首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The Leventina Nappe represents one of the lowermost exposed units in the Alpine nappe stack and corresponds to a slice of the European margin that was entrained into the Alpine continental accretionary prism during the Tertiary tectonic event. This study yields details regarding the tectonic and metamorphic history of the Leventina Nappe, through detailed analysis of structures and shear zone patterns, and the examination of the Si-content of white mica along a north-south profile. The Leventina Nappe underwent three phases of ductile deformation. Foliation S1 is mostly sub-parallel to the regionally dominant structural fabric (the S2 foliation). S2 foliation is penetratively developed in the structurally higher portions of the Leventina Nappe toward the Simano Nappe, while it is only weakly developed in the core of the Leventina Nappe. A 50 to 200 m wide mylonite zone, with a D2 top-to-NW sense of shear marks the boundary to the Simano Nappe. Throughout the Leventina Nappe only small-scale D2 shear bands (mm to cm wide) are observed, showing a top-to-NW sense of shear. Deformation phase D3 locally generated a vertical axial plane foliation (S3) associated with the large-scale D3 Leventina antiform.Microtextural evidence and phengite geobarometry were used to constrain the temperature and pressure conditions of equilibration of the Leventina Gneisses. Highest Si (pfu) values are preserved in the core of phengitic micas and reflect pressure and temperature conditions of around 8 kbar at 550 °C and 10 kbar at 650 °C in the northern and southern parts of the Leventina Nappe, respectively. Lower Si (pfu) values from the rims of white micas correspond to a metamorphic pressure of ca. 5 kbar during the exhumation of the unit. These metamorphic conditions are related to the underthrusting of the thinned European margin into the continental accretionary prism during late Eocene time. These new data allow us to propose a kinematic model for the Leventina Nappe during the Tertiary Alpine tectonics.  相似文献   

2.
3.
In order to address the question of the processes involved during shear zone nucleation, we present a petro-structural analysis of millimetre-scale shear zones within the Roffna rhyolite (Suretta nappe, Eastern central Alps). Field and microscopic evidences show that ductile deformation is localized along discrete fractures that represent the initial stage of shear zone nucleation. During incipient brittle deformation, a syn-kinematic metamorphic assemblage of white mica + biotite + epidote + quartz precipitated at ca. 8.5 ± 1 kbar and 480 ± 50 °C that represent the metamorphic peak conditions of the nappe stacking in the continental accretionary wedge during Tertiary Alpine subduction. The brittle to ductile transition is characterized by the formation of two types of small quartz grains. The Qtz-IIa type is produced by sub-grain rotation. The Qtz-IIb type has a distinct CPO such that the orientation of c-axis is perpendicular to the shear fracture and basal and rhombhoedric slip systems are activated. These Qtz-IIb grains can either be formed by recrystallization of Qtz-IIa or by precipitation from a fluid phase. The shear zone widening stage is characterized by a switch to diffusion creep and grain boundary sliding deformation mechanisms. During the progressive evolution from brittle nucleation to ductile widening of the shear zone, fluid–rock interactions play a critical role, through chemical mass-transfer, metasomatic reactions and switch in deformation mechanisms.  相似文献   

4.
朱旗展  万浩章 《江西地质》2001,15(4):241-246
扬子板块与华南板以丰城三溪峡-东乡石马岭推覆构造分野。该推覆构造发育在萍乡-广丰深断裂与遂川-德兴深断裂的复合部位,具有可行-逆冲推覆性质。原地系统为扬子地层分区中元古界牛头岭组、高桥组和将军岭组,外来系统是华南地层分区新元古界源里组,分别相当于蓟县系修水组和青白口系上施组同期沉积。根据推覆变形形式、构造岩特征和变形程度,可将推覆体划分为包括糜棱岩亚带、糜棱岩化亚带在内的变形主带和劈理化带。韧性剪切变形与推覆变形同期产生,但影响范围更广泛。  相似文献   

5.
四川锦屏山地区推覆构造带特征及其研究意义   总被引:1,自引:0,他引:1       下载免费PDF全文
锦屏山地区推覆构造带滑移面均为韧性剪切带,而且整个推覆构造带由多个岩片推覆堆叠在一起,在其前缘则出现飞来峰群。通过对韧性剪切带和飞来峰群的精细研究,厘定其缩短距离约30km。同时厘定了扬子西缘的边界断裂——茶铺子-巴折区划性(“槽-台”边界)复活断裂带(韧性剪切带),修正了锦屏山断裂为扬子西缘的边界断裂的认识。  相似文献   

6.
Oblique displacement on the Alpine Fault, which forms the principal structure along the Australian–Pacific plate boundary in South Island, New Zealand, has resulted in exhumation of a kilometre-wide mylonite zone in the hanging wall adjacent to the current brittle fault trace. The mylonites formed under amphibolite facies conditions at depths of ca. 25 km and have been uplifted during the past 5 Ma. A suite of 65–70 Ma pegmatite veins in the hanging wall Alpine schists has been progressively deformed within the mylonite zone and sheared out over a strike length of ca. 100 km. Measurements of the thickness distribution of the pegmatite veins within the non-mylonitised schists and at three localities within the progressively strained mylonites have been used to estimate strain values within the mylonites. The thicknesses approximate a log-normal distribution, with a mean value that is progressively reduced through the protomylonites, mylonites and ultramylonites. By assuming that the thickness distribution currently observed in the schists was the same for the pegmatites within the mylonites before strain, a model of deformation incorporating simple shear and simultaneous pure shear is used to strain the undeformed veins until a fit is obtained with the strained distributions. Shear strains calculated range from 12 to 22 for the protomylonites, 120 to 200 for the mylonites and 180 to 300 for the ultramylonites, corresponding to pure shear values of 1–3 in each case. These values are compatible with the strains predicted if most of the surface displacement on the fault over the past 5 Ma were accommodated within a 1–2-km-wide mylonite zone through the middle and lower crusts. The results suggest that processes such as erosional focussing of deformation and thermal weakening may cause intense strain localisation within the lower crust, with plate boundary deformation restricted to narrow zones rather than becoming increasingly distributed over a widening shear zone with depth.  相似文献   

7.
The southern Andes plate boundary zone records a protracted history of bulk transpressional deformation during the Cenozoic, which has been causally related to either oblique subduction or ridge collision. However, few structural and chronological studies of regional deformation are available to support one hypothesis or the other. We address along- and across-strike variations in the nature and timing of plate boundary deformation to better understand the Cenozoic tectonics of the southern Andes.Two east–west structural transects were mapped at Puyuhuapi and Aysén, immediately north of the Nazca–South America–Antarctica triple junction. At Puyuhuapi (44°S), north–south striking, high-angle contractional and strike-slip ductile shear zones developed from plutons coexist with moderately dipping dextral-oblique shear zones in the wallrocks. In Aysén (45–46°), top to the southwest, oblique thrusting predominates to the west of the Cenozoic magmatic arc, whereas dextral strike-slip shear zones develop within it.New 40Ar–39Ar data from mylonites and undeformed rocks from the two transects suggest that dextral strike-slip, oblique-slip and contractional deformation occurred at nearly the same time but within different structural domains along and across the orogen. Similar ages were obtained on both high strain pelitic schists with dextral strike-slip kinematics (4.4±0.3 Ma, laser on muscovite–biotite aggregates, Aysén transect, 45°S) and on mylonitic plutonic rocks with contractional deformation (3.8±0.2 to 4.2±0.2 Ma, fine-grained, recrystallized biotite, Puyuhuapi transect). Oblique-slip, dextral reverse kinematics of uncertain age is documented at the Canal Costa shear zone (45°S) and at the Queulat shear zone at 44°S. Published dates for the undeformed protholiths suggest both shear zones are likely Late Miocene or Pliocene, coeval with contractional and strike-slip shear zones farther north. Coeval strike-slip, oblique-slip and contractional deformation on ductile shear zones of the southern Andes suggest different degrees of along- and across-strike deformation partitioning of bulk transpressional deformation.The long-term dextral transpressional regime appears to be driven by oblique subduction. The short-term deformation is in turn controlled by ridge collision from 6 Ma to present day. This is indicated by most deformation ages and by a southward increase in the contractional component of deformation. Oblique-slip to contractional shear zones at both western and eastern margins of the Miocene belt of the Patagonian batholith define a large-scale pop-up structure by which deeper levels of the crust have been differentially exhumed since the Pliocene at a rate in excess of 1.7 mm/year.  相似文献   

8.
萨勒巴斯推覆体中发育一套深层次变形构造组合和倒转递增变质带,其中糜棱岩、混合岩、混合花岗岩的成因关系对研究挤压造山背景下,地壳深层次变形作用和成岩作用具有特殊的意义。研究表明:在大型滑脱推覆系统中,存在糜棱岩—混合岩—混合花岗岩成岩系列;成岩过程为:韧性变形—剪切加热—部分熔融;控制成岩过程的主导因素为构造动力条件。这一成岩过程能导致稀土元素发生分异,出现重稀土元素有规律地亏损,变质作用pTt轨迹显示造山过程中逆冲推覆作用导致的地壳叠置加厚和剪切加热的典型热演化模式,变形、变质高峰期后,高角度逆冲作用导致变形岩石经历减压、降温的退变质作用,形成由南向北的倒转递增变质带。  相似文献   

9.
秦亚  冯佐海  黄靖哲  白玉明  吴杰  张桂林  万磊 《地球科学》2021,46(11):4017-4032
通过野外地质调查、室内显微组构分析和磁组构测量,在桂北三门地区厘定出一条大型韧性剪切带;并利用热液锆石U-Pb定年约束其变形时代.三门韧性剪切带发育密集的透入性片理、旋转碎斑系、拉伸线理、眼球构造、书斜构造、A型褶皱、波状消光、机械双晶、核幔构造和S-C组构等宏观和微观韧性变形特征.磁各向异性度(P值)显示其走向呈NNE向,倾向呈NWW向.运动学指向显示早期具有左旋逆冲剪切,晚期具有右旋正滑剪切的运动学性质.磁化率椭球体扁率(E值)显示岩石变形以压扁型应变为主,暗示运动学方向以左旋逆冲剪切为主.镁铁质糜棱岩的热液锆石U-Pb定年结果为441±2 Ma,代表三门韧性剪切带的变形时代.在磁组构、运动学和年代学研究的基础上,结合区域地质资料,认为该韧性剪切带是华南加里东期华夏陆块由SE向NW逆冲到扬子陆块受阻后反冲作用的产物.这一认识揭示了扬子陆块和华夏陆块碰撞拼合的方式和时代,为深化华南加里东构造运动的认识提供了新的资料.   相似文献   

10.
松辽盆地西缘发育大型的北北东走向韧性断裂带,该韧性断裂带的性质、活动时限一直存在争议,制约了对松辽盆地构造成因的认识以及松辽盆地西缘油气勘探开发的进展。腾克、金星及嘎拉山地区是松辽盆地西缘韧性断裂带的代表性出露区,主体岩石组合为条带状花岗质糜棱岩、眼球状花岗质糜棱岩等。腾克、金星及嘎拉山地区发育一组糜棱面理和线理,其中面理为110°~135°∠45°~65°、线理为倾伏向10°~25°,倾伏角10°~35°;其运动性质均显示左行走滑特征。确定韧性断裂带活动时限的样品采自构造带内花岗质糜棱岩的锆石和同变形云母,其中锆石SHRIMP谐和年龄为296.9~299.4 Ma;黑云母40Ar-39Ar年龄为(123.0±0.7)Ma,白云母的40Ar-39Ar年龄为(124.4±0.9)Ma。松辽盆地西缘韧性断裂带应该属于嫩江断裂带的北段。年龄结果表明该韧性断裂带中花岗岩侵位于晚石炭世,大型北北东向韧性构造变形发生于早白垩世。腾克金星嘎拉山剪切带控制松辽盆地西缘,同时表明松辽盆地在早白垩世经历了走滑挤压盆地演化阶段,这种大型北北东向韧性断裂带的形成可能与当时西太平洋伊泽纳崎板块向欧亚大陆俯冲发生转向有关。  相似文献   

11.
12.
The Gran Paradiso nappe of the northwestern Alps mostly consists of augen gneisses derived from the Alpine deformation of Permian granitoids. The regional foliation of the augen gneisses developed at lower amphibolite facies conditions and is associated with a top-to-west sense of shear. The granitoid protolith is preserved in the kilometre-scale low-strain domain of the Piantonetto Valley and mainly consists of a porphyritic metagranite including joints, leucocratic dykes and biotite-rich schlieren. In this low-strain domain, the Alpine deformation is mainly localized in discrete ductile shear zones within weakly foliated metagranite. The shear zones mostly dip towards S–SE in a shallow (shear zones 1) to steep inclination (shear zones 2). The shear zones show typical features that can be explained by reactivation of pre-existing joints and planar compositional heterogeneities. Palaeostress and strain analysis indicate that shear zones and the metagranite foliation both formed in the presence of a strong component of flattening. The kinematics of individual shear zones depends on the orientation of the original heterogeneities (acting as nucleation planes) and by partitioning of strain components at the kilometre-scale with concentration of the flattening component to the Piantonetto low-strain domain. The strain geometry and the kinematics of individual shear zones within Piantonetto are not directly connected to the top-to-west sense of tectonic transport observed elsewhere in the Gran Paradiso nappe. However, the bulk stress ellipsoid reconstructed for the incipient shear zone network within very weakly deformed granites is oriented consistently with the bulk direction of tectonic transport within the Gran Paradiso massif. We conclude that the shear zone network of the Piantonetto Valley is representative of the incipient stages of ductile deformation of a granite nappe. Even if its architecture is determined by the arrangement of pre-existing structural and compositional heterogeneities, aspects of the large-scale bulk strain can be derived from this local shear zone pattern.  相似文献   

13.
Fold-and-thrust belts are prominent structures that occur at the front of compressional orogens. To unravel the tectonic and metamorphic evolution of such complexes, kinematic investigations, quantitative microstructural analysis and geothermometry (calcite–graphite, calcite–dolomite) were performed on carbonate mylonites from thrust faults of the Helvetic nappe stack in Central Switzerland. Paleo-isotherms of peak temperature conditions and cooling stages (fission track) of the nappe pile were reconstructed in a vertical section and linked with the microstructural and kinematic evolution. Mylonitic microstructures suggest that under metamorphic conditions close to peak temperature, strain was highly localized within thrust faults where deformation temperatures spatially continuously increased in both directions, from N to S within each nappe and from top–down in the nappe stack, covering a temperature range of 180–380 °C. Due to the higher metamorphic conditions, thrusting of the lowermost nappe, the Doldenhorn nappe, was accompanied by a much more pronounced nappe internal ductile deformation of carbonaceous rock types than was the case for the overlying Wildhorn- and Gellihorn nappes. Ongoing thrusting brought the Doldenhorn nappe closer to the surface. The associated cooling resulted in a freezing in of the paleo-isotherms of peak metamorphic conditions. Contemporaneous shearing localized in the basal thrust, initially still in the ductile deformation regime and finally as brittle faulting and cataclasis inducing ultimately an inverse metamorphic zonation. With ongoing exhumation and the formation of the Helvetic antiformal nappe stack, a bending of large-scale tectonic structures (thrusts, folds), peak temperature isotherms and cooling isotherms occurred. While this local bending can directly be attributed to active deformation underneath the section investigated up to times of 2–3 ma, a more homogeneous uplift of the entire region is suggested for the very late and still active exhumation stage.  相似文献   

14.
为了探讨嫩江-八里罕断裂带对研究区的影响,对乌兰浩特地区出露的韧性变形带进行野外构造要素测量、对比,初步提出研究区曾经历左旋走滑变形阶段。通过对该韧性剪切带韧性变形特征的研究,明确了剪切带变形程度为初糜棱岩-糜棱岩。结合前人研究成果及相关年代学资料,确定走滑时间为早白垩世中期(139~113Ma),这对进一步明确嫩江-八里罕断裂的展布位置、断裂带的宏观特征及形成时间的讨论具有重要意义。  相似文献   

15.
福清沙浦--平潭马腿推覆型性剪切带位于福建东南沿海褶皱变质带的北段,在“三山、平潭、高山、观音澳”幅1:5万区调工作中,我们首次发现并肯定了该推覆型韧性剪切带的存在,并作了详细的工作。  相似文献   

16.
粤西深层次推覆构造带的成岩成矿规律   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

17.
合理厘定西南天山构造属性,不仅对天山大地构造单元的准确划分具有重要科学意义,而且对中亚造山带的古生代构造演化也至关重要。通过对西南天山乌什北山地区的地质填图和构造解析,识别出5期构造变形,包括2期逆冲推覆构造。对主期逆冲推覆构造进行几何学、运动学研究表明,该逆冲推覆构造在空间上具有由北向南逆冲的运动学指向,并由北向南表现出由逆冲推覆构造的根带向前锋带变化的构造样式。根据逆冲推覆构造的物质组成及变形样式,认为西南天山乌什北山一带应属于塔里木板块北缘逆冲推覆构造带,从而为区域构造单元划分及西南天山晚古生代以来的构造演化过程提供构造变形方面的依据。  相似文献   

18.
The deformation history of a monophase calcite marble shear zone complex on Thassos Island, Northern Greece, is reconstructed by detailed geometric studies of the textural and microstructural patterns relative to a fixed reference system (shear zone boundary, SZB). Strain localization within the massive marble complex is linked to decreasing PT conditions during the exhumation process of the metamorphic core complex. Solvus thermometry indicates that temperatures of 300–350°C prevailed during part of the shear zone deformation history. The coarse-grained marble protolith outside the shear zone is characterized by symmetrically oriented twin sets due to early coaxial deformation. A component of heterogeneous non-coaxial deformation is first recorded within the adjacent protomylonite. Enhanced strain weakening by dynamic recrystallization promoted strong localization of plastic deformation in the ultramylonite of the calcite shear zone, where high strain was accommodated by non-coaxial flow. This study demonstrates that both a pure shear and a simple shear strain path can result in similar crystallographic preferred orientations (single c-axis maximum perpendicular to the SZB) by different dominant deformation mechanisms. Separated a-axis pole figures (+a- and −a-axis) show different density distributions with orthorhombic texture symmetry in the protolith marble and monoclinic symmetry in the ultramylonite marble consistently with the observed grain fabric symmetry.  相似文献   

19.
Abstract

The western margin of the Tauera Window (Eastern Alps) is defined by a low angle westward dipping fault zone of potently We disp lacement. Ductile deformation of the fault rocks results in a carpet of mylonites up to 400 metres thick. Evidence from shear criteria and the excision of part of the Cretaceous-Tertiary metamorphic edifice both indicate normal displacements, and relative movement of Austroalpine nappe complex towards the west. The Sterzing-Steinach mylonite zone overprints the Alpine nappe edifice. Movements occurred on the cooling path of the Tauern metamorphism, and may be as recent as Middle Miocene.

The Kinematics and geometry of the mylonite zone constrain two likely t ectonic explanations that are both compatible with secondary thining of a thick orogenic wedge. (1) Ute the Austroalpine nappe pile due to tectonic unroofing of the Tauern window. (2) Continental escape by east-west stretching of the Alpine orogenic wedge in response to continental collision.  相似文献   

20.
秦岭商丹构造带内发育的晚三叠世沙沟街韧性剪切带蕴含大量地质信息,很好地记录了秦岭印支期碰撞造山过程。为了探究该剪切带的运动学特征及其动力学背景,在野外观测、显微构造分析的基础上,对其中发育的糜棱岩进行了磁组构和运动学涡度研究。岩石磁学和磁组构分析结果显示:样品的平均磁化率Km值总体较高,载磁矿物主要为磁铁矿等铁磁性矿物;磁化率各向异性度PJ值较大,表明构造变形较为强烈;形态参数T值多大于0,反映磁化率椭球体以扁球体为主;磁线、面理优势产状与野外观测到的矿物线、面理较为一致。结合磁组构、边界断层以及C面理产状,认为沙沟街韧性剪切带具有左行走滑挤压的运动学特征。运动学涡度Wk值及其分布特征表明,沙沟街剪切带中纯剪切作用所占的比重总体大于简单剪切作用,并且剪切带的核部应位于北界断层附近。综合分析认为,沙沟街韧性剪切带的运动学特征反映了总体斜向汇聚背景下的局部走滑挤压,与商丹带西段发育的同期韧性剪切带具有完全反向的运动学指向,这可能与碰撞导致的侧向挤出构造有关  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号