首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fractal concepts have been introduced in the accretion disc as a new feature. Due to the fractal nature of the flow, its continuity condition undergoes modifications. The conserved stationary fractal flow admits only saddle points and centre-type points in its phase portrait. Completely analytical solutions of the equilibrium point conditions indicate that the fractal properties enable the flow to behave like an effective continuum of lesser density, and facilitate the generation of transonicity. However, strongly fractal flows inhibit multitransonicity from developing. The mass accretion rate exhibits a fractal scaling behaviour, and the entire fractal accretion disc is stable under linearized dynamic perturbations.  相似文献   

3.
4.
5.
The effects of the Blandford–Znajek (BZ) process on the evolution of the central black holes of accretion discs are investigated by an analytical method and numerical calculations in this paper. It is shown that the BZ process reduces the rates of change of some parameters of the black hole, such as mass, angular momentum, dimensionless angular momentum and temperature, and the evolution of the central black hole towards the extreme Kerr black hole is depressed effectively. However, the rate of change of entropy of the central black hole is augmented in the BZ process. In addition, the consistency of the BZ process with the three laws of black hole thermodynamics is discussed.  相似文献   

6.
7.
8.
9.
We show that recently published assertions that advection-dominated accretion flows (ADAFs) require the presence of strong winds are unfounded because they assume that low radiative efficiency in flows accreting at low rates on to black holes implies vanishing radial energy and angular momentum fluxes through the flow (which is also formulated in terms of the 'Bernoulli function' being positive). This, however, is a property only of self-similar solutions which are an inadequate representation of global accretion flows. We recall general properties of accretion flows on to black holes and show that such, necessarily transonic, flows may have either d positive or negative Bernoulli function depending on the flow viscosity. Flows with low viscosities ( α ≲0.1 in the α -viscosity model) have a negative Bernoulli function. Without exception, all 2D and 1D numerical models of low-viscosity flows constructed to date experience no significant outflows. At high viscosities the presence of outflows depends on the assumed viscosity, on the equation of state and on the outer boundary condition. The positive sign of the Bernoulli function invoked in this context is irrelevant to the presence of outflows. As an illustration, we recall 2D numerical models with moderate viscosity that have positive values of the Bernoulli function and experience no outflows. ADAFs, therefore, do not differ from this point of view from thin Keplerian discs: they may have, but they do not have to have, strong winds.  相似文献   

10.
11.
We consider a thin accretion disc warped due to the Bardeen–Petterson effect, presenting both analytical and numerical solutions for the situation in which the two viscosity coefficients vary with radius as a power law, with the two power-law indices not necessarily equal. The analytical solutions are compared with numerical ones, showing that our new analytical solution is more accurate than the previous one, which overestimated the inclination change in the outer disc. Our new analytical solution is appropriate for moderately warped discs, while for extremely misaligned discs only a numerical solution is appropriate.  相似文献   

12.
13.
We compare standard models of accretion discs around black holes (BHs) that include the appropriate zero-torque inner boundary condition and relativistic effects on the emission and propagation of radiation. The comparison is performed adopting the multicolour disc blackbody model (MCD) as reference and looking for the parameter space in which it is in statistical agreement with 'more physical' accretion disc models. We find simple 'recipes' that can be used for adjusting the estimates of the physical inner radius of the disc, the BH mass and the accretion rate inferred using the parameters of the MCD fits. We applied these results to four ultraluminous X-ray sources for which MCD spectral fits of their X-ray soft spectral components have been published and find that, in three cases (NGC 1313 X-1, X-2 and M 81 X-9), the BH masses inferred for a standard disc around a Schwarzschild BH are in the interval  ∼100–200 M  . Only if the BH is maximally rotating are the masses comparable to the much larger values previously derived in the literature.  相似文献   

14.
15.
Double-peaked broad emission lines in active galactic nuclei are generally considered to be formed in an accretion disc. In this paper, we compute the profiles of reprocessing emission lines from a relativistic, warped accretion disc around a black hole in order to explore the possibility that certain asymmetries in the double-peaked emission-line profile which cannot be explained by a circular Keplerian disc may be induced by disc warping. The disc warping also provides a solution for the energy budget in the emission-line region because it increases the solid angle of the outer disc portion subtended to the inner portion of the disc. We adopted a parametrized disc geometry and a central point-like source of ionizing radiation to capture the main characteristics of the emission-line profile from such discs. We find that the ratio between the blue and red peaks of the line profiles becoming less than unity can be naturally predicted by a twisted warped disc, and a third peak can be produced in some cases. We show that disc warping can reproduce the main features of multipeaked line profiles of four active galactic nuclei from the Sloan Digital Sky Survey.  相似文献   

16.
17.
We discuss one of the possible origins of large-scale magnetic fields based on a continuous distribution of toroidal electric current flowing in the inner region of the disc around a Kerr black hole (BH) in the framework of general relativity. It turns out that four types of configuration of the magnetic connection (MC) are generated, i.e. MC of the BH with the remote astrophysical load (MCHL), MC of the BH with the disc (MCHD), MC of the plunging region with the disc (MCPD) and MC of the inner and outer disc regions (MCDD). It turns out that the Blandford–Znajek process can be regarded as one type of MC, i.e. MCHL. In addition, we propose a scenario for fitting the quasi-periodic oscillations in BH binaries based on MCDD associated with the magnetic reconnection.  相似文献   

18.
19.
20.
The transfer of energy and angular momentum in the magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc is discussed based on a mapping relation derived by considering the conservation of magnetic flux with two basic assumptions: (i) the magnetic field on the horizon is constant, (ii) the magnetic field on the disc surface varies as a power law with the radial coordinate of the disc. The following results are obtained: (i) the transfer direction of energy and angular momentum between the BH and the disc depends on the position of a co-rotation radius relative to the MC region on the disc, which is eventually determined by the BH spin; (ii) the evolution characteristics of a rotating BH in the MC process without disc accretion are depicted in a parameter space, and a series of values of the BH spin are given to indicate the evolution characteristics; (iii) the efficiency of converting accreted mass into radiation energy of a BH–disc system is discussed by considering the coexistence of disc accretion and the MC process; (iv) the MC effects on disc radiation and the emissivity index are discussed and it is concluded that they are consistent with the recent XMM–Newton observation of the nearby bright Seyfert 1 galaxy MCG–6-30-15 with reference to a variety of parameters of the BH–disc system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号