首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ice-proximal sedimentological features from the northwestern Barents Sea suggest that this region was covered by a grounded ice sheet during the Late Weichselian. However, there is debate as to whether these sediments were deposited by the ice sheet at its maximum or a retreating ice sheet that had covered the whole Barents Sea. To examine the likelihood of total glaciation of the Late Weichselian Barents Sea, a numerical ice-sheet model was run using a range of environmental conditions. Total glaciation of the Barents Sea, originating solely from Svalbard and the northwestern Barents Sea, was not predicted even under extreme environmental conditions. Therefore, if the Barents Sea was completely covered by a grounded Late Weichselian ice sheet, then a mechanism (not accounted for within the glaciological model) by which grounded ice could have formed rapidly within the central Barents Sea, may have been active during the last glaciation. Such mechanisms include (i) grounded ice migration from nearby ice sheets in Scandinavia and the central Barents Sea, (ii) the processes of sea-ice-induced ice-shelf thickening and (iii) isostatic uplift of the central Barents Sea floor.  相似文献   

2.
A section, almost 20 km long and up to 80 m high, through alternating layers of diamict and sorted sediments is superbly exposed on the north coast of the Kanin Peninsula, northwestern Russia. The diamicts represent multiple glacial advances by the Barents Sea and the Kara Sea ice sheets during the Weichselian. The diamicts and stratigraphically older lacustrine, fluvial and shallow marine sediments have been thrust as nappes by the Barents Sea and Kara Sea ice sheets. Based on stratigraphic position, OSL dating, sea level information and pollen, it is evident that the sorted sediments were deposited in the Late Eemian-Early Weichselian. Sedimentation started in lake basins and continued in shallow marine embayments when the lakes opened to the sea. The observed transition from lacustrine to shallow marine sedimentation could represent coastal retreat during stable or rising sea level.  相似文献   

3.
A coastal cliff facing the ocean at the west coast of Spitsbergen has been studied, and seven formations of Weichselian and Holocene age have been identified. A reconstruction of the palaeoenvironment and glacial history shows that most of the sediments cover isotope stage 5. From the base of the section, the formation 1 and 2 tills show a regional glaciation that reached the continental shelf shortly after the Eemian. Formation 3 consists of glacimarine to marine sediments dated to 105,000–90,000 BP. Amino acid diagenesis indicates that they were deposited during a c . 10,000-year period of continuous isostatic depression, which indicates contemporaneous glacial loading in the Barents Sea. Foraminifera and molluscs show influx of Atlantic water masses along the west coast of Svalbard at the same time. Local glaciers advanced during the latter part of this period, probably due to the penetration of moist air masses, and deposited formation 4. A widespread weathering horizon shows that the glacial retreat was succeeded by subaerial conditions during the Middle Weichselian. Formation 5 is a till deposited during the Late Weichselian glacial maximum in this area. The glaciation was dominated by ice streams from a dome over southern Spitsbergen, and the last deglaciation of the outer coast is dated to 13,000 BP. A correlation of the events with other areas on Svalbard is discussed, and at least two periods of glaciation in the Barents Sea during the Weichselian are suggested.  相似文献   

4.
Based on field investigations in northern Russia and interpretation of offshore seismic data, we have made a preliminary reconstruction of the maximum ice-sheet extent in the Barents and Kara Sea region during the Early/Middle Weichselian and the Late Weichselian. Our investigations indicate that the Barents and Kara ice sheets attained their maximum Weichselian positions in northern Russia prior to 50 000 yr BP, whereas the northeastern flank of the Scandinavian Ice Sheet advanced to a maximum position shortly after 17 000 calendar years ago. During the Late Weichselian (25 000-10 000 yr BP), much of the Russian Arctic remained ice-free. According to our reconstruction, the extent of the ice sheets in the Barents and Kara Sea region during the Late Weichselian glacial maximum was less than half that of the maximum model which, up to now, has been widely used as a boundary condition for testing and refining General Circulation Models (GCMs). Preliminary numerical-modelling experiments predict Late Weichselian ice sheets which are larger than the ice extent implied for the Kara Sea region from dated geological evidence, suggesting very low precipitation.  相似文献   

5.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   

6.
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.  相似文献   

7.
A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a “maximum-sized” ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a “minimum” model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.  相似文献   

8.
On the basis of field data, datings from both electron spin resonance – and optically stimulated luminescence, and micro- and macrofauna, in addition to presence of diatoms, three Late Pleistocene marine units have been identified in the coastal areas of the Kola Peninsula. The stratigraphically lowest sequence is correlated to the Ponoi Beds and the Boreal transgression, attributed to the marine isotope stages (MIS) 5e to 5d in the White Sea depression and to MIS 5e to 5c in the Barents Sea. Thermophilic fauna and diatoms indicate normal water salinity and a water temperature above zero. The second marine unit, referred as the Strel'na Beds, can be correlated with the Early Weischselian transgression, termed the Belomorian transgression. With low water salinity and a water temperature similar or colder than the present times, Belomorian transgressions are reliably detected in the White Sea and are not clearly found in the Barents Sea. The results obtained from the sediments of the Ponoi and Strel'na Beds indicate a continuously existing marine reservoir from 130 to 80–70 ka ago (entire MIS 5) in the White Sea depression. The early Middle Weichselian Barents–Kara ice-sheet invasion and its recession might have caused the glacioeustatic Middle Weichselian (MIS 3) transgression, and the third Late Pleistocene marine sequence has been deposited in the regressing shallow cold sea with less saline waters. The results help in the understanding of the history of Late Quaternary ice sheets in North Eurasia and provide evidence for the debatable Early and Middle Weichselian marine events.  相似文献   

9.
A fully integrated ice‐sheet and glacio‐isostatic numerical model was run in order to investigate the crustal response to ice loading during the Late Weichselian glaciation of the Barents Sea. The model was used to examine the hypothesis that relative reductions in water depth, caused by glacio‐isostatic uplift, may have aided ice growth from Scandinavia and High Arctic island archipelagos into the Barents Sea during the last glacial. Two experiments were designed in which the bedrock response to ice loading was examined: (i) complete and rapid glaciation of the Barents Sea when iceberg calving is curtailed except at the continental margin, and (ii) staged growth of ice in which ice sheets are allowed to ground at different water depths. Model results predict that glacially generated isostatic uplift, caused by an isostatic forebulge from loads on Scandinavia, Svalbard and other island archipelagos, affected the central Barents Sea during the early phase of glaciation. Isostatic uplift, combined with global sea‐level fall, is predicted to have reduced sea level in parts of the central Barents Sea by up to 200 m. This reduction would have been sufficient to raise the sea floor of the Central Bank into a subaerial position. Such sea‐floor emergence is conducive to the initiation of grounded ice growth in the central Barents Sea. The model indicates that, prior to its glaciation, the depth of the Central Deep would have been reduced from around 400 m to 200 m. Such uplift aided the migration of grounded ice from the central Barents Sea and Scandinavia into the Central Deep. We conclude that ice loading over Scandinavia and Arctic island archipelagos during the first stages of the Late Weichselian may have caused uplift within the central Barents Sea and aided the growth of ice across the entire Barents Shelf. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Sediment successions from the Kanin Peninsula and Chyoshskaya Bay in northwestern Russia contain information on the marginal behaviour of all major ice sheets centred in Scandinavia, the Barents Sea and the Kara Sea during the Eemian-Weichselian. Extensive luminescence dating of regional lithostratigraphical units, supported by biostratigraphical evidence, identifies four major ice advances at 100-90, 70-65, 55-45 and 20-18 kyr ago interbedded with lacustrine, glaciolacustrine and marine sediments. The widespread occurrence of marine tidal sediments deposited c. 65-60 kyr ago allows a stratigraphical division of the Middle Weichselian Barents Sea and Kara Sea ice sheets into two shelf-based glaciations separated by almost complete deglaciation. The first ice dispersal centre was in the Barents Sea and thereafter in the Kara Sea. It is possible to extract both flow patterns from ice marginal landforms inside the southward termination. Accordingly, it is proposed that the Markhida line and its western continuation are asynchronous and originate from two separate glaciations before and after the marine transgression. The marine sedimentation occurred during a eustatic sea-level rise of up to 20 m/1000 yr, i.e. the Mezen Transgression. We speculate that the rapid eustatic sea-level rise triggered a collapse of the Barents Sea Ice Sheet at the MIS (Marine Isotope Stage) 4 to 3 transition. This is motivated by lack of an early marine highstand, the timing of events, and the marginal position of Arkhangelsk relative to open marine conditions.  相似文献   

11.
Llithology of massive diamictons was studied in two areas of the eastern Barents Sea using cores and geophysical data. These sediments dominate in the Pleistocene section as two seismostratigraphic complexes (SSC): Upper Weichselian (SSC III) and locally distributed Lower Weichselian (SSC V). Diamictons of these complexes represent tills produced by the geological activity of the Pleistocene Novaya Zemlya and Scandinavian ice sheets. The Upper Weichselian glacial sequence is laterally heterogeneous. It includes two seismic facies represented by ordinary (overconsolidated) tills (they also constitute SSC V) and a spacious moraine of the specific type with the normally consolidated sediments (they avoided compaction by the ice load) and certain lithological specifics. The last glacial sediments were formed in a specific subglacial setting similar to the sediments under fast ice streams of Antarctica. However, the specific features allow us to define these sediments as a new (Barents Sea) facies of tills related to zones of intense basal melting of glaciers.  相似文献   

12.
Doklady Earth Sciences - Analysis of the data of seismoacoustic investigations and geotechnical drilling in the Eastern Barents Sea has shown the following. The cover of the Upper Weichselian...  相似文献   

13.
Pasanen, A., Lunkka, J. P. & Putkinen, N. 2009: Reconstruction of the White Sea Basin during the late Younger Dryas. Boreas, 10.1111/j.1502‐3885.2009.00128.x. ISSN 0300‐9483 The Weichselian Scandinavian Ice Sheet (SIS) in the White Sea Basin retreated from its maximum position to the Kalevala end moraine between 17 000 and 11 500 years ago. Even though the deglaciation history is relatively well known, the palaeoenvironments in front of the ice sheet are still poorly understood and partly controversial. In the present paper, we use geomorphological, sedimentological and ground‐penetrating radar survey methods to study glaciofluvial plains and shorelines at the Kalevala end moraine. These data are used to define the shoreline gradient for the area and to numerically reconstruct the palaeotopography and the area and volume of the water body in the White Sea Basin during the late Younger Dryas 11 500 years ago. The results indicate that at three sites glaciofluvial plains represent Gilbert deltas deposited to the same water level next to the ice margin. Using the shoreline gradient of 0.42 m/km, it is shown that the water body in the White Sea Basin was extensive and relatively deep, inundating large, currently onshore, areas on the western side of the White Sea and the Arkhangelsk area to the east. The ice margin terminated in the White Sea, which was connected to the Barents Sea via the Gorlo Strait and separated from the Baltic drainage basin to the south.  相似文献   

14.
Glacial landforms in northern Russia, from the Timan Ridge in the west to the east of the Urals, have been mapped by aerial photographs and satellite images supported by field observations. An east-west trending belt of fresh hummock-and-lake glaciokarst landscapes has been traced to the north of 67°N. The southern boundary of these landscapes is called the Markhida Line, which is interpreted as a nearly synchronous limit of the last ice sheet that affected this region. The hummocky landscapes are subdivided into three types according to the stage of postglacial modification: Markhida, Harbei and Halmer. The Halmer landscape on the Uralian piedmont in the east is the freshest, whereas the westernmost Markhida landscape is more eroded. The west-east gradient in morphology is considered to be a result of the time-transgressive melting of stagnant glacier ice and of the underlying permafrost. The pattern of ice-pushed ridges and other directional features reflects a dominant ice flow direction from the Kara Sea shelf. Traces of ice movement from the central Barents Sea are only discernible in the Pechora River left bank area west of 50°E. In the Polar Urals the horseshoe-shaped end moraines at altitudes of up to 560 m a.s.l. reflect ice movement up-valley from the Kara Ice Sheet, indicating the absence of a contemporaneous ice dome in the mountains. The Markhida moraines, superimposed onto the Eemian strata, represent the maximum ice sheet extent in the western part of the Pechora Basin during the Weichselian. The Markhida Line truncates the huge arcs of the Laya-Adzva and Rogovaya ice-pushed ridges protruding to the south. The latter moraines therefore reflect an older ice advance, probably also of Weichselian age. Still farther south, fluvially dissected morainic plateaus without lakes are of pre-Eemian age, because they plunge northwards under marine Eemian sediments. Shorelines of the large ice-dammed Lake Komi, identified between 90 and 110 m a.s.l. in the areas south of the Markhida Line, are radiocarbon dated to be older than 45 ka. The shorelines, incised into the Laya-Adzva moraines, morphologically interfinger with the Markhida moraines, indicating that the last ice advance onto the Russian mainland reached the Markhida Line during the Middle or Early Weichselian, before 45 ka ago.  相似文献   

15.
New marine geological evidence provides a better understanding of ice-sheet dynamics along the western margin of the last Svalbard/Barents Sea Ice Sheet. A suite of glacial sediments in the Kongsfjordrenna cross-shelf trough can be traced southwards to the shelf west of Prins Karls Forland. A prominent moraine system on the shelf shows minimum Late Weichselian ice extent, indicating that glacial ice also covered the coastal lowlands of northwest Svalbard. Our results suggest that the cross-shelf trough was filled by a fast-flowing ice stream, with sharp boundaries to dynamically less active ice on the adjacent shelves and strandflats. The latter glacial mode favoured the preservation of older geological records adjacent to the main pathway of the Kongsfjorden glacial system. We suggest that the same model may apply to the Late Weichselian glacier drainage along other fjords of northwest Svalbard, as well as the western margin of the Barents Ice Sheet. Such differences in glacier regime may explain the apparent contradictions between the marine and land geological record, and may also serve as a model for glaciation dynamics in other fjord regions.  相似文献   

16.
The creation of the huge fans observed in the western Barents Sea margin can only be explained by assuming extremely high glacial erosion rates in the Barents Sea area. Glacial processes capable of producing such high erosion rates have been proposed, but require the largest part of the preglacial Barents Sea to be subaerial. To investigate the validity of these proposals we have attempted to reconstruct the western preglacial Barents Sea. Our approach was to combine erosion maps based on prepublished data into a single mean valued erosion map covering the whole western Barents Sea and consequently use it together with a simple Airy isostatic model to obtain a first rough estimate of the preglacial topography and bathymetry of the western Barents Sea margin. The mean valued erosion map presented herein is in good volumetric agreement with the sediments deposited in the western Barents Sea margin areas, and as a direct consequence of the averaging procedures employed in its construction we can safely assume that it is the most reliable erosion map based on the available information. By comparing the preglacial sequences with the glacial sequences in the fans we have concluded that 1/2 to 2/3 of the total Cenozoic erosion was glacial in origin and therefore a rough reconstruction of the preglacial relief of the western Barents Sea could be obtained. The results show a subaerial preglacial Barents Sea. Thus, during interglacials and interstadials the area may have been partly glaciated and intensively eroded up to 1 mm/y, while during relatively brief periods of peak glaciation with grounded ice extending to the shelf edge, sediments have been evacuated and deposited at the margins at high rates. The interplay between erosion and uplift represents a typical chicken and egg problem; initial uplift is followed by intensive glacial erosion, compensated by isostatic uplift, which in turn leads to the maintenance of an elevated, and glaciated, terrain. The information we have on the initial tectonic uplift suggests that the most likely mechanism to cause an uplift of the dimensions and magnitude of the one observed in the Barents Sea is a thermal mechanism.  相似文献   

17.
Direct evidence for Late Weichselian grounded glacier ice over extensive areas of the Barents Sea is based largely on indirect observations, including elevations of old shorelines on Svalbard and arguments of isostatic rebound. Such isostatic models are discussed here for two cases representing maximum and minimum ice-sheet reconstructions. In the former model the ice extends over the Kara Sea, whereas in the latter the ice is limited to the Barents Sea and island archipelagos. Comparisons of predictions with observations from a number of areas, including Spitsbergen, Nordaustlandet, Edgeøya, Kong Karls Land, Franz Josef Land, Novaya Zemlya and Finnmark, support arguments for the existence of a large ice sheet over the region at the time of the last glacial maximum. This ice sheet is likely to have had the following characteristics, conclusions that are independent of assumptions made about the Earth's rheological parameters. (i) The maximum thickness of this ice was about 1500–2000 m with the centre of the load occurring to the south and east of Kong Karls Land. (ii) The ice sheet extended out to the western edge of the continental shelf and its maximum thickness over western Spitsbergen was about 800 m. (iii) To the north of Svalberg and Frans Josef Land the ice sheet extended out to the northern shelf edge. (iv) Retreat of the grounded ice across the southern Barents Sea occurred relatively early such that this region was largely ice free by about 15,000 BP. (v) By 12,000 BP the grounded ice had retreated to the northern archipelagos and was largely gone by 10,000 BP. (vi) The ice sheet may have extended to the Kara Sea but ice thicknesses were only a fraction of those proposed in those reconstructions where the maximum ice thickness is centered on Novaya Zemlya. Models for the palaeobathymetry for the Barents Sea at the time of the last glacial maximum indicate that large parts of the Barents Sea were either very shallow or above sea level, providing the opportunity for ice growth on the emerged plateaux, as well as on the islands, but only towards the end of the period of Fennoscandian ice sheet build-up.  相似文献   

18.
Processes occurring at the grounding zone of marine terminating ice streams are crucial to marginal stability, influencing ice discharge over the grounding-line, and thereby regulating ice-sheet mass balance. We present new marine geophysical data sets over a ~30×40 km area from a former ice-stream grounding zone in Storfjordrenna, a large cross-shelf trough in the western Barents Sea, south of Svalbard. Mapped ice-marginal landforms on the outer shelf include a large accumulation of grounding-zone deposits and a diverse population of iceberg ploughmarks. Published minimum ages of deglaciation in this region indicate that the deposits relate to the deglaciation of the Late Weichselian Storfjordrenna Ice Stream, a major outlet of the Barents Sea–Svalbard Ice Sheet. Sea-floor geomorphology records initial ice-stream retreat from the continental shelf break, and subsequent stabilization of the ice margin in outer-Storfjordrenna. Clustering of distinct iceberg ploughmark sets suggests locally diverse controls on iceberg calving, producing multi-keeled, tabular icebergs at the southern sector of the former ice margin, and deep-drafted, single-keeled icebergs in the northern sector. Retreat of the palaeo-ice stream from the continental shelf break was characterized by ice-margin break-up via large calving events, evidenced by intensive iceberg scouring on the outer shelf. The retreating ice margin stabilized in outer-Storfjordrenna, where the southern tip of Spitsbergen and underlying bedrock ridges provide lateral and basal pinning points. Ice-proximal fans on the western flank of the grounding-zone deposits document subglacial meltwater conduit and meltwater plume activity at the ice margin during deglaciation. Along the length of the former ice margin, key environmental parameters probably impacted ice-margin stability and grounding-zone deposition, and should be taken into consideration when reconstructing recent changes or predicting future changes to the margins of modern ice streams.  相似文献   

19.
The history of postglacial emergence on the Murman coast, Kola Peninsula, is reconstructed based on twelve new radiocarbon ages from three marine sections and regional shoreline observations. Two pronounced shore levels are recognized below the Late Weichselian marine limit. The lower shoreline (11 -16 m a.s.l.) is associated with a transgression dated to 6200–6600 BP, correlative to the Tapes transgression on the Norwegian coastline. The upper shoreline (36–47 m a.s.l.) is not yet dated directly but probably correlates to the Main (Younger Dryas) shoreline. Strandline elevations descend eastward along the Murman coast. Observed emergence trends suggest the greatest regional Late Weichselian glacier load over the west-central Kola Peninsula rather than in the southern Barents Sea.  相似文献   

20.
Sparker and shallow drilling data indicate that the Quaternary deposits in the Central Deep of the Barents Sea are mainly composed of glacigenic sediments. They comprise basal till and proximal and distal glaciomarine sediments deposited during the last glacial cycle. Apparent glaciotectonic features imply strong glacial erosion of Mesozoic bedrock. The general ice movement is assumed to have been from off Novaya Zemlya and it is concluded that the whole eastern Barents Sea was covered by the Late Weichselian ice-sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号