents of tholeiitic basaltic magmas related to the Kerguelenmantle plume. The glasses have La/Sm and Nb/Zr ratios that varyfrom values similar to Southeast Indian Ridge (SEIR) MORB (Unit1), to slightly more enriched (Unit 6), to values transitionalbetween SEIR MORB and basaltic magmas formed by melting of theKerguelen plume (Units 2 and 3). Volatile contents for glassesin Units 1 and 6 are similar to depleted mid-ocean ridge basalt(MORB) values (0·25–0·27 wt % H2O, 1240–1450ppm S, 42–54 ppm Cl). In contrast, H2O contents are higherfor the enriched glasses (Unit 2, 0·44 wt % H2O; Unit3, 0·69 wt %), as are S (1500 ppm) and Cl (146–206ppm). Cl/K ratios for all glasses are relatively low (0·03–0·04),indicating that assimilation of hydrothermally altered materialdid not occur during shallow-level crystallization. H2O/Ce forthe enriched glasses (Units 2 and 3) is significantly lowerthan Pacific and South Atlantic MORB values, suggesting thatlow H2O/Ce may be an inherent characteristic of the Kerguelenplume source. Vapor saturation pressures calculated using theH2O and CO2 contents of the glasses indicate that  相似文献   

8.
Constancy of Nb/U in the mantle revisited   总被引:5,自引:0,他引:5  
It has long been proposed that MORB and OIB have constant supra-primitive mantle (PM) Nb/U values identical to each other. This fact together with complementary sub-PM values for the continental crust (CC), are taken as fundamental evidence, linking the mantle sources of MORB and OIB to the formation of the CC. Given that plate subduction at convergent margins is the major known process that dramatically fractionates Nb from U, and consequently that subducted oceanic slabs are the main primary carriers of supra-PM Nb/U, a constant supra-PM Nb/U in MORB mantle implies that the mixing of subducted oceanic crust is essentially finished or the newly recycled oceanic crust has Nb/U close to that of the mantle. The similarity between Nb and U as well as the constancy of Nb/U in MORB are revisited here based on MORB glass data obtained using laser ablation ICP-MS. The result shows that Nb/U is not correlated with Nb/Hf, supporting that Nb and U are similarly incompatible. Further investigation shows that Nb is not perfectly identical to, but is faintly more incompatible than U as indicated by the good correlation between log(U) and log(Nb) with a slope of 0.954, very close to 1. Nonetheless, the similarity between Nb and U is high enough, such that the average Nb/U value of MORB glasses should be very close to that of the MORB mantle. By contrast, the difference between Ce and Pb is more obvious. Ce is more incompatible than Pb with a slope of 1.13 in a log(Pb) versus log(Ce) diagram. Therefore, the Ce/Pb of MORB should be a little bit higher than that of the mantle source. The Nb/U value is not as uniform as expected for the similar incompatibility in studied MORB glasses, but varies by a factor of ∼2, suggesting that MORB mantle source is not yet homogenized in term of Nb/U. This indicates that the mixing back of subducted oceanic crust is still an ongoing process, i.e., subducted oceanic crust is recycling back after staying in the lower mantle for billions of years.  相似文献   

9.
Based on the generalization of the compositions of melt inclusions and quenched glasses from basaltic rocks, the average compositions of magmas were estimated for mid-ocean ridges (MOR), intraplate continental environments (CR), and ocean islands and plateaus (OI). These compositions were used to constrain the average contents of trace and volatile elements in mantle sources. A procedure was developed for the estimation of the average contents of incompatible elements, including volatiles (H2O, Cl, F, and S), in the mantle. A comparison of the obtained average contents for the depleted mantle (DM) with the available published estimates showed that the contents of most incompatible trace elements (H2O, Cl, F, Be, B, Rb, Sr, Zr, Ba, La, Ce, Nd, Sm, Eu, Hf, Ta, Th, and U) can be reliably estimated from the ratio of K to the desired trace element in the MOR magmas and the average content of K in the DM. For Nb, Ti, P, S, Li, Y, and heavy REE, we used the ratios of their contents to an element with a similar degree of incompatibility in MOR magmas (U for Nb and Dy for the other elements). This approach was used to determine the average contents of incompatible elements in oceanic plume mantle (OPM) and the subcontinental mantle of intraplate settings or continental plume mantle (CPM). It was shown that the average composition of both suboceanic and subcontinental mantle plumes is moderately enriched compared with the DM in the most incompatible elements (K, U, Ba, and La) and volatile components (H2O, Cl, and F). The extent of volatile component enrichment in the plume mantle (500–1500 ppm H2O) is insufficient for a significant depression of the mantle solidus. Therefore, mantle plumes must be hotter than the ambient depleted mantle. The average contents of incompatible trace elements in the OPM are similar to those of the primitive mantle, which could be related either to the retention of primitive mantle material in the regions of plume generation or to DM fertilization at the expense of the deep mantle recycling of crustal materials. In the latter case, the negative anomaly of water in the trace-element distribution patterns of the OPM is explained by the participation of dehydrated crust in its formation. Variations in the compositions of magmas and their sources were considered for various geodynamic settings, and it was shown that the sources are heterogeneous with respect to trace and volatile components. The chemical heterogeneity of the magma sources and gradual transitions between them suggest that the mantle reservoirs interact with each other. Chemical variations in continental and oceanic plume magmas can be attributed to the existence of several interacting sources, including one depleted and at least two enriched reservoirs with different contents of volatiles. These variations are in agreement with the zoned structure of mantle plumes, which consist of a hot and relatively dry core, a colder outer shell with high contents of volatile components, and a zone of interaction between the plume and depleted mantle.  相似文献   

10.
Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in th  相似文献   

11.
ABSTRACT

We present the major and trace elements and Sr, Nd, and Pb isotopes in mid-ocean ridge basalts (MORB) from the East Pacific Rise (EPR) at 2.6–3.1°S. These samples are low-K tholeiites and show significant variation in their major element compositions (e.g. 4.60–8.18 wt% MgO, 8.34–12.12 wt% CaO, 9.78–14.25 wt% Fe2O3, and 0.06–0.34 K2O wt%). Trace element abundances of the 2.6–3.1°S MORB are variably depleted (e.g. (La/Sm), N = 0.51–0.78, Zr/Y = 2.35–3.42, Th/La = 0.035–0.056, and Ce/Yb = 2.38–3.96) but closely resemble the average N-MORB. In the compatible elements (Ni and Cr) against incompatible element Zr plots, the 2.6–3.1°S MORB show well-defined negative correlations, together with a liquid line of descent (LLD) modelling and petrographic observations, implying a significant role of olivine, plagioclase and clinopyroxene fractionation during magma evolution. When compared to global MORB and peridotites, the 2.6–3.1°S MORB and most of the other axial lavas from the South EPR show similar Zn/Fe, Zn/Mn, and Fe/Mn ratios, attesting to a peridotite-dominated mantle lithology. However, the relationships between incompatible trace element ratios, such as Zr/Rb and Nb/Sm, and the negative correlation between Zr/Nb and 87Sr/86Sr indicate a geochemically heterogeneous mantle source. The mantle beneath the South EPR likely consists of two components, with the enriched component residing as physically distinct domains (e.g. veins or dikes) in the depleted peridotite matrix. In the Sr–Nd–Pb isotope space, the South EPR MORB lie along the mixing lines between the depleted MORB mantle (DMM) and the ‘C’-like Pukapuka endmember. We infer that low-F melts derived from these enriched materials may cause localized mantle heterogeneity (veins or dikes) via an infiltration process. Subsequent melting of the refertilized mantle may impart an isotopically distinct characteristic to South EPR MORB.  相似文献   

12.
Andreas Stracke  Ernst Hegner 《Lithos》1998,45(1-4):545-560
The Tabar–Lihir–Tanga–Feni (TLTF) volcanic island chain occurs in a zone of lithospheric extension superimposed on a post-collisonal tectonic setting along the Pacific and Indo-Australian plates northeast of Papua New Guinea. We present geochemical and Sr, Nd, and Pb isotope data for volcanic rocks from these islands and three recently discovered seamounts located at Lihir island. Major element data document an alkalic affinity of the sample suite and trachybasalts as the predominant rock type. Negative Nb-anomalies in extended trace element patterns, enrichment of the light rare earth elements, and Ce/Pb ratios of about 4 are typical of the values in calc alkaline island arc volcanics and support an origin from subduction-modified mantle. 87Sr/86Sr ratios of 0.7037 to 0.7044 and Nd values of +5.6 to +6.8 indicate that the upper mantle evolved with a time-integrated depletion in LREE, however, not as severe as that recorded in basalts from the East Pacific Rise. Variable 87Sr/86Sr ratios at less variable 143Nd/144Nd ratios suggest that 87Sr/86Sr ratios of the melts were modified by secondary processes, such as assimilation of seawater Sr from crustal rocks. The Pb isotope ratios are uniform, moderately radiogenic (206Pb/204Pb ca. 18.7 to 18.8), and similar to those reported for the active Mariana arc. Elevated 207Pb/204Pb ratios relative to Pacific MORB suggest melting of small amounts of subducted sediments (ca. 1–2 wt.%). An important control of subducted sediment on the chemistry of the melts can also be inferred from the ratios of highly incompatible trace elements (e.g., Th, U, Pb, La, and Nb). Additional mantle enrichment by subduction derived fluids is reflected in high values of highly incompatible trace element ratios between fluid mobile (e.g., Ba) and fluid immobile elements (e.g., Th, Nb). The results of this study document that the chemical composition of igneous rocks from post-collisional tectonic settings are strongly influenced by previous plate tectonics. This conclusion implies that the information conveyed by tectonic discrimination diagrams for these rocks must be interpreted with care.  相似文献   

13.
Evidence for heterogenes primary MORB and mantle sources,NW Indian Ocean   总被引:1,自引:0,他引:1  
Basalts from 5 Deep Sea Drilling Project (DSDP) sites in the northwest Indian Ocean (Somali Basin and Arabian Sea) have general geochemical features consistent with a spreading origin at the ancient Carlsberg Ridge. However, compared to most MORBS from other oceans they have low normative olivine, TiO2, and Zr contents. There is no evidence that the mantle source of these northwest Indian Ocean basalts was enriched in incompatible elements relative to the Atlantic and Pacific ocean mantles. In detail, incompatible element abundances in these DSDP basalts establish that they evolved from several compositionally distinct parental magmas. In particular, basalts from site 236 in the Somali Basin have relatively high SiO2 and low Na, P, Ti, and Zr contents. These compositional features along with low normative olivine contents are similar to those proposed for melts derived by two-stage (or dynamic) melting. Published data also indicate there is no enrichment in incompatible elements at the southwest Indian Ocean triple junction, although southwest Indian Ocean basalts have slightly higher 87Sr/86Sr than normal Atlantic MORB. The data suggest that there are significant subtle geochemical variations in the Indian Ocean mantle sources, but are insufficient to show whether these variations have a systematic temporal or geographic distribution.  相似文献   

14.
Spinel peridotite xenoliths from the Atsagin-Dush volcanic centre, SE Mongolia range from fertile lherzolites to clinopyroxene(cpx)-bearing harzburgites. The cpx-poor peridotites typically contain interstitial fine-grained material and silicate glass and abundant fluid inclusions in minerals, some have large vesicular melt pockets that apparently formed after primary clinopyroxene and spinel. No volatile-bearing minerals (amphibole, phlogopite, apatite, carbonate) have been found in any of the xenoliths. Fifteen peridotite xenoliths have been analysed for major and trace elements; whole-rock Sr isotope compositions and O isotope composition of all minerals were determined for 13 xenoliths. Trace element composition and Sr-Nd isotope compositions were also determined in 11 clinopyroxene and melt pocket separates. Regular variations of major and moderately incompatible trace elements (e.g. heavy-rare-earth elements) in the peridotite series are consistent with its formation as a result of variable degrees of melt extraction from a fertile lherzolite protolith. The Nd isotope compositions of LREE (light-rare-earth elements)-depleted clinopyroxenes indicate an old (≥ 1 billion years) depletion event. Clinopyroxene-rich lherzolites are commonly depleted in LREE and other incompatible trace elements whereas cpx-poor peridotites show metasomatic enrichment that can be related to the abundance of fine-grained interstitial material, glass and fluid inclusions in minerals. The absence of hydrous minerals, ubiquitous CO2-rich microinclusions in the enriched samples and negative anomalies of Nb, Hf, Zr, and Ti in primitive mantle-normalized trace element patterns of whole rocks and clinopyroxenes indicate that carbonate melts may have been responsible for the metasomatic enrichment. Low Cu and S contents and high δ34S values in whole-rock peridotites could be explained by interaction with oxidized fluids that may have been derived from subducted oceanic crust. The Sr-Nd isotope compositions of LREE-depleted clinopyroxenes plot either in the MORB (mid-ocean-ridge basalt) field or to the right of the mantle array, the latter may be due to enrichment in radiogenic Sr. The LREE-enriched clinopyroxenes and melt pockets plot in the ocean island-basalt field and have Sr-Nd isotope signatures consistent with derivation from a mixture of the DMM (depleted MORB mantle) and EM (enriched mantle) II sources. Received: 18 January 1996 / Accepted: 23 August 1996  相似文献   

15.
俞恂  陈立辉 《岩石学报》2020,36(7):1953-1972
弧后盆地玄武岩(BABB)是弧后盆地扩张过程中岩浆作用的主要产物,其地球化学组成是认识弧后盆地演化的关键。现今弧后盆地主要集中在西太平洋地区。本文总结了该地区弧后盆地玄武岩的元素地球化学和同位素组成特征。总体而言,相对于开阔大洋洋中脊玄武岩(MORB),弧后盆地玄武岩的主量元素成分变化范围很大,在Al_2O_3-Mg O、Ti O_2-Mg O相关图上偏离了MORB的演化趋势,在Mg O相同的情况下表现出更高的Al_2O_3含量和更低的Ti O_2含量。弧后盆地玄武岩的微量元素特征一般介于MORB和弧玄武岩之间。一方面,它们与MORB一样在中、重稀土元素之间没有明显分馏;另一方面,与弧玄武岩一样富集大离子亲石元素Rb、Ba、Th、U、K,具有Pb的正异常和Nb、Ta的负异常等。其中,劳海盆、日本海海盆和冲绳海槽有部分样品具有Nb、Ta的正异常,表现出类似于E-MORB的微量元素特征。西太平洋地区弧后盆地玄武岩的Sr-Nd-Pb同位素组成变化范围较大,相对于MORB,其富集组分更常见,总体介于亏损地幔端元(DMM)、1型富集地幔(EM1)和2型富集地幔(EM2)三者之间。不同基底属性(大陆基底和大洋基底)和不同阶段的弧后盆地玄武岩的地球化学组成也有明显区别。弧后盆地玄武岩地球化学成分上的多样性主要受控于源区(地幔楔)的物质组成、熔融程度和岩浆上升过程中的变化等因素。地幔源区的不均一性主要体现在地幔楔自身的化学性质和俯冲板片的物质贡献差异。部分弧后盆地玄武岩具有异常高的地幔潜能温度、高的3He/4He比值以及E-MORB型的微量元素特征,说明其地幔源区还可能受到了地幔柱的影响。地幔潜能温度越高,俯冲流体贡献越多,地幔楔的熔融程度越大。此外,岩浆上升过程中发生的地壳混染、岩石圈中的熔体-岩石反应以及矿物的结晶分离都会改造岩浆的成分。  相似文献   

16.
The Huaniushan granite is located at the Beishan orogenic belt, northwestern China. At the contact zone between the granite and marble, a hydrothermal Pb-Zn and skarn Au deposit is formed. LA-ICP-MS zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 229.5±2.6 Ma (MSDW=0.93) for the Huaniushan granite, imply-ing its Late Triassic intrusion. Geochemistry analyses show that the Huaniushan granite is enriched in Si, K, Na, and REE, and depleted in Mg and Ca, with contents of SiO2 (70.8% to 74.4%), Na2O+K2O (8.8% to 10.2%), CaO (0.93% to 1.44%), and MgO (0.14% to 0.48%). REE is characterized by obvious negative Eu anomaly. Rb, Th, U, K, Pb, Nb, Zr and Hf elements are rich in the granite while Ba, Sr, P, Ti and Eu are deplete. The granite has a high (Zr+Nb+Ce+Y) abundance and 104 Ga/Al ratios. Petrology, major and trace elements data all indicate that the Hua-niushan granite is A-type granite which intruded in a post-collisional extensional tectonic setting. The magma was dominantly sourced from partial melting of crustal intermediate-felsic igneous rocks. Intensive magmatic activities and Au-Cu-Mo mineralization occurred throughout the Beishan orogenic belt during the period from ca. 240 to 220 Ma.  相似文献   

17.
Statistical analysis of a data bank of the compositions of glasses and melt inclusions in minerals from ocean-island basalts. The initial database contains more than 45 000 published analyses of ocean-island igneous rocks from around the world. Much attention was given to the contents of volatiles (H2O, Cl, F, and S) and their ratios to one another and to nonvolatile components of close incompatibility (Ti, P, K, and Ce). The average compositions of melt inclusions are similar to those of glasses of the rocks, including volatiles, with consideration for a somewhat higher degree (by approximately 20%) of the differentiation of glasses. The average compositions of ocean-island melts differ from those of mid-ocean basalts in having wider variations and elevated contents of some of the most incompatible elements (Sr, Nb, Ta, Ba, U, Th, and others), as well as H2O, F, and Cl. Based on the correlation of volatiles to one another and to incompatible elements, three groups of ocean-island basalts are distinguished: (I) low-K, P, Ti magma compositions approximating mid-ocean ridge magmas, (II) high-K, Ce, P, and Ti magmas that resemble continental rift magmas but differ from them in low H2O content, and (III) high-K, H2O, Ce, P, and Ti magmas close to continental rift magma. All three types of the melts were found only in the Hawaiian Archipelago, whereas other ocean islands are dominated by any one of these types. The distinguished melt types presumably reflect the differences (heterogeneity) in the compositions of the sources.  相似文献   

18.
This paper discusses some major research to be carried out in the next five years in the newly established Laboratory of Ocean Lithosphere and Mantle Geodynamics. By using our existing sample collections of global mid-ocean ridge basalts, gabbros and abyssal peridotites from the Pacific, Atlantic and Indian oceans, the research includes: ①Using Ti-Zr-Hf stable isotope methods to test the hypothesis that the observed huge Nb-Ta and Zr-Hf fractionations result from mass-dependent fractionation under mantle magmatic conditions; ②Using a MORB sample suite of uniform ratios of incompatible elements and Sr-Nd-Pb isotopes with large major element compositional variation to test the common hypothesis of iron isotope fractionation, i.e, the affinity of heavy Fe with ferric Fe (Fe3+), and both heavy Fe and ferric Fe (Fe3+) being more incompatible than light Fe and ferrous Fe (Fe2+) during magma evolution; while using an incompatible trace element and Sr-Nd-Pb isotope highly variable MORB suite to test the same hypothesis during low-degree mantle melting (i.e, the effect of mantle metasomatism); ③Proposing and testing the hypothesis that the high oxygen fugacity of the Earth’s mantle is a consequence of plate tectonics by subducting partially serpentinized oceanic mantle lithosphere with abundant ferric Fe (e.g. Fe3+/SFe>2); ④The recent work by Andersen et al. (Nature, 2015) is a milestone contribution by using U isotope variation in oceanic basalts to hypothesize that the O2-rich atmosphere since the late Archean (abont 2.4 Ga) mobilized the water soluble U (6+ vs. 4+) from continents, transported to the ocean and subducted with sediments to the upper mantle, which explains the low Th/U in MORB (<2.5) and the high Th/U (>3.5) ocean island basalts (OIB) do not see such U addition effect probably because OIB source materials are all ancient (> abont 2.4 Ga) if there were subducted component. The Cenozoic alkali basalts from eastern China are ideal materials for evaluating the significance of the subducted seafloor materials for the petrogenesis of OIB and enriched MORB by using the U isotope approach, which is expected to revise and improve the Andersen et al hypothesis.  相似文献   

19.
《International Geology Review》2012,54(16):1919-1931
Major element, trace element, and Sr–Nd–Pb isotopic compositions of Cenozoic diabase in southeastern China provide insights into the nature of their mantle sources and processes. The diabases are alkaline in lithochemistry (Na2O + K2O = 4.37–5.19 wt.%) and have overall oceanic island basalt-like trace element patterns, without negative Nb–Ta anomalies. In addition, they are characterized by lower La/Nb (<1.5) and La/Ta (<22), and higher Ce/Pb (>15) and Nb/U (>30) ratios, indicating an origin in the asthenospheric mantle. The relatively lower 143Nd/144Nd (0.512632–0.512648) and 206Pb/204Pb (18.20–18.22), but intermediate 87Sr/86Sr (0.7061–0.7063) ratios of the diabases are similar to enriched mantle type 1, suggesting crustal contamination or mixing with metasomatized lithsopheric mantle. However, the low Th and U contents and lack of correlations of Nd isotope compositions and MgO preclude significant crustal contamination. Alternatively, the moderate TiO2 contents (2.01–2.09 wt.%) and high Cr concentrations (>240 ppm) suggest interaction between asthenosphere-derived melts and metasomatized lithospheric mantle. Petrological modelling suggests that the diabases were generated from a low degree (~3–5%) of partial melting of lherzolite with ~2–3% garnet. Jiangxi diabase was generated in a within-plate extensional regime, probably related to the far effect of the Himalaya–Tibetan orogen.  相似文献   

20.
Mineralogy,geochemistry and petrogenesis of Kurile island-arc basalts   总被引:1,自引:0,他引:1  
Whole-rock (major- and trace-element) and mineral chemical data are presented for basaltic rocks from the main evolutionary stages of the Kurile island arc, NW Pacific. An outer, inactive arc contains a Cretaceous-Lower Tertiary sequence of tholeiitic, calcalkaline and shoshonitic basalts. The main arc (Miocene-Quaternary) is dominated by weakly tholeiitic, with lesser, alkalic basalts. The mineralogy of Kuriles basalts is characterised by An-rich plagioclases, a continuous transition from chromites to titanomagnetites, pyroxenes with low Fe3+ contents and without strong Fe-enrichment, abundance of groundmass pigeonites and the absence of amphiboles. There is an increase in K2O contents both along-arc (northwards) and towards the reararc side. The basalts show an exceptionally wide but continuous range of K2O contents (0.1–4.7%) which correlate with other LIL element contents. Tholeiitic basalts with low LIL element contents, La/Yb and Th/U, but high K/ Rb, P2O5/La and Zr/Nb were derived from depleted, lherzolitic mantle which had suffered fluid metasomatism by K, Rb, Cs, Sr, Ba, Pb and H2O only. Alkali basalts are also thought to be derived from depleted mantle but melt metasomatism involved addition of all LIL elements to a garnet lherzolite mantle. The Kuriles basalts and their mantle sources range continuously between these two end-member compositions. The metasomatic fluids/melts were probably released by early dehydration and later melting within subducted oceanic lithosphere though the process is not adequately constrained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号