首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
积雪季节变化特征的数值模拟及其敏感性试验   总被引:4,自引:0,他引:4  
陈海山  孙照渤 《气象学报》2004,62(3):269-284
文中利用综合陆面模式 (ComprehensiveLandSurfaceModel,CLSM )对法国ColdePorte 1 993/ 1 994 ,1 994 / 1 995年及BOREASSSA OJP 1 994 / 1 995年积雪个例进行了模拟试验 ,通过模拟结果与观测资料的对比 ,检验了CLSM对积雪变化特征的模拟能力 ,并通过敏感性试验探讨了降雪密度、积雪持水量等积雪参数化方案及植被对积雪模拟可能产生的影响。结果表明 :(1 )CLSM能够准确地模拟出积雪的变化过程 ,对积雪的演变特征作出了合理的描述 ;(2 )降雪密度、积雪持水量参数化方案对积雪模拟结果均具有一定的影响 :降雪密度参数化主要对积雪深度的模拟产生影响 ;而积雪持水量参数化方案对积雪的演变过程 ,尤其是积雪的消融 ,具有重要的作用 ;(3)有、无植被存在的情况下 ,积雪 土壤系统的变化过程存在显著的差别 ,植被通过改变积雪 /土壤表面的能量平衡 ,对积雪及土壤的变化过程产生重要影响 :植被的存在有利于积雪的维持 ,使得积雪融化进程推迟 ,冻结土壤的增温明显偏慢  相似文献   

2.
欧亚积雪异常分布对冬季大气环流的影响Ⅱ.数值模拟   总被引:7,自引:1,他引:7  
基于观测分析的结果,采用NCAR CCM2模式,设计了三组数值试验方案,研究了积雪的异常分布对冬季大气环流的影响及其可能的物理过程.结果表明,数值模拟与观测分析所得结果一致,冬季积雪的异常分布,通过积雪的辐射冷却效应,可以改变地表的热状况以及地表对大气加热的异常,引起大气温度、位势高度场的调整,激发冬季大气EUP遥相关型,导致东亚冬季风环流的异常.  相似文献   

3.
利用1979-2016年中国区域长时间序列逐日雪深资料,分析了青藏高原积雪深度与积雪日数的分布及变化特征,并将积雪期划分为三个阶段(积累期、鼎盛期和消融期),结合ERA-Interim月平均再分析资料,分析了积雪与地表热状况(气温、地表和土壤温度)和能量输送量(地表净短波辐射、地表净长波辐射、感热通量、潜热通量、地表热通量和土壤热通量)的相关关系,初步探讨了积雪在高原陆面过程中的作用。结果表明:研究时间范围内青藏高原积雪(深度和日数)主要呈减少趋势,仅在黄河源区及高原边缘地区为增加趋势,积雪鼎盛阶段(1-2月)的减少趋势最显著;高原积雪对地表主要起降温作用,深层土壤温度对积雪的响应存在滞后性,积雪的减少抑制了土壤向上的热量输送进而不利于冻土的发育;高原积雪与地表感热和地表热通量主要呈现负相关关系,潜热通量与积雪也呈负相关特征但比感热通量的相关性小。由于ERA-Interim资料对高原积雪深度的描述与本研究使用的卫星遥感积雪深度存在较大偏差(包括空间分布、气候倾向率、年际变化以及绝对大小等),导致本研究中积雪与地表热状况和热通量的相关度不高,需要通过陆面模式模拟做进一步探讨。  相似文献   

4.
选取青藏高原(下称高原)东部玛曲、玛多和垭口3个野外站点的观测资料,针对不连续积雪过程,研究高原东部不同季节的积雪过程对地表能量和土壤水热的影响.结果表明:受积雪高反照率的影响,高原东部地区各季节降雪后净短波辐射减小,净辐射较降雪前减小60%~140%;积雪积累期内感热、潜热及土壤热通量均减小,感热通量和土壤热通量出现...  相似文献   

5.
李小龙  谷松岩  刘健 《气象》2009,35(5):3-9
2008年1月中旬至2月初,我国南方出现了罕见的大范围低温雨雪冰冻天气灾害.南方地区地面积雪的覆盖范围等灾害信息对于气象公共服务、决策服务都有着十分重要的意义.目前国内外开展的被动微波积雪研究,多关注高纬度、极地地区或高原地区的干雪状况,薄雪、湿雪的判识问题较少有人触及.而我国冰冻灾害期间,南方地区由于处于较低纬度带,昼夜温度在0℃上下起伏,雨、雪、雨夹雪天气的轮替,地面积雪恰恰多为湿雪、薄雪.积雪雪层由于液态水的存在将大大改变观测辐射信号,雪内少量液态水就能导致微波亮温值急剧上升.利用南方地区积雪冻融变化时微波亮温昼夜之间的差异变化,使用被动微波数据(DMSP-SSM/I)建立了对低纬度南方地区积雪监测的一种补充方法,结合其他积雪产品,可以获得更加完整的低纬度地区积雪分布信息.  相似文献   

6.
积雪深度的变化受到多种气象因子共同影响。基于天山积雪雪崩站观测的水文气象资料,通过数理统计、标准化处理、通径分析等方法探索气象因子之间的相互作用对积雪深度变化的影响。研究结果表明:融雪期大气温度、净辐射、相对湿度等6个气象因子对积雪深度变化的影响程度不同,净辐射与积雪深度相关程度最高。气象因子之间有着不同程度的相互联系,相对湿度与降水之间的相关系数高达0.854,相对湿度与降水之间有着密切的联系。直接通径系数反映独立气象因子对积雪深度的直接影响程度,间接通径系数反映独立气象因子在其他气象因子的影响下对积雪深度的间接影响程度。根据积雪深度决定系数绝对值的大小可以得到,对积雪深度变化贡献力由大到小的气象因子依次为:净辐射、地表温度、大气温度、降水、相对湿度、风速;积雪深度的剩余系数为0.353,说明除了本研究的6个气象因子以外还存在着其他影响积雪深度变化的因素。  相似文献   

7.
利用青海玛沁微气象观测站降雪过程的观测数据,探讨了积雪覆盖对土壤温度,土壤体积含水量、土壤热通量及地表能量交换的影响。结果表明:积雪覆盖对浅层土壤温度的影响较为显著,而对深层土壤温度的影响十分微弱。地表有积雪覆盖时,浅层土壤温度日平均值升高,日变化幅度减小,日最低值升高,温度梯度绝对值减小。土壤完全冻结状态下土壤体积含水量几乎不受积雪覆盖影响,土壤融化状态下积雪覆盖会导致浅层土壤体积含水量日变化幅度减小,而对深层土壤体积含水量没有影响。积雪覆盖会减小浅层土壤热通量的日变化幅度。在总辐射相同的晴天条件下,当地表有积雪覆盖时,由于积雪的高反照率导致向上短波辐射增加,净辐射减小,同时感热通量减小而潜热通量增加,感热占比(H/Rn)下降,潜热占比(LE/Rn)升高。  相似文献   

8.
人工地面观测转变为自动地面观测,其观测方法发生了较大的变化.通过平行观测,对鱼台县气象局(2006-2007年)及周边的金乡(2003-2004年)、微山(2004-2005年)的人工站与自动站的地面观测资料进行了对比分析,得出:无积雪状况下,人工站与自动站地面观测数据对比值较小;有积雪状况下,人工观测的雪面温度与自动观测的地面温度具有一定的对比关系.因自动观测的地面温度更能代表实际地面状况,所以,这种对比关系的出现,将为使用地表温度的水文及农业部门提供一个地表温度使用参数β,使这些部门能够更加准确地掌握地面温度的变化规律,从而为地能、地热、地表水的预测与判断提供准确数据.  相似文献   

9.
<正>一、项目背景2017年3月国家自然科学基金面上项目"气候变化背景下积雪对棉铃虫越冬蛹的影响研究"通过了国家自然基金委的验收。该项目历时4年,圆满完成了项目预定的任务。棉铃虫的生长发育受天气因素的影响较大,冬季北方棉区常常被积雪覆盖,明确气候变化条件下积雪状况对棉铃虫越冬蛹的影响对农事生产活动意义重大。项目组在2012-2016年利用气象和虫害历史资料进行了越冬蛹发育的相关分析,并在田间进行了在不同土壤深度进行不同梯度的增温、增雪实验,通过监测积雪内部及其覆盖下土壤不同深  相似文献   

10.
欧亚大陆积雪与亚洲季风关系研究进展   总被引:5,自引:1,他引:4  
杨琨  武炳义 《气象科技》2009,37(3):263-270
系统回顾了欧亚大陆积雪和亚洲季风之间联系的国内外研究进展,并对研究中存在的一些问题做出评述。积雪可以显著影响地表温度、土壤湿度以及地表辐射状况,从而影响亚洲夏季风的建立和发展。普遍认为,积雪增加会导致亚洲夏季风减弱或者爆发推迟,在众多诊断分析和模拟研究中都发现了这种积雪和季风的负相关关系。但这种关系是十分复杂的,不同区域的积雪以及雪盖或者雪深都对亚洲季风有不同的影响,而且积雪和季风之间的关系也存在年代际的变化。积雪和亚洲季风的联系还受到ENSO以及北大西洋涛动等因素的影响。目前的研究工作中,有关积雪和季风的关系以及积雪影响季风的机制和过程,还存在很多的分歧和疑问,有待于进一步的研究。  相似文献   

11.
青藏高原积雪对亚洲夏季风影响的诊断及数值研究   总被引:60,自引:15,他引:60       下载免费PDF全文
张顺利  陶诗言 《大气科学》2001,25(3):372-390
通过对青藏高原多、少雪年的合成分析及数值试验,研究了青藏高原积雪对亚洲 夏季风和我国东部气候异常的影响。结果表明:青藏高原积雪造成亚洲大气环流较大的年际变化。高原积雪改变了高原陆面春、夏季的热状况,使亚洲夏季风爆发推迟20天左右。高原积雪通过以下物理过程影响亚洲夏季风和我国东部气候:高原积雪多(少)→高原春、夏季的感热弱(强)→感热加热引起的上升运动弱(强),高原强(弱)环境风场→不利(有利)于高原感热通量向上输送→高原上空对流层加热弱(强)→高原对流层温度低(高)→高原南侧温度对比弱(强)→造成亚洲夏季风弱(强)→我国长江流域易涝(旱)。  相似文献   

12.
欧亚积雪异常分布对冬季大气环流的影响 II.数值模拟   总被引:2,自引:0,他引:2  
基于观测分析的结果 ,采用NCARCCM2模式 ,设计了三组数值试验方案 ,研究了积雪的异常分布对冬季大气环流的影响及其可能的物理过程。结果表明 ,数值模拟与观测分析所得结果一致 ,冬季积雪的异常分布 ,通过积雪的辐射冷却效应 ,可以改变地表的热状况以及地表对大气加热的异常 ,引起大气温度、位势高度场的调整 ,激发冬季大气EUP遥相关型 ,导致东亚冬季风环流的异常  相似文献   

13.
一年之季在于春,春季是播种的季节,而春季土壤墒情的好坏直接影响着牧草返青、农作物播种和出茁。每地区土壤质地一般是不变的,土壤墒情的好坏主要取决于土壤中含水量的多少。土壤中水分的主要来源是空中降水,而春季的土壤墒情和上年度秋季降水、冬季积雪、当年春季降水、春季风力的大小、温度的高低、解冻和冻结的日期等因素有着一定的关系。下面就对春季土壤墒情影响较大的几个方面进行分析。  相似文献   

14.
《高原气象》2021,40(4):853-865
利用降水现象仪、地面自动站、人工加密积雪深度逐时观测资料及NCEP/NCAR 1°×1°再分析资料,对山东2020年1月5-7日罕见雨雪过程的积雪特征及温度影响机制进行了分析。结果表明:(1)降水量突破同期历史极值导致此次雨雪过程成为极端天气事件,地面影响系统为江淮气旋,冷平流较弱,积雪深度是预报难点。(2)整个过程全省各站的平均降雪含水比为0.46 cm·mm~(-1),低于过去20年间的江淮气旋暴雪过程。(3)积雪深度与高空温度、相对湿度和垂直速度的配置有关,在最大上升运动与90%以上相对湿度的叠置层次内,如果环境温度有利于树枝状冰晶增长则积雪深度和降雪含水比大,而环境温度适合空心柱状冰晶增长的则积雪深度小;云下温度高于0℃使得积雪深度减小。(4)积雪深度与近地面温度的关系表现为:气温低于0.5℃可形成有量积雪;0 cm地温对积雪的影响表现在积雪产生之前,降至0.4℃以下可形成有量积雪;雪面温度在产生积雪前后的2 h内维持在0℃左右,其他时段变化与气温类似。(5)降雪含水比基本上随着气温的升高而减小,在0.5 cm·mm~(-1)以上时一般降雪期间气温低于0.4℃。该个例揭示了积雪深度和降雪含水比的预报需要综合考虑高低空气象条件。  相似文献   

15.
为了改进美国NCARCCM3全球模式中LSM陆面模型中的积雪方案的模拟效果,在Sun等[1]SAST积雪模型的基础上,作了部分修改后,加进CCM3模式LSM模型中.该方案根据格点区域平均积雪深度的不同,把地面雪盖划分为1到3层不等,能在积雪表层和中间层更好地描述温度的日变化和季节变化;较详细地考虑了雪的热传导、太阳辐射的穿透吸收、雪的融化、液态水的储存、渗透和再冻结等积雪内部的主要物理过程;根据Nimbus-7卫星实测雪深资料修改了积雪覆盖度和雪面反照率的计算方案.利用前苏联6个台站1978-1983年的实测积雪资料和大气强迫数据,进行了单点模拟试验,结果表明,新的积雪参数化方案能够较好地再现积雪深度和雪水当量的逐日和季节变化特征,部分提高了积雪参数化方案对积雪的模拟能力.  相似文献   

16.
高山积雪     
薛松 《气象》1975,1(12):8-10
积雪不仅对农业具有重要的意义和作用,而且积雪作为特殊的下垫面影响着近地层空气的热状况。长期的、大片的积雪,可以改变气团属性,调整大气环流,所以近年来对积雪的气候效应的研究,也越来越为气象工作者所重视。  相似文献   

17.
青藏高原多年冻土区典型下垫面冻融过程作用分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用青藏高原腹地安多站土壤观测资料,根据10cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,并结合感热通量、积雪深度、相对湿度和降水资料定性的探讨了冻融过程对地气热量、水分交换的影响。结果表明:各层土壤在东亚季风爆发前期由上至下完成融化过程,10月中旬~12月上旬完成冻结过程,融化期普遍长于冻结期。土壤湿度大值区在时间上集中在高原雨季,空间上10cm深度以上为湿度大值区,而且上层土壤的温度梯度要明显大于下层。在融化阶段整层土壤的温度长期保持0℃的等温相变现象,此时,表层土壤温度日变化幅度为全年最大,最高日变幅达22.5℃。安多站地面除12月个别天数和1月上旬是冷源外,全年为地面热源,近地面感热通量从1月开始增大,到6月上旬达到峰值,之后逐渐减小。同时,感热通量的变化对相对湿度、降水和积雪的变化较为敏感。   相似文献   

18.
黄河源区降雪对不同冻融阶段土壤温湿变化的影响   总被引:1,自引:0,他引:1  
利用2013年10月1日至2014年5月31日黄河源区鄂陵湖流域的土壤温度资料首先划分土壤不同冻融阶段,然后在每个阶段各选取一次降雪过程,分析了降雪对土壤温湿变化的影响。结果表明:在土壤冻结阶段,雪后晴天(有雪覆盖)土壤净输出的热量减少,5 cm和10 cm土壤日最低温度明显升高,20 cm土壤日最低温度升至0℃以上,导致20 cm土壤达到完全冻结的时间延长;在土壤消融阶段,降雪当天土壤净输入的热量减少,5 cm和10 cm土壤日最高温度突降至0℃以下,导致5 cm和10cm土壤达到完全消融的时间增加。在以上两个阶段的降雪过程中,积雪不仅可通过自身的消融增加浅层土壤湿度,还可通过改变浅层土壤温度间接影响浅层土壤湿度,而在土壤完全冻结阶段,积雪对土壤温度虽有影响,但对土壤湿度的直接和间接影响都较小。在整个土壤冻融阶段,与由土壤冻结和消融引起的土壤湿度变化相比,降雪引起的土壤湿度变化较小。  相似文献   

19.
受自然条件和观测数据的限制,对青藏高原腹地高时间频次积雪融雪动态过程的认识与研究仍不足,利用高原中部沱沱河地区野外观测试验场2013/2014年冬半年积雪深度和气温数据,对发生在11月期间的积雪动态融雪过程及其与气温的关系进行了分析。结果表明,高原中部地区融雪过程表现为先缓后急的总体特征,融雪在雪深较小的后期迅速加快。雪深变化与气温存在紧密联系,融雪过程发生之前3 h之内的气温都显著影响雪深变化,雪深变化与超前30 min及同步气温相关最为显著,线性相关系数分别达到-0.3600和-0.3589,通过了0.01显著性水平检验。考虑温度的滞后效应,沱沱河地区雪深下降在温度-13℃时就可发生,-4~-2℃是主要消融温度区间,这个温度明显低于中国其他山区积雪消融的临界温度。融雪过程主要发生在12:00-18:00期间,且存在12:00-13:30与16:30-18:00两个快速下降时段,值得注意的是,热量状况最好的14:00-16:00雪深下降并不显著。融雪期日照时数与雪深的相关系数为-0.845,融雪前期气温对雪深影响大于日照时数对雪深的影响,融雪后期日照时数对雪深影响大于气温对雪深的影响,均通过0.01显著性检验水平。融雪过程与热量条件及日照时数间的复杂关系表明,青藏高原腹地积雪的消融与日照时数、雪的形态、消融程度、升华过程等均有一定联系。  相似文献   

20.
利用2013年10月1日至2014年5月31日黄河源区鄂陵湖流域的土壤温度资料首先划分土壤不同冻融阶段,然后在每个阶段各选取一次降雪过程,分析了降雪对土壤温湿变化的影响。结果表明:在土壤冻结阶段,雪后晴天(有雪覆盖)土壤净输出的热量减少,5 cm和10 cm土壤日最低温度明显升高,20 cm土壤日最低温度升至0℃以上,导致20 cm土壤达到完全冻结的时间延长;在土壤消融阶段,降雪当天土壤净输入的热量减少,5 cm和10 cm土壤日最高温度突降至0℃以下,导致5 cm和10cm土壤达到完全消融的时间增加。在以上两个阶段的降雪过程中,积雪不仅可通过自身的消融增加浅层土壤湿度,还可通过改变浅层土壤温度间接影响浅层土壤湿度,而在土壤完全冻结阶段,积雪对土壤温度虽有影响,但对土壤湿度的直接和间接影响都较小。在整个土壤冻融阶段,与由土壤冻结和消融引起的土壤湿度变化相比,降雪引起的土壤湿度变化较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号