首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The composition of neutron star atmospheres is calculated as a function of time including effects of diffusion, cooling and thermonuclear reactions. A seven-component nuclear reaction network with includes He4, C12, O16, Ne20, Mg24, Si28 and Fe56 is utilized. Neutron star models with different initial nuclear abundances are compared as to subsequent nucleosynthesis. It is found that the final abundances are independent of original composition assuming He4 as the major initial constituent. The final composition of the atmosphere is predominantly Fe56. Mass loss from an evolving neutron star is examined as a possible source of cosmic rays. It is found that a neutron star contributes only Fe56 significantly to the cosmic-ray spectrum.  相似文献   

2.
We discuss the implications of the Brans-Dicke scalar-tensor theory for cosmology with particular emphasis on the primordial element abundances that would obtain. Two general classes of models are found. Models of one class expand through the nuclear burning stage slightly more rapidly than the general relativistic case: models of the other class may expand at any rate whatsoever. The first class of models yeilds primordial abundances of D, He3 and He4 in agreement with their general relativistic values if the present mass density is low. High-density cosmologies, however, would produce too much He4. The second class of models yields element abundances which are far too high unless the expansion rate was quite large: in this case no He4 at all is produced. Finally, we determine the rate of change of the constant of gravitationG at the present epoch. For all but a very small class of models is negative at the present epoch. Models with positive values of at the present epoch produce no primordial He4 whatsoever, and have ages significantly lower than the corresponding general relativistic ages.  相似文献   

3.
The period of light variationP=1 . d 13316 has been found for the silicon B9 IVp star HD 193722. Spectroscopic study of this star was based on 35 spectrograms with dispersion 4 Å mm–1 well distributed in phase. The measurements of radial velocities of spectral line components for SiII, HeI, EuII, FeII and SrII allowed us to localize several regions on the surface of the star with enhanced abundance of these elements. The phase of maximum light inU, B andV was found to be the same as the phase of maximum Eu abundance. The coincidence of the regions with larger abundance of Si and He in HD 193 722 disagree with the hypothesis of diffusion in the presence of a magnetic field developed by Michaud (1971), to explain the peculiar chemical composition of Ap-stars.HD 193722 is a silicon B9 IVp star for which the magnetic field has not been measured. In the list by Palmeret al. (1962) its rotational velocityV sini is given as 250 kms–1. As will be seen below, this value is too high. Megessier (1971) determined from hydrogen line profiles and continuous spectrumT eff=13 000° and lgg=3.5.The results of photometric and spectroscopic study of HD193722 are given below.  相似文献   

4.
Some high-dispersion spectrograms of CH Cygni taken in epochs at which only the M6 spectrum is visible and after the explosions of June 1967 and July 1968 have been studied. The strong negative radial velocities of the Caii chromospheric absorptions and the turbulent motions broadening the emission, lines ofHi, Hei, Feii, [Feii] prove that mass is lost from the star at a rate of the order of 10–8 solar masses per year. Arguments are given in favour of the hypothesis that CH Cygni is a close binary composed of an M giant and a blue unstable subdwarf.Presented at the Trieste Colloquium on Mass Loss from Stars, September 12–16, 1968.  相似文献   

5.
A numerical method presented by Imshennik et al. (2002) is used to solve the two-dimensional axisymmetric hydrodynamic problem on the formation of a toroidal atmosphere during the collapse of an iron stellar core and outer stellar layers. An evolutionary model from Boyes et al. (1999) with a total mass of 25M is used as the initial data for the distribution of thermodynamic quantities in the outer shells of a high-mass star. Our computational region includes the outer part of the iron core (without its central part with a mass of 1M that forms the embryo of a protoneutron star at the preceding stage of the collapse) and the silicon and carbon-oxygen shells with a total mass of (1.8–2.5)M. We analyze in detail the results of three calculations in which the difference mesh and the location of the inner boundary of the computational region are varied. In the initial data, we roughly specify an angular velocity distribution that is actually justified by the final result—the formation of a hydrostatic equilibrium toroidal atmosphere with reasonable total mass, Mtot=(0.117–0.122)M, and total angular momentum, Jtot=(0.445–0.472)×1050 erg s, for the two main calculations. We compare the numerical solution with our previous analytical solution in the form of toroidal atmospheres (Imshennik and Manukovskii 2000). This comparison indicates that they are identical if we take into account the more general and complex equation of state with a nonzero temperature and self-gravitation effects in the atmosphere. Our numerical calculations, first, prove the stability of toroidal atmospheres on characteristic hydrodynamic time scales and, second, show the possibility of sporadic fragmentation of these atmospheres even after a hydrodynamic equilibrium is established. The calculations were carried out under the assumption of equatorial symmetry of the problem and up to relatively long time scales (~10 s).  相似文献   

6.
Model atmosphere analysis, based on Kurucz models has been applied to study the F6V star π3 Ori (=BS1543=HD30652). The following values of the effective temperature, surface gravity and microturbulence velocity were obtained: = 6270±200 K, log g = 3.80.2, ξt =3.5±0.5 km/s. The abundances of 10 elements were determined. The resulting element abundances for the π3 Ori were found to be about three times lower with respect to the Sun. From evolutionary calculations we derived a mass, radius and luminosity for π3 Ori of M =1.3 M, R =2.38 R, L =7.9 L. Hence this star should be classified F6IV instead of F6 V. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
A detailed spectroscopic investigation of LR Sco which was earlier misclassified as R CrB star is made. Atmospheric parameters and elemental abundances are determined using detailed depth-dependent model atmospheres and line synthesis technique. Most of the elements show near solar abundances. The strength of circumstellar components seen in Na D lines are used to derive the mass loss rate. Another independent estimate of mass loss rate is made using the observed infrared flux from 1–100Μm. These two approaches lead to nearly the same value of mass loss rate whenM vis assumed to be – 4.5 for this star.  相似文献   

8.
I. S. Savanov 《Astrophysics》1996,39(2):107-111
The abundances of 12 elements in the atmosphere of the "F str 4077" star HD 177645 have been determined from new spectroscopic observations with the CCD camera and the model atmosphere method. The overabundance of nitrogen found for this star indicates its possible relation to barium dwarfs with anomalies in the chemical composition of their atmospheres due to mass transfer from the more evolved companion in a binary system. As an object related to Ba stars and CH subgiants, HD 177645 with an effective temperature Teff=7150K may also have anomalies in the chemical composition characteristic of diffusion processes in chemically peculiar stars of the upper main sequence, as may be indicated by the overabundance of sulfur in its atmosphere.Translated fromAstrofizika, Vol. 39, No. 2, pp. 201–209, April–June, 1996.  相似文献   

9.
Photoionization of the upper atmosphere of Titan by sunlight is expected to produce a substantial ionospheric layer. We have solved one-dimensional forms of the mass, momentum, and energy conservation equations for ions and electrons and have obtained electron number densities of about 103 cm?3, using various model atmospheres. The significant ions in a CH4H2 atmosphere are H+, H3+, CH5+, CH5+, CH3+, and C2H5+. Electron temperatures may be as high as 1000°K, depending on the abundance of hydrogen in the high atmosphere. Interaction of the solar wind with the ionosphere is also discussed.  相似文献   

10.
The results of a complex study of the chemically peculiar star HD 45583 are reported. Observations were made using the Main Stellar Spectrograph equipped with a circular polarization analyzer and NES echelle spectrograph of the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. Our measurements of Zeeman spectra show that the star exhibits unusual variations of the longitudinal component of magnetic field with a secondary minimum. The period of spectral and magnetic variability coincides with the rotation period, which is equal to 1.d177000. Two possible causes of the secondary minimum are discussed: spots with higher than ambient content of some chemical elements on the star’s surface or complex structure of the stellar magnetic field. The parameters of the star’s atmosphere are determined (T eff = 13000 K, log g = 4.0), as well as the abundances of some elements: the star shows a 1–2 dex overabundance of Fe, Si, and Cr, helium is underabundant by about 2 dex with respect to the Sun.  相似文献   

11.
Supporters of the standard Big Bang theory point to the abundances of light elements, predicted by Big Bang Nucleosynthesis (BBN) as one of the main observational supports of the theory. However, current data no longer confirm BBN. Instead, measurements of the abundances of He3, He4, and D clearly contradict BBN at more than a 3 level, eliminating a key support of the Big Bang.  相似文献   

12.
Results of calculations of main sequence stellar models for metal poor star are presented. A fictitious pre-main sequence evolution was computed in order to give the distribution of the primary elements H, He3, He4, C12, N14 and O16 in the stellar interior. The selected initial chemical composition wasX=.9,Z=.001.Comparison with previous results indicates a life-time of the main sequence phase shorter than it was believed before.  相似文献   

13.
We have developed a New Ionization Correction Factor (ICF) scheme for He+ based on the definition of the radiation softness parameter (Vilchez and Pagel, 1988) which is very sensitive to the effective temperature of the ionizing star(s) and, therefore, a good indicator of the He+–He0 ionization structure whilst remaining insensitive to other nebular parameters. The ICF() relationship is obtained making use of the Stasinska (1980, 1982) photoionization models. After comparison with previous semiempirical approaches in the literature and its application to a selected sample of abundances it is found that this ICF scheme seems a powerful tool for the determination of He abundances, particularly for objects of intermediate to low excitation.  相似文献   

14.
In this paper, a literal analytical solution is developed for the abundances differential equations of the helium burning phase in hot massive stars. The abundance for each of the basic elements 4He,12C,16O and 20Ne is obtained as a recurrent power series in time, which facilitates its symbolic and numerical evaluations. Numerical comparison between the present solution and the numerical integration of the differential equations for the abundances show good agreement.  相似文献   

15.
The chemical species containing carbon, nitrogen, and oxygen in atmospheres of giant planets, brown dwarfs (T and L dwarfs), and low-mass stars (M dwarfs) are identified as part of a comprehensive set of thermochemical equilibrium and kinetic calculations for all elements. The calculations cover a wide temperature and pressure range in the upper portions of giant planetary and T-, L-, and M-dwarf atmospheres. Emphasis is placed on the major gases CH4, CO, NH3, N2, and H2O but other less abundant gases are included. The results presented are independent of particular model atmospheres, and can be used to constrain model atmosphere temperatures and pressures from observations of different gases. The influence of metallicity on the speciation of these key elements under pressure-temperature (P-T) conditions relevant to low-mass object atmospheres is discussed. The results of the thermochemical equilibrium computations indicate that several compounds may be useful to establish temperature or pressure scales for giant planet, brown dwarf, or dwarf star atmospheres. We find that ethane and methanol abundance are useful temperature probes in giant planets and methane dwarfs such as Gl 229B, and that CO2 can serve as a temperature probe in more massive objects. Imidogen (NH) abundances are a unique pressure-independent temperature probe for all objects. Total pressure probes for warmer brown dwarfs and M dwarfs are HCN, HCNO, and CH2O. No temperature-independent probes for the total pressure in giant planets or T-dwarf atmospheres are identified among the more abundant C, N, and O bearing gases investigated here.  相似文献   

16.
Measurements of the composition and spatial distribution of pick-up ions inside the heliosphere are reviewed. The first interstellar 4He+pick-up ions were detected with the SULEICA instrument on the AMPTE spacecraft near Earth's orbit. Most data on pick-up ions were taken in the solar-wind and suprathermal energy range of SWICS on Ulysses while the spacecraft cruised from 1.4 to 5.4 AU and explored the high-latitude heliosphere and solar wind from the ecliptic to ± 80° heliolatitude. This includes the discovery of H+, 4He++, 3He+, N+,O+, and Ne+ pick-up ions that originate from the interstellar neutralgas penetrating the heliosphere. From their fluxes properties of the interaction region between the heliosphere and the Local Interstellar Cloud such as the limits on filtration and the strength of the interstellar magnetic field have been revealed. Detailed analysis of the velocity distributions of pick-up ions led to 1) the discovery of a new distinct source, the so-called Inner Source, consisting of atoms released from interstellar and interplanetary dust inside the heliosphere, 2) the determination of pick-up ion transport parameters such as the long mean free path for pitch-angle scattering of order1 AU, and 3) detailed knowledge on the very preferential injection and acceleration of pick-up ions during interplanetary energetic particle events such as Co-rotating Interaction Regions and Coronal Mass Ejections. SWICS measurements have fully confirmed the theory of Fisk, Koslovsky, and Ramaty that pick-up ions derived from the interstellar gas are the dominant source of the Anomalous Cosmic Rays; they are pre-accelerated inside the heliosphere and re-accelerated at the solar-wind Termination Shock according to Pesses, Eichler, and Jokipii. The data indicate that the Inner Source of pick-up ionsis largely responsible for the occurence of C+ in the Anomalous Cosmic Rays. The abundances of recently discovered Inner-Source Mg+ and Si+ are solar-wind like and consistent with their abundances in the energetic particles associated with Co-rotating Interaction Regions. Knowledge on the injection and acceleration processes in Co-rotating Interaction Regions is applied to discuss the current observational evidence for the Interplanetary Focusing Cone of the interstellar neutral gas due to the Sun's gravitational force. The 25–150 keV/amu suprathermal 4He+ pick-up ion fluxes measured by CELIAS/STOF on board SOHO over 360° of ecliptic longitude represent a `local' ionization and acceleration of interstellar atoms at 1 AU or smaller heliocentric distances. Completing the first limited data set of SULEICA/AMPTE on 4He+ pick-up ions they indicate a density enhancement in the Interplanetary Focusing Cone which is confirmed by recent SWICS/ACE data. Clear evidence for signatures in ecliptic longitude are found in the data on energetic neutral H fluxes observed with the CELIAS/HSTOF sensor on board SOHO. These fluxes are enhanced in the upstream and downstream directions of the interstellar wind. Detection of energetic H atoms, which propagate unaffected by the Heliospheric Magnetic Field, provided for the first time a diagnostic tool for observations near Earth to analyze the structure in ecliptic longitude of the interface region between the heliosphere and the Local Interstellar Cloud. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We analyze the temperature dependence of the abundances of the chemical elements Si, Ca, Cr, and Fe in the atmospheres of normal, metallic-line (Am), magnetic peculiar (Ap), and pulsating magnetic peculiar (roAp) stars in the range 6000–15000 K. The Cr and Fe abundances in the atmospheres of Ap stars increase rapidly as the temperature rises from 6000 to 9000–10000 K. Subsequently, the Cr abundance decreases to values that exceed the solar abundance by an order of magnitude, while the Fe abundance remains enhanced by approximately +1.0 dex compared to the solar value. The temperature dependence of the abundances of these elements in the atmospheres of normal and Am stars is similar in shape, but its maximum is several orders of magnitude lower than that observed for Ap stars. In the range 6000–9500 K, the observed temperature dependences for Ap stars are satisfactorily described in terms of element diffusion under the combined action of gravitational settling and radiative acceleration. It may well be that diffusion also takes place in the atmospheres of normal stars, but its efficiency is very low due to the presence of microturbulence. We show that the magnetic field has virtually no effect on the Cr and Fe diffusion in Ap stars in the range of effective temperatures 6000–9500 K. The Ca abundance and its variation in the atmospheres of Ap stars can also be explained in terms of the diffusion model if we assume the existence of a stellar wind with a variable moderate rate of ~(2–4) × 10? 15M yr?1.  相似文献   

18.
We have constructed the bolometric light curve of SN 1993J based on UBVRI(JHK) photometric data obtained from various sources and assumingA V = 0 and a distance modulus of 27.6. Effective temperatures and photosphere radius at various times have been obtained from detailed blackbody fits. The bolometric light curve shows two maxima. The short rise time to the second maximum, and the luminosities at the minimum and the second maximum are used to constrain the properties of the progenitor star. The total mass of the hydrogen envelope MH, in the star is found to be ≲ 0.2 M at the time of explosion, and the explosion ejected about 0.05 M of Ni56. Thin hydrogen envelope combined with a sufficient presupernova luminosity suggest that the exploding star was in a binary with a probable period range of 5yr ≤P orb 11yr.  相似文献   

19.
Acceleration of a cold collisionless electron gas in the magnetosphere of a magnetic rotating neutron star is considered. The magnetic field is dipolar. The magnetic axis and a rotational axis are aligned. It is shown that the acceleration channel consists of three zones: an internal acceleration zone (IAZ), an inertial zone and an external acceleration zone (EAZ). In the internal zone electrons are accelerated up to a Lorentz factor of the order of 102–103. In the inertial zone electrons are not accelerated; they move under their own momentum through static electron gas of low density. In the external zone the electrons are accelerated again. Here the acceleration of electrons in the internal zone is investigated. The Lorentz factor of electrons was calculated. Its dependence upon the colatitude of the ejected electrons and upon the neutron star parameters was investigated. The power consumed by electrons in the internal acceleration zone is also calculated.  相似文献   

20.
The production of deuterium, He3, lithium, beryllium, and boron by galactic cosmic rays in the interstellar medium, over the life of the Galaxy, is calculated. It is found that high-energy - reactions contribute in an essential way to the observed lithium. When allowance is made for the interchange of material between stars and the interstellar gas and for the change of cosmic-ray intensity with time, the Li6, Be9, and boron produced turn out to be ample to explain the observed abundances, and with remarkable internal consistency. Deuterium and He3 arenot produced in significant amounts, nor Li7 in sufficient amount, however. To explain the Li7/Li6 ratio measured terrestrially and in chondritic meteorites, we invoke cosmological production of Li7. This implies the production of deuterium, He3, and He4 as well, in amounts consistent with observation. The theory in its present form cannot explain a solar-system Li7/Li6 ratio of 12and stellar ratios as low as 3, but additional processes can be adduced to reconcile them. The consistency of the numbers when cosmological production is included lends additional support to the big-bang hypothesis. An incidental result is that the mean luminosity of the Galaxy over its lifetime has been about 3 times its present luminosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号