首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

Measurements of ocean directional wave spectra, significant wave height, and wind speed over the Grand Banks of Newfoundland were made using the combined capabilities of the radar ocean wave spectrometer (ROWS) and scanning radar altimeter (SRA). The instruments were flown aboard the NASA P‐3A aircraft in support of the Grand Banks ERS‐1 Synthetic Aperture Radar (SAR) Wave Experiment. The NASA sensors use proven techniques, which differ greatly from SAR, for estimating the directional long‐wave spectrum; thus they provide a unique set of measurements for use in evaluating SAR performance. ROWS and SRA data are combined with spectra from the SAR aboard the Canadian Centre for Remote Sensing (CCRS) CV‐580 aircraft, the first‐generation Canadian Spectral Ocean Wave Model (CSOWM) hindcast, and other available in situ measurements to assess the ERS‐1 SAR's ability to correctly resolve wave field components along a 200‐ to 300‐km flight line for four separate satellite passes. Given the complex seas present on the Grand Banks, the complementary nature of viewing the sea spectrum from the perspectives of multiple sensors and a wave prediction model is apparent. The data intercomparisons show the ERS‐1 SAR to be meeting the expected goals for measuring swell, but the data also show evidence of this remote sensor's inability to detect the shorter waves travelling in the azimuth or along‐track direction. Example SAR spectra simulations are made using a non‐linear forward transform with ROWS measurements as input. Additionally, surface wind and wave height estimates made using the ROWS altimeter channel are presented. These data demonstrate the utility of operating the system in its new combined altimeter and spectrometer configuration.  相似文献   

2.
The satellite-borne radar altimeters on GEOS 3 and SEASAT produce high-precision measurement of distance from the satellite to the ocean surface. However, the precision of the GEOS 3 altimeter (~50 cm) and especially the forthcoming SEASAT (~10 cm) instrument far exceeds our ability to determine the position of either satellite using conventional electronic or laser-tracking methods. Thus special techniques are required to prevent the uncertainty of the satellite position from degrading the value of the altimeter data. The altimeter data themselves provide a solution to this problem. Using the condition that intersections of passes of altimeter data must measure the same time-invariant part of the sea-surface height, the root-mean-square error of 292 intersections of 47 passes of GEOS 3 altimeter data from the Atlantic Ocean was reduced from 17 m to 44 cm. Simulations of the SEASAT problem also show that altimeter data can aid in determining the satellite orbit, and have their greatest value when radar or laser tracking is sparse.  相似文献   

3.
A Seasat-A Project was conceived and is being implemented to establish the utility of an array of microwave instruments in space for oceanic research and marine technology. The instruments include: a short-pulse radar altimeter, a wind-field scatterometer, an experimental synthetic-aperture imaging radar, a scanning multifrequency microwave radiometer, and a supporting visual and infrared radiometer. All weather, day-night measurements of sea-surface temperature, surface wind speed and direction, sea state and directional wave spectra will be made, the latter over limited areas and times because of operational limitations on the synthetic-aperture-radar instrument. Highly precise (&<0.1 m) range information from the radar altimeter, in combination with an accurate satellite emphemeris, will be used to infer dynamic departures of sea level from the marine geoid produced by tides, currents, and storm surges. Sea ice will be observed by the synthetic-aperture radar, radar altimeter and the scanning multifrequency microwave radiometer, with particular emphasis on demonstrating their capability to determine polar ice coverage, dynamics and navigability.The satellite will be launched into a high-inclination (108 °), non-sun-synchronous, nearly-circular 800 km orbit in May of 1978. The orbit is such that a dense network traced out by the subsatellite point (18.5-km equatorial separation of ascending orbits) will be obtained in 152 days for geodesy. The satellite is designed for a minimum lifetime of one year; with expendables, including orbit adjust capability, for three.All data, except those obtained from the synthetic-aperture radar, will be collected globally, and returned, as measured, first by a 25 kbps data stream, and then after playback at a rate of 800 kbps from the on-board tape recorder. Synthetic-aperture radar data will be returned in real time only, over a 20-MHz analog telemetry link. We expect that satellite data will be distributed through the National Oceanic and Atmospheric Administrations Environmental Data Service. Processed data are expected to be generally available through this agency within a very few months of launch, following preliminary assessment of instrument operation and evaluation of performance.  相似文献   

4.
Seasonal extreme wave statistics were reproduced by using the 25-km-grid global wave model of WAVEWATCH-III. The results showed that the simulated wave dataset for the present climate (1979-2009) was similar to Climate Forecast System Reanalysis (CFSR) wave data. Statistics such as the root mean squared error (RMSE) and correlation coefficient (CC) over the western North Pacific (WNP) basin were 0.5 m and 0.69 over the analysis domain. The largest trends and standard deviation were around the southern coast of Japan and western edge of the WNP. Linear regression analysis was employed to identify the relationship between the leading principal components (PCs) of significant wave heights (SWHs) in the peak season of July to September and sea surface temperature (SST) anomalies in the equatorial Pacific. The results indicated that the inter-annual variability of SWH can be associated with the El Niño-Southern Oscillation in the peak season. The CC between the first PC of the SWH and anomalies in the Nino 3.4 SST index was also significant at a 99% confidence level. Significant variations in the SWH are affected by tropical cyclones (TCs) caused by increased SST anomalies. The genesis and development of simulated TCs can be important to the variation in SWHs for the WNP in the peak season. Therefore, we can project the variability of SWHs through TC activity based on changes in SST conditions for the equatorial Pacific in the future.  相似文献   

5.
This paper presents determinations of ocean topography using spacecraft altimeter techniques. The first direct spacecraft observations of sea-surface topography were made in late 1973 during the Skylab mission. Comparisons of the topography derived from the altimeter data with the computed topography based upon the Goddard Space Flight Center Earth Gravity Model, GEM-8, derived from satellite tracking data and surface gravity data show differences of a few meters.With the presently orbiting altimeter system on the Geos-3 spacecraft, relative variations over a few hundred kilometers along the orbital track can now be detected to a few decimeters. Numerous short-wavelength features which reflect large variations of the ocean floor have been observed to a relative precision of a meter or better with Geos-3. For example, the Blake-Bahama Basin off the coast of Florida is about 4000 m lower than the continental shelf. The sea surface of the basin, as measured by the Geos-3 altimeter, is about 8 m lower than that of the continental shelf. Further, a height change of over 20 m has been measured over the Puerto Rican Trench relative to the height of the mean sea level at Puerto Rico.Preliminary results of on-going studies indicate that geostrophic height variations, for example, due to ocean currents (the Gulf Stream has an expected variation of around 1.5 m over 100 km) will be detectable using spaceborne altimeters.  相似文献   

6.
中国于2019年第35次南极考察中,首次在南大洋布放了锚系实时综合观测浮标(西风带海洋环境监测浮标,WEMB),为深入了解此海区的海洋环境变化提供了宝贵资料.国家海洋技术中心WEMB研究团队基于AVISO公开发布的多颗卫星高度计L3产品,通过数据配对,误差统计和最小二乘线性拟合等方法,对西风带海洋环境监测浮标的有效波高数据误差进行了分析与校正.校正后的浮标有效波高统计显示西风带常年处于大浪以上海况,观测期间内57%处于巨浪海况,并且伴随有高度相关的大风天气.  相似文献   

7.
Wind-wave relationship from SEASAT radar altimeter data   总被引:2,自引:0,他引:2  
We present a nonlinear relationship between ocean surface wind at 10 m height (U 10 ) and significant wave height of wind-generated gravity waves, (H 1/3)gw, over the open oceans using SEASAT radar altimeter data. The data represent a variety of fetches, durations and strength of winds. Concurrent measurement of significant wave height, (H 1/3 ), which may contain a measure of swell and U 10 obtained from the processed geophysical data record (GDR) of the SEASAT radar altimeter were used in the analysis. The total wave energy, E alt, characterised by altimeter H 1/3 measurements was compared with the energy of a fully developed sea, E fd derived from U 10 measurements using the Pierson-Moskowitz model. The criteria E alt E fd was used in data selection to minimise the influence of swell. (H 1/3)gw thus obtained was used in a regression in terms of U 10 in a second-degree polynomial. Verification with independent radar altimeter data confirmed the validity of the proposed wind-wave model, which could be used for operational wave forecasting.  相似文献   

8.
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer(MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.  相似文献   

9.
以美国NCEP FNL分析数据和我国GRAPES_GFS预报数据为背景场,对2016年7月1日-2017年6月30日北京探空站的L波段秒级探空位势高度(探空高度)从观测余差、平均偏差、标准偏差、概率密度分布、峰度系数、偏度系数、相关系数和均方根误差等参数进行误差分析。根据分析结果对探空高度进行质量标识,并根据质量标识的结果再次求解参数,评估质量标识效果。结果表明:探空高度质量较好,无论是基于NCEP FNL还是GRA-PES_GFS,探空高度的误差基本在±5 dagpm以内。探测高层的观测余差平均偏差和标准偏差表明基于GRAPES_GFS的评估优于NCEP FNL的评估。单一个例选取的可疑点和错误点阈值具有误差特征、自适应的特点。  相似文献   

10.
采用1958年1月—2001年12月ECMWF ERA-40的10m风场资料,以及由该风场资料驱动WAVEWATCHⅢ得到的北印度洋—南海海域44a的海浪场资料,通过EOF分析、正交小波分析和M-K检测方法,分析了北印度洋—南海海域海面风场和有效波高的年代际变化特征。结果表明:北印度洋—南海海域存在3个大风、大浪区,其中亚丁湾以东洋面风力最强,有效波高最高;表面风场和有效波高存在35、15和3a的主周期变化,并自20世纪70年代中期以来,年平均风场和有效波高均存在明显增强趋势,1977年为突变起始年;年平均海表10m风速和有效波高随时间增大主要是由冬季和春季海表10m风速和有效波高随时间增大引起的;冬、秋季海面风场与有效波高的年际、年代际变化周期较一致,冬季以35~40a的周期为主,秋季以11~12a的周期为主。  相似文献   

11.
Abstract

Ocean backscatter data obtained with a Ku‐band airborne radar are presented along with coincident altimeter and directional wave spectral estimates. These data were collected using one sensor, NASA's radar ocean wave spectrometer (ROWS). The measurements are compared with an electromagnetic scattering model for perfectly conducting Gaussian random surfaces. The normalized radar cross‐section (NRCS) data cover those incidence angles (0–20°) where both quasi‐specular and Bragg scattering mechanisms are expected. Under certain conditions, identification and separation of these two mechanisms is possible. The scanning radar allows observations of the azimuthal variations in NRCS that are at times indicative of short‐scale wave generation in the wind direction.  相似文献   

12.
胡利军  杨豪  高爱臻  郑铮 《气象科技》2021,49(2):192-199
结合天气形势、高空风场、370 m高塔、地面要素、激光云高仪、毫米波雷达等资料,对宁波北仑港区航道2018年2月15日海雾过程进行分析.结果 表明,这是一次以锋前雾为主的海雾过程,在上暖下冷的锋面背景下,地面水汽充沛、风力温和,近地层逆温结构,都为海雾的形成和维持提供了有利条件.上下大气风向不一致,不利于垂直方向空气交...  相似文献   

13.
Estimates of the latent heat flux at the air-sea interface made by the profile method are compared to estimates by a wind-wave interaction (WWI) method that takes into account both wind and wave characteristics. A data set that consisted of profile measurements (six levels) of wind, temperature, and humidity over the Arabian Sea was used to compare the methods, and the agreement is good. It is shown that this WWI method can be used to compute the shear velocity, and then the results can be applied in the computation of latent heat flux. The parameters used in the WWI method are wind speed and direction, air temperature and humidity, sea-surface temperature, and significant wave height and period. All these data may be obtained from standard ship observations.  相似文献   

14.
利用1979—2016年ERA-Interim有效波高(SWH)和海表风场数据,分析了南海-北印度洋极端海浪场分布和变化.结果表明:南海-北印度洋极端SWH分布和极端风速分布形态以及年际变化趋势高度一致,说明了涌浪为主的北印度洋和风浪为主的南海一样,极端SWH都由局地的极端风速控制;强极端SWH主要分布在阿拉伯海以及南海北部,阿拉伯海北部增长与该区域气旋强度增强有着密切关系,而南海的极端SWH主要受东北季风控制;东非沿岸极端SWH线性增长趋势则与索马里急流的年代际尺度上有逐渐增强的线性趋势有关.北印度洋及南海海域极端SWH距平场的EOF分析结果表明,南海极端SWH与北印度洋表现出反相变化的特征.北印度洋(南海海域)极端SWH多出现在西南季风(东北季风)期间,因为在西南季风(东北季风)期间,极端风速也相对增强.  相似文献   

15.
Abstract

The “sea clutter” observable on a standard marine navigation radar has long been recognized as a potential source of information about sea state. In the last decade a number of researchers have published “directional wave spectra” calculated from marine radar images. Our group has continued this line of research using a unique radar system that digitizes and stores radar images eight bits deep directly related to the strength of the radar backscatter.

Our system was deployed on the CSS Hudson during the Grand Banks ERS‐1 SAR Wave Spectrum Validation Experiment cruise in November 1991. We collected in excess of 3000 sea surface backscatter images. From this dataset we have produced a number of directional spectra in an effort to understand the performance of the sensor and to compare it with other wave determining instruments and models.

Analysis has shown a strong azimuthal asymmetry both in the strength of the backscattered signal and in the relative strength of spectral peaks. This asymmetry is similar inform to that observed in scatterometer data. Unbiased estimation of the “true” image spectrum requires removal of these asymmetries. This estimation has been accomplished through calculation and removal of a non‐linear multi‐parameter least‐squares model of the backscatter from each image, and averaging of spectra from many look directions. The resulting spectra compare favourably with those calculated from directional wave buoy data, satellite and aircraft SARs and other directional wave measurements and models.  相似文献   

16.
为了更好地把握风廓线雷达的探测性能和数据精度,对移动风廓线雷达与L波段探空雷达资料进行对比统计分析,结果表明:移动风廓线雷达的有效数据获取率达到80%的高度为3500m,符合边界层风廓线雷达的有效探测高度。移动风廓线的径向速度平均差和标准差随着高度的增加而增加,东西方向的径向速度误差比南北方向的高约0.5—1.0m/s。风廓线雷达自身数据的准确性良好,但是降雨对数据的准确性影响比较大。这次对比试验结果表明,对比试验应该选择比较平稳的天气过程。由于秋冬季节大气环流比较稳定,降雨类型多为层状云降雨,因而风廓线雷达数据可靠性高;对流性降雨过程往往造成风廓线雷达资料可靠性降低。  相似文献   

17.
地基微波辐射计探测大气边界层高度方法   总被引:4,自引:3,他引:1       下载免费PDF全文
采用2013年中国科学院大气物理研究所香河大气综合观测试验站的地基微波辐射计和激光雷达观测数据,以激光雷达探测的大气边界层高度为参考,分别利用非线性神经网络和多元线性回归方法建立微波亮温直接反演大气边界层高度的算法,并对比两种方法的反演能力, 同时分析非线性神经网络算法在不同时段及不同天气状况下反演结果的差异。结果表明:非线性神经网络算法的反演能力优于多元线性回归算法,其反演结果与激光雷达探测的大气边界层高度有较好一致性,冬、春季的相关系数达到0.83,反演精度比线性回归算法约高26%;对于不同时段和不同天气条件,春季的反演结果最好,晴空的反演结果好于云天; 四季和不同天气状况的划分也有利于提高反演精度。  相似文献   

18.
The influence of wave-associated parameters controlling turbulent \(\hbox {CO}_2\) fluxes through the air–sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air–sea \(\hbox {CO}_2\) fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of \(\hbox {CO}_2\) with a mean flux of \(-1.3\, \upmu \hbox {mol m}^{-2}\hbox {s}^{-1}\) (\(-41.6\hbox { mol m}^{-2}\hbox {yr}^{-1}\)). The results of a quantile-regression analysis computed between the \(\hbox {CO}_2\) flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.  相似文献   

19.
This study examines the variability of the monthly average significant wave height (SWH) field in the Mediterranean Sea, in the period 1958–2001. The analysed data are provided by simulations carried out using the WAM model (WAMDI group, 1988) forced by the wind fields of the ERA-40 (ECMWF Re-Analysis). Comparison with buoy observations, satellite data, and simulations forced by higher resolution wind fields shows that, though results underestimate the actual SWH, they provide a reliable representation of its real space and time variability. Principal component analysis (PCA) shows that the annual cycle is characterised by two main empirical orthogonal functions (EOF) patterns. Most inter-monthly variability is associated with the first EOF, whose positive/negative phase is due to the action of Mistral/Etesian wind regimes. The second EOF is related to the action of southerly winds (Libeccio and Sirocco). The annual cycle presents two main seasons, winter and summer characterised, the first, by the prevalence of eastwards and southeastwards propagating waves all over the basin, and the second, by high southwards propagating waves in the Aegean Sea and Levantin Basin. Spring and fall are transitional seasons, characterised by northwards and northeastwards propagating waves, associated to an intense meridional atmospheric circulation, and by attenuation and amplification, respectively, of the action of Mistral. These wave field variability patterns are associated with consistent sea level pressure (SLP) and surface wind field structures. The intensity of the SWH field shows large inter-annual and inter-decadal variability and a statistically significant decreasing trend of mean winter values. The winter average SWH is anti-correlated with the winter NAO (North Atlantic Oscillation) index, which shows a correspondingly increasing trend. During summer, a minor component of the wave field inter-annual variability (associated to the second EOF) presents a statistically significant correlation with the Indian Monsoon reflecting its influence on the meridional Mediterranean circulation. However, the SLP patterns associated with the SWH inter-annual variability reveal structures different from NAO and Monsoon circulation. In fact, wave field variability is conditioned by regional storminess in combination with the effect of fetch. The latter is likely to be the most important. Therefore, the inter-annual variability of the mean SWH is associated to SLP patterns, which present their most intense features above or close to Mediterranean region, where they are most effective for wave generation.
P. LionelloEmail:
  相似文献   

20.
We analyzed the frequency distribution characteristics of wind speeds occurring at different offshore sites within a range of 0–200 km based on the sea surface wind data captured via buoys and oil platforms located along the east coast of Guangdong Province. The results of the analysis showed that average wind speed measured for each station reached a maximum in winter while minima occurred in summer, corresponding to obvious seasonal variation, and average wind speed increased with offshore distance. The prevailing wind direction at the nearshore site is the easterly wind, and the frequency of winds within 6–10 m s–1 is considerable with that of winds at > 10 m s–1. With the increase of the offshore distance, the winds were less affected by the land, and the prevailing wind direction gradually became northerly winds, predominately those at > 10 m s–1. For areas of shorter offshore distance (< 100 km), surface wind speeds fundamentally conformed to a two-parameter Weibull distribution, but there was a significant difference between wind speed probability distributions and the Weibull distribution in areas more than 100 km offshore. The mean wind speeds and wind speed standard deviations increased with the offshore distance, indicating that with the increase of the wind speed, the pulsation of the winds increased obviously, resulting in an increase in the ratio of the mean wind speed to the standard deviation of wind speed. When the ratio was large, the skewness became negative. When a relatively great degree of dispersion was noted between the observed skewness and the skewness corresponding to the theoretical Weibull curve, the wind speed probability distribution could not be adequately described by a Weibull distribution. This study provides a basis for the verification of the adaptability of Weibull distribution in different sea areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号