首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The relative orientations of the optical and radio axes of radio galaxies are analyzed using data for 271 objects. It is found that the radio axes correlate with the minor axes of the optical galaxies for more elongated radio galaxies (K > 2.5, where K is the ratio of the lengths of the major and minor axes of the radio image) and for radio galaxies of the class FRII, whereas for less elongated radio galaxies (K < 2.5) and radio galaxies of the class FRI the radio axes correlate with the major axes of the optical galaxy. In both cases the correlation turns out to be more significant when the radio galaxies are classified in terms of their elongation than when they are classified in terms of the Fanaroff-Riley criterion. The classification in terms of elongation of the radio image can therefore be of interest for understanding overall problems associated with the mechanism of formation and evolution of radio galaxies. A theoretical foundation for such a classification may be the alternative mechanism of formation of radio galaxies from relativistic plasma ejected from the central part of the optical galaxy and moving in its large-scale, dipole magnetic field. Translated from Astrofizika, Vol. 42, No. 3, pp. 365–371, July–September, 1999.  相似文献   

2.
The effect of the extragalactic magnetic field on the propagation of ultra-high-energy cosmic rays (UHECRs) is investigated. We use the infrared galaxy catalog IRAS PSCz to reconstruct the magnetic field distribution in the Local Universe. The magnetic field induction is considered as a power function of the galactic infrared luminosity density: B = Kρβ. In contrast to some earlier studies in which the exponent β = 2/3 corresponded to the freezing-in condition, the parameters K and β are estimated from the field inductions normalized by the expected maximum inductions (strong field) and minimum inductions (weak field) in galaxy clusters and voids, respectively. Maps of angular deflections of UHECRs are presented for these magnetic field models. We found that the protons with energies E > 4 × 1019 eV are not significantly deflected from their sources in a sphere with a radius of 100 Mpc only in the case of the weak magnetic field model (the deflections are comparable to the errors of modern detectors). The effect of the extragalactic magnetic field on the UHECR spectrum is investigated, with Virgo A and Arp 299 taken as potential sources.  相似文献   

3.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

4.
The radio properties ofUhuru X-ray sources with fairly certain extragalactic identifications are described briefly. Radio to X-ray flux ratios are low for rich clusters of galaxies and high for double radio sources. There is some evidence from the Abell 426 (Perseus) and Abell 1367 clusters that a radio galaxy in a rich cluster may be the centre of extended X-ray emission. Nuclei of galaxies have an enormous range in X-ray luminosity; the known range is from 1030 W for our galaxy to 3×1038 W for 3C 273. Unidentified X-ray sources at high galactic latitudes may include new classes of objects with very low radio to X-ray flux ratios or hard X-ray emission.  相似文献   

5.
A catalog of extended extragalactic radio sources consisting of 10461 objects is compiled based on the list of radio sources of the FIRST survey. A total of 1801 objects are identified with galaxies and quasars of the SDSS survey and the Veron-Veron catalog. The distribution of position angles of the axes of radio sources from the catalog is determined, and the probability that this distribution is equiprobable is shown to be less than 10−7. This result implies that at Z equal to or smaller than 0.5, the spatial orientation of the axes of radio sources is anisotropic at a statistically significant level.  相似文献   

6.
The propagation of ultra high energy cosmic rays in Galactic and extragalactic magnetic fields is investigated in the present paper. The motion of charged particles of different energies and chemical composition is simulated using different Galactic magnetic field models. Positions for the real sources of events registered at the Auger observatory are calculated taking into account the influence of both Galactic and extragalactic turbulent fields. The possibility of their correlation with the Centaurus A radio galaxy is analyzed.  相似文献   

7.
With the goal of identifying high-redshift radio galaxies with Fanaroff–Riley class I (FR I) classification, here are presented high-resolution, wide-field radio observations, near-infrared and optical imaging and multi-object spectroscopy of two fields of the Leiden–Berkeley Deep Survey. These fields, Hercules.1 and Lynx.2, contain a complete sample of 81 radio sources with   S 1.4 GHz > 0.5 mJy  within 0.6 deg2. This sample will form the basis for a study of the population and cosmic evolution of high-redshift, low-power, FR I radio sources which will be presented in Paper II. Currently, the host galaxy identification fraction is 86 per cent with 11 sources remaining unidentified at a level of   r '≥ 25.2 mag  (Hercules; four sources) or   r '≥ 24.4 mag  (Lynx; seven sources) or   K ≳ 20 mag  . Spectroscopic redshifts have been determined for 49 per cent of the sample and photometric redshift estimates are presented for the remainder of the sample.  相似文献   

8.
The ultra-high energy cosmic rays recently detected by several air shower experiments could have an extragalactic origin. In this case, the nearest active galaxy Centaurus A might be the source of the most energetic particles ever detected on Earth. We have used recent radio observations in order to estimate the arrival energy of the protons accelerated by strong shock fronts in the outer parts of this southern radio source. We expect detections coresponding to particles with energies up to 2.2 × 1021 eV and an arrival direction of (l ≈ 310°, b ≈ 20°) in galactic coordinates. The future Southern Hemisphere Pierre Auger Observatory might provide a decisive test for extragalactic models of the origin of the ultra-high energy cosmic rays.  相似文献   

9.
《New Astronomy Reviews》2002,46(2-7):349-351
Our HST WFPC2 survey of 110 BL Lac objects, from six complete X-ray-, radio-, and optically-selected catalogs, probes the host galaxies of low-luminosity radio sources in the redshift range 0<z<1.35. The host galaxies are luminous ellipticals, well matched in radio power and galaxy magnitude to FR I radio galaxies. Similarly, the host galaxies of high luminosity quasars occupy the same region of this plane as FR II radio galaxies (matched in redshift). This strongly supports the unification of radio-loud AGN, and suggests that studying blazars at high redshift is a proxy for investigating less luminous (to us) but intrinsically identical radio galaxies, which are harder to find at high z. Accordingly, the difference between low-power jets in BL Lac objects and high-power jets in quasars can then be related to the FR I/FR II dichotomy; and the evolution of blazar host galaxies or their nuclei (jets) should correspond to the evolution of radio galaxies.  相似文献   

10.
In this paper, we use the distributions of projected linear size (D), core- (P C ) and extended- (P E ) radio luminosities, to investigate a consequence of relativistic beaming and radio source orientation scenario for low-luminosity extragalactic radio sources. In this scenario, BL Lacertae objects (BL Lacs) are believed to be Fanaroff-Riley type I (FR I) radio galaxies, but with radio axes aligned close to the line of sight. At this orientation, the core emission is greatly enhanced by relativistic Doppler boosting and linear size foreshortened due to geometrical projection. A simple outcome of this scenario is that the extended luminosity is expected to be orientation invariant, but a DP C correlation is envisaged. Results show that both the relative core dominance (R) and linear size are strongly correlated with extended luminosity (r≥ 0.7). Using the R-distribution and RP E anti-correlation, we show that the difference in radio core-dominance between FR I radio galaxies and X-ray selected BL Lacs can be accounted for by a bulk Lorentz factor γ~5–13 and viewing angle ?~5–15°, which can be understood in terms of the scenario, with relativistic beaming persisting at largest scales.  相似文献   

11.
Many compact radio sources like quasars, blazars, radio galaxies, and micro-quasars emit circular polarisation (CP) with surprising temporal persistent handedness. We propose that the CP is caused by Faraday conversion (FC) of linear polarisation (LP) synchrotron light which propagates along a line-of-sight (LOS) through helical magnetic fields. Jet outflows from radio galaxies should have the required magnetic helicity in the emission region due to the magnetic torque of the accretion disc. Also advection dominated accretion flow (ADAF)should contain magnetic fields with the same helicity. However, a jetregion seems to be the more plausible origin of CP. The proposed scenario requires Faraday rotation (FR) to be insignificant in the emission region. The proposed mechanism works in electron-positron(e±) as well as electron-proton (e/p) plasma. In the latter case, the emission region should consist of individual flux tubes with independent polarities in order to suppress too strong FR– as it was already proposed for FR based CP generation models. The predominant CP is expected to mostly counter-rotate (rotation is measured here in sky-projection) with respect to the central engine in all cases (jet or ADAF, e± or e/p plasma) and therefore allows to measure the sense of rotation of quasar engines. The engine of SgrA* is expected – in this scenario – to rotate clockwise and therefore counter-Galactic, as do the young hot stars in its vicinity, which are thought to feed SgrA* by their winds. Generally, sources with Stokes-V<0 (V>0) are expected to rotate clockwise(counter-clockwise).  相似文献   

12.
本文对VLBI观测得到的河外射电源致密核core的视角大小进行了统计研究,发现对单个源平均上视角大小近似反比于观测频率,与目前的模型相一致。在5GHz上,在红移范围0.04<z<2.5内,平均的core视角大小近似为常数,在非均匀喷流模型框架下,一种可能的解释是在河外射电源致密结构中磁场存在着演化。  相似文献   

13.
Observations imply that extragalactic radio sources must be in nonstationary states. One possible way to interpret a observed high brightness temperature which exceeds the inverse Compton limit is by means of a nonstationary condition (Kellerman and Pauliny-Toth 1969, Slysh 1992). This paper investigates the maximum brightness temperature of nonstationary radio sources by incorporating the continuity equation for the electron number density and the radiative transfer equation. In radio sources with a high enough magnetic field, synchrotron losses should be considered and the maximum brightness temperature will not achieve the maximum value suggested by Slysh (1992). Strong acceleration canonly shorten the time to achieve the brightness temperature limit and doesnot violate the KPT limit.  相似文献   

14.
J1159+5820 is an extended radio galaxy with a quite unusual morphology, featuring two pairs of radio lobes. Such sources, called double–double radio galaxies, constitute a very rare class of extragalactic radio sources. Furthermore, the extended radio structure of this source shows an X-shape form. According to a much likely scenario, such a morphology is due to interrupting nuclear activity in its central active galactic nucleus. Interestingly, the host of this source is a near-distance bright galaxy named CGCG 292-057, which is clearly disturbed, with tidal features and shells as plausible signs of a recent merger.  相似文献   

15.
The HESS experiment (High Energy Stereoscopic System), consisting of four imaging atmospheric Cherenkov telescopes (IACTs) in Namibia, has observed many extragalactic objects in the search for very high energy (VHE) γ-ray emission. These objects include active galactic nuclei (AGN), notably Blazars, Seyferts, radio galaxies, starburst galaxies and others. Beyond the established sources, γ-ray emission has been detected for the first time from several of these objects by HESS, and their energy spectra and variability characteristics have been measured. Multi-wavelength campaigns, including X-ray satellites, radio telescopes, and optical observations, have been carried out for AGNs, in particular for PKS 2155-304, H 2356-309 and 1ES 1101-232, for which the implications concerning emission models are presented. Also results from the investigations of VHE flux variability from the giant radio galaxy M 87 are shown. For the HESS Collaboration.  相似文献   

16.
The origin of the circularly polarized (CP) component of the synchrotron radiation in compact extragalactic radio sources is investigated. A convenient quantity, the CP excess, is defined as the ratio of the observed to the expected degree of CP in a source, with the latter calculated from synchrotron theory for transparent sources, using magnetic field strengths from VLBI measurements, and the degree of inhomogeneity estimated from the observed degree of linear polarization. For almost all sources, the CP excess is much larger than unity, and in addition appears to depend on the absolute luminosity of the source for both the radio galaxy and the quasar populations. Explanations for the amount and the luminosity dependence of the CP excess are considered, and the origin of the excess is suggested to lie in a special magnetic field geometry of the compact sources. A simple model with helical magnetic field and relativistic beaming, consistent with the quasar data, is presented. The importance of considering the CP component of radiation in the context of different physical source models is emphasized.  相似文献   

17.
The large scale magnetic fields of our Galaxy have been mostly revealed by rotation measures (RMs) of pulsars and extragalactic radio sources. In the disk of our Galaxy, the average field strength over a few kpc scale is about 1.8 μG, while the total field, including the random fields on smaller scales, has a strength of about 5 μG. The local regular field, if it is part of the large scale field of a bisymmetric form, has a pitch angle of about -8°. There are at least three, and perhaps five, field reversals from the Norma arm to the outer skirt of our Galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We present a statistical analysis of the rotation measure (RM) catalogue from the NVSS in search for a statistical excess of rotation measure through Abell clusters. After excluding the data known to be affected by the large-scale magnetic field of the Galaxy (b ≤ |30|), we consider RMs as a function of normalized Abell radius for 496 galaxy clusters. Despite that it is now well established that galaxy clusters contain magnetic fields, we find no evidence of an increase of the rotation measure for lines of sight toward Abell clusters. Additionally, we find no evidence for statistically different rotation measure values between cluster lines of sight and RMs up to 7 Abell radii from the cluster over that expected from the intrinsic variation of the NVSS dataset. We suggest this is the result of sparse spatial coverage of suitably polarized sources in the NVSS.  相似文献   

19.
《New Astronomy Reviews》2002,46(2-7):353-356
The optical morphological and photometric properties of 79 low redshift radio galaxies are discussed. It is found that most radio galaxies are luminous bulge dominated systems similar to normal non-radio giant ellipticals. The average absolute magnitude of the sample is 〈MHOST(tot)〉=−23.98, with a clear trend for FR I sources to be ∼0.5 mag brighter than FR II galaxies. In about 40% of the objects we find an excess of light in the nucleus attributable to the presence of a nuclear point source. This contributes on average for ∼1–2% of the total flux from the host galaxy. Radio galaxies follow the same μeRe relationship of normal (non-active) elliptical galaxies. The distribution of ellipticity, the amount of twisting and shape of isophotes do not differ significantly from other ellipticals. These results support a scenario where radio emission is little related with the overall properties of the host galaxy.  相似文献   

20.
We present results from a deep mid-infrared survey of the Hubble Deep Field South (HDF-S) region performed at 6.7 and 15 μm with the ISOCAM instrument on board the Infrared Space Observatory ( ISO ). The final map in each band was constructed by the co-addition of four independent rasters, registered using bright sources securely detected in all rasters, with the absolute astrometry being defined by a radio source detected at both 6.7 and 15 μm. We sought detections of bright sources in a circular region of radius 2.5 arcmin at the centre of each map, in a manner that simulations indicated would produce highly reliable and complete source catalogues using simple selection criteria. Merging source lists in the two bands yielded a catalogue of 35 distinct sources, which we calibrated photometrically using photospheric models of late-type stars detected in our data. We present extragalactic source count results in both bands, and discuss the constraints that they impose on models of galaxy evolution, given the volume of space sampled by this galaxy population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号