首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific composition, vertical distribution and daily migration of plankton in a meromictic salt lake, Lake Shira, have been investigated. The main structural components of the ecosystem are bacteria, algae and crustaceans. Since the late 1970s, blue-green algae are reported as dominant. Nowadays the phytoplankton is dominated by Lyngbya contorta, Microcystis ichtyoblabe (Cyanophyta), Cyclotella tuberculata (Bacillariophyta) and Dictyosphaerium tetrachotomum (Chlorophyta). The zooplankton of Lake Shira comprises Arctodiaptomus salinus (Copepoda), Brachionus plicatilis and Hexarthra oxiuris (Rotatoria). Investigation revealed a stratified vertical distribution of all dominant species except Cyclotella with a maximum at a depth of 12--15 m during the summer growth period. Zooplanktons differ in the pattern of distribution and daily migration, but most zooplankton tend to concentrate near the surface. The possible reasons for the vertical distribution of the plankton are discussed.  相似文献   

2.
Zooplankton collections were made during 1985, 1986, 1988 and 1989 from 17 lakes in Saskatchewan and 3 in Alberta. Salinity ranged from 2.8 to 269 g L−1 (total filtrable residue). A total of 35 species was present in four taxa: Anostraca (3 species), Cladocera (11), Copepoda (7) and Rotifera (14). Species richness was greatest at salinities <7 g L−1 (15–16 species). Lakes with salinities between 7 and 100 g L−1 generally had 6–8 zooplankton species, while the most saline lakes (>100 g L−1) had 2–5 species. The largest concentrations of zooplankton occurred at <30 g L−1, but some species (Brachionus plicatilis, Hexarthra polyodonta, Artemia franciscana, Diaptomus connexus) were abundant at salinities >50 g L−1. Eurysaline species included the rotifersAsplanchna girodi (3–111 g L−1),Brachionus plicatilis (13–146) andKeratella quadrata (2.8–103).Artemia franciscana (33–269—but absent from Big Quill Lake, 49–82),Daphnia similis (3–104).D. connexus (9–82),Diacyclops thomasi (3–72), andCletocamptus albuquerquensis (17 to 126—but never abundant in the plankton). About half the species were restricted to hyposaline waters (3–20 g L−1), but some (Hexarthra fennica, Moina hutchinsoni, Hexarthra polyodonta) occurred only at intermediate salinities. The latter two species were also only present at high pH values (>9.2). There was a trend of decreasing species richness with increasing salinity. TWINSPAN classification of 94 lake samples (six parameters) based on zooplankton species abundances yielded a dendrogram with 14 ‘indicator’ species characteristic of seven lake groups related partly to a salinity gradient, but with other environmental factors such as water column depth, pH, Secchi disk transparency, water temperature and month sampled also influenced lake separation. *** DIRECT SUPPORT *** A02GG004 00002  相似文献   

3.
We use Cladocera remains in the sediments to reconstruct the longterm history of Lake Orta, a lake which experienced severe pollution from copper and ammonium sulphate, and started to recover during the last 15 years. Both human and natural impacts were detected over almost 400 years. Pollution was manifested by a dramatic decrease in the number of remains, in the planktonic/littoral (P/L) ratio, and in chydorid species diversity. Most species, even those most tolerant to stress, disappeared. The recolonization of biota was initially sustained by one species of chydorid,Chydorus sphaericus, which had a three-fold increase at the beginning of the 1980s, when studies on plankton recorded the development of a pelagic population. This fact, and the appearance in the sediments ofAlona quadrangularis, attest to the development of filamentous algae which was reported in studies on the plankton. The colonization of the lake by pelagic species came only in the last twelve years and was manifested also as a stabilization of the P/L ratio. Two other periods of disturbance were detected in the sediments: the first, at the end of the 19th century, was related to the introduction of exotic fish species; the second occurred during the second half of the 17th century. This event probably cannot be ascribed to human impact, but may be related to a decrease in temperature in that period (the Maunder Minimum).  相似文献   

4.
150年来青藏高原南红山湖的介形类与环境变化   总被引:14,自引:1,他引:14  
青藏高原西北部南红山湖2孔湖芯沉积物中的介形类动物群计有4属4种,据其分布特征划分出5个组合,各组合间的差异表现在介形类动物群丰度和每个种的丰度变化以及特征种的出现。通过分析介形类属种生态特征和组合变化对150年来的南红山湖环境变化进行了探讨。分析结果表明:1884年前为有缓慢水流注入的滨岸浅水期;1885~1970年间为湖水相对温暖期,在这期间湖泊环境仍有次一级的变化,其中,1885~1905年湖面迅速抬升,水深增大,水温也较高,1923~1944年为湖水温度另一个稍高期,1961~1969年湖面再次出现明显上升;1970年以来湖泊退缩、咸化。  相似文献   

5.
Zooplankton in saline lakes of the Southern Interior Plateau of British Columbia were collected on three occasions: mid-May and early August, 1990, and in late July, 1991. Salinities ranged from 2.6 to 45.8 g L−1. Of the 17 lakes examined, 13 were hyposaline (∼-20g L−1), four, mesosaline (20–50 g L−1) and none, hypersaline (>50 g L−1). pH ranged from 8.7 (Three Mile) to 10.7 (Goodenough), with values <9.6 in 10, and <9.0 in only three lakes. Lakes with high pHs had high bicarbonate-carbonate alkalinities. Thirty one species of zooplankton occurred: Protista (1), Rotifera (13), Anostraca (2), Cladocera (7), Ostracoda (1) and Copepoda (7). Sixteen species were restricted to hyposaline waters, with seven found only in salinities of ≤5 gL−1. Two species (Diaptomus connexus, Artemia franciscana) were restricted to mesosaline waters of salinity >35 g L−1. Eurysaline species includedBrachionus plicatilis, Hexarthra fennica, Limnocythere staplini, Artemia franciscana andDiaptomus connexus. Most species were abundant in 1+ lakes, but six species always had low populations.B. plicatilis, Hexarthra polyodonta, A. franciscana, Limnocythere staplini, Daphnia similis andD. connexus had densest populations in one or more of the three most saline lakes, viz. Long, Goodenough and Three Mile. Cladocerans other thanD. similis (Alona sp., Ceriodaphnia quadrangula, Daphnia pulex) were usually abundant in lakes of low salinity (<5 g L−1).Diatomus sicilis, present in all except the three most saline lakes, also occurred in abundance in ten of these lakes.Moina hutchinsoni andH. polyodonta were present in both hyposaline and mesosaline lakes, but, more importantly, tended to occur only at higher pH values (>pH 9.4) but not in all such lakes. These can be regarded as alkaline-saline species. Sorensen’s Coefficient of Community Similarity was used to compare communities in Alberta-Saskatchewan and British Columbia. It was low (0.37). A comparison restricted to just Cladocera gave a slightly higher value, 0.44, but a comparison of Copepoda gave a value of 71 per cent similarity between the regions. Multiple regression analyses using pH, TDS and K regressed on species richness for all samples accounted for only 41 per cent of the variance. However, when the analysis was seasonally restricted (May), and thus to a limited chemical range, 47 to 77.5 per cent of the variance was accounted for by these three variables.  相似文献   

6.
Banks Island (N.W.T.) has become a focal point for climate change studies in the Canadian Arctic. However, long-term climatic and environmental data are very sparse from this large island, as they are for the entire southwestern region of the Canadian Arctic Archipelago. In this paleolimnological study, diatom species assemblage shifts documented in cores collected from a pond and a lake on Banks Island were interpreted to represent a response to climate warming commencing in the nineteenth century. We found that, although the timing and overall nature of the species changes in the two cores were consistent, the signal was muted in the deeper site likely as a result of differences in ice cover extent and duration between lakes and ponds. A high-resolution study was also conducted from a second pond, at sub-decadal resolution, that only spanned the last ∼60 years. In the deeper lake site, Fragilaria construens and F. pinnata dominated the assemblages, similar to those noted in other high Arctic regions where lakes are characterized by extended ice cover. In contrast, Denticula kuetzingii dominated the shallower ponds and, in the case of the pond core representing the longer time period, this taxon increased in the post-1850 sediments, likely coincident with climate warming. In all cores, diatom assemblages became more diverse and Achnanthes species (particularly A. minutissima) increased from ∼1850 to the present, similar to changes documented in other Arctic regions. Beta diversity values calculated for the diatom species changes indicated that assemblage shifts in the Banks Island cores were of similar magnitude to those recorded in other Arctic regions with high species turnover, such as Ellesmere Island. A diatom-based Total Nitrogen (TN) transfer function previously developed for Banks Island was applied to the three 210Pb dated cores as an exploratory tool for inferring past changes in nitrogen concentrations. In both the lake and pond cores, diatom-inferred TN concentrations tended to increase in the more recent sediments, as may be expected with warming; however these trends were not very distinct.  相似文献   

7.
藏南沉错地区近1400年来的介形类与环境变化   总被引:7,自引:0,他引:7  
通过分析藏南沉错CC1孔的介形类动物群所提供的古环境信息,探讨近1400年来的湖泊演化。CC1孔介形类共计7属15种。据其属种,数量及生态特征,可划分为7个组合,同时发现1400年来沉错环境变化可分为3个时期:(1)公元6世末-14世纪下半叶沉错主要为较深水湖,其中大约在708-780年和1199-1213年湖泊迅速扩大加深;(2)14世纪下半叶-19世纪末沉错主要为浅水湖,其中大约在1454-1525年,1645-1670年和1803-1891年3个时段湖泊强烈退缩,环境极不稳定,而大约在1731-1803年湖泊发生逆向转化,湖水增多,湖面抬升;(3)19世纪末至今沉错由较深水湖转变为浅水湖,20世纪60年代以前为较深水湖,其中大约在1929-1935年湖泊急剧加深,20世纪70年代以来湖泊退缩,湖水变浅。  相似文献   

8.
Little is known about the relationships between fossil oribatid mite assemblages in lake and mire sediments and the composition, abundance, and richness of their living communities. Because oribatid mites are a relatively new area of palaeolimnological study, there is a great lack of knowledge about the taphonomic processes that might affect fossil mite assemblages. The DOORMAT (Direct Observation Of Recent Macrofossils Across Tree-line) project was designed to study the transport and deposition of oribatid mites and plant remains in the tree-line area of western Norway. The present study also compares modern oribatid assemblages with fossil oribatid assemblages in a Holocene lake-sediment sequence from the nearby Trettetj?rn, and considers the optimal location for studying fossil oribatid mites within a lake basin. Seven novel terrestrial traps (50 × 80 cm Astroturf doormats) were placed at major vegetational transitions along an altitudinal transect crossing the tree-line ecotone from 633 to 1,120 m a.s.l. at Upsete, west Norway. Three sediment traps were placed in Trettetj?rn (810 m a.sl.) at the inlet, the middle, and near the outlet. In each terrestrial trap, the oribatid assemblage was found to be characteristic of the surrounding habitat. The lake-trap analyses showed that aquatic or moist-habitat species had the highest chance of being incorporated into the lake sediments; the number of terrestrial species decreased considerably from both outlet and inlet traps to the central trap in the deepest water. The area adjacent to the inlet of Trettetj?rn would therefore be the optimal location for a sediment core for oribatid analysis. However, this conclusion is not supported when the modern trap results are compared with the Trettetj?rn sequence from the lake centre.  相似文献   

9.
The Holocene sedimentary diatom record from Otasan Lake, Alberta, has been analyzed to determine the development of this presently slightly acidic lake. The changes in the lake have been linked to the development of the Sphagnum-dominated catchment. Analysis of the stratigraphic data revealed four distinct zones. The lake record began ca. 8200 yrs BP with a benthic and alkaline diatom assemblage dominated by Ellerbeckia arenaria (Moore) Crawford. At ca. 7300 yrs BP planktonic species began to increase and dominate indicating increased water levels, decreased turbidity, and increased nutrient levels. Throughout the Holocene the peatland in the catchment encroached toward the modern lake margin and by ca. 5000 yrs BP lake acidity had changed sufficiently such that acidic diatom species dominated. Tabellaria flocculosa (Roth) Kütz.v. flocculosa Strain IIIp sensu Koppen dominated the record from ca. 5000 to ca. 3100 yrs BP. The lowest lake water pH was inferred for this zone. From ca. 3100 yrs BP to the present Fragilaria species, primarily F. construens v. venter (Ehr.) Hustedt, dominated the diatom assemblage. Diatom productivity and inferred pH were interpreted as stable. From correspondence analysis of the fossil samples, and from species assemblages, underlying gradients of pH, nutrient level, and water depth were inferred. The change from alkaline to slightly acidic conditions took place between ca. 8200 and ca. 5000 yrs BP. From ca. 3000 yrs BP to the present, lake water pH has remained fairly constant. Nutrient levels and water depth were inferred to have altered together. After ca. 8200 yrs BP, nutrients and water level began to increase until ca. 6000 yrs BP. Then, there was a gradual decline in these variables over the most acidic zone until ca. 3000 yrs BP, after which they, too, have remained fairly constant. Dominant Boreal Upland Vegetation was established by ca. 7200 yrs BP, and it was inferred that dominant climate patterns had been established at that time, but small changes in climate have occurred and the landscape in northeastern Alberta has only been stable for the last 3000 years.  相似文献   

10.
The 1400 m deep drilling of Lake Biwa has revealed that the lake probably originated ca. 5 · 106 yr ago. After a geographic shift to its present position, and by more than 3.105 yr ago, it had become a large and deep lake. The considerable longevity, large size and high diversity of habitats of this lake are considered to have contributed to its high abundance of endemic taxa. These taxa fall into two categories: (1) relict species of the Asiatic continent, higher latitude or marine origin; (2) species differentiated in the lake from littoral-lacustrine species, and having adapted to habitats peculiar to Lake Biwa. I discuss some of these endemic organisms, briefly review recent in vestigations on fossil organisms of the lake, and more fully discuss the origin of a representative endemic species, the pelagic gobiid fish Chaenogobius isaza Tanaka. This species is regarded as having differentiated from some littoral Chaenogobius species, creating a novel niche in the open water area after Lake Biwa was established as a deep lake.This is the seventh of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

11.
Transects of surface sediment samples were taken in 4 lakes from the Sylvania Wilderness Area, Upper Peninsula of Michigan. These surface samples were compared with diatom samples from a core taken in the Northwest basin of Crooked Lake, also from the Sylvania Wilderness Area. Weighted Averaging calibration was used to reconstruct lake depths in Crooked Lake using the diatom microfossils from the core and the surface samples to infer past lake depth. During the early Holocene the lake was dominated by planktonic species and diatom-inferred water depth was large – approx. 13 m. At about 6700 BP inferred water depth was 2 m and samples were dominated by Fragilaria construens var. venter – a species characteristic of shallow parts of the surface sample transects. From 6700 to 5000 BP reconstructed water level was at its shallowest. From 5000 to 3000 BP it increased. This rise in water level was marked by increasing abundances of Aulacoseira ambigua and occurred at the same time increasing percentages of hemlock pollen indicate increasing available moisture. Modern water depth was reached about 3000 BP. The water level changes at Crooked Lake are consistent with regional climate changes in the Upper Midwest during the Holocene. The lake was shallowest during the mid-Holocene warm period documented by other investigators. It deepened as the Midwestern climate became cooler and wetter during the late Holocene.  相似文献   

12.
A consequence of predicted climate warming will be tree-line advance over large areas of the Russian tundra. Palaeolimnological techniques can be used to provide analogues of how such changes in tree-line advance and subsequent retreat affected lake ecosystems in the past. A Holocene sediment core taken from Kharinei Lake (Russia) was dated radiometrically and used for multi-proxy analyses with the aim of determining how climate and tree-line dynamics affected the productivity, community structure, carbon cycling and light regime in the lake. Pollen and macrofossil analyses were used to determine the dates of the arrival and retreat of birch and spruce forest. C:N ratios and percent loss-on-ignition were used to infer past changes in sediment organic matter. Visible-near-infrared spectroscopy and diatom analysis were used to infer past changes in lake-water carbon. Algal pigments and aquatic macrophytes were used to determine changes in lake productivity and light. Chironomids together with remains of the aquatic flora and fauna were used to provide information on past July temperature and continentality. Lake sedimentation was initiated shortly before 11,000 cal. years BP, when both chironomid- and pollen-inferred temperature reconstructions suggest higher summer temperatures than present, between 1 and 2°C warmer, and lake productivity was relatively high. A few trees were already present at this time. The spruce forest expanded at 8,000 cal. year BP remaining in the vicinity of the lake until 3,500 cal. year BP. This period coincided with a high concentration of organic material in the water column, and relatively high benthic productivity, as indicated by a high benthic: planktonic diatom ratio. After tree-line retreat, the optical transparency of the lake increased, and it became more open and exposed, and was thus subject to greater water-column mixing resulting in a higher abundance of diatom phytoplankton, especially heavily silicified Aulocoseira species. The colder climate resulted in a shorter ice-free period, the lake was less productive and there was a loss of aquatic macrophytes. Increased wind-induced mixing following forest retreat had a greater influence on the lake ecosystem than the effects of decreasing organic matter concentration and increased light penetration.  相似文献   

13.
Palaeoenvironmental interpretations from analyses of lake sediment archives are dependent on our understanding of the modern lake environment and the link between neo- and palaeolimnology. Diatom assemblages represent different lake habitats and vary in species composition and abundance on seasonal and annual timescales. These factors, along with mixing at the mud-water interface, alter the information recorded in the sedimentary archive and the resulting interpretation of environmental variables in the past. Nar Gölü (central Turkey), a crater lake with annually laminated sediments, is used to investigate the link between modern and palaeo diatom assemblages. Information about the modern diatom population has been gathered through sampling of different lake habitats (1999–2009) and installing seston sediment traps in the water column (2002–2007). The palaeo diatom assemblage has been analysed through annual-resolution percentage counts and biovolume calculations on core sediments (1927–2006), along with identification of sub-annual assemblage changes through microscopic analysis of core thin sections. Comparisons of data collected using these different methods has shown a good correspondence between sediment trap and core results, but revealed that blooms of two diatom species (Nitzschia paleacea and Synedra acus), in each case occurring on average 1 year in five, can have major impacts on percentage calculations and may result in distorted and misleading palaeoenvironmental interpretations. These two species distort the average signal and may bloom for short periods of time as a result of short duration changes in lake water chemistry, such as following fresh-water input from snow melt. Blurring of sedimentary records through mixing at the sediment–water interface can mask the full magnitude of environmental variation and low sampling resolution may fail to capture high amplitude events of short duration.  相似文献   

14.
Using molecular genetic methods and an ancient DNA approach, we studied population and species succession of rotifers of the genus Brachionus in the Kenyan alkaline-saline crater lake Sonachi since the beginning of the 19th century as well as distribution of Brachionus haplotypes in recent and historic sediments of other lakes of the East African Rift System. The sediment core record of Lake Sonachi displays haplotypes of a distinct evolutionary lineage in all increments. Populations were dominated by a single mitochondrial haplotype for a period of 150 years, and two putatively intraspecific turnovers in dominance occurred. Both changes are concordant with major environmental perturbations documented by a profound visible change in sediment composition of the core. The first change was very abrupt and occurred after the deposition of volcanic ash at the beginning of the 19th century. The second change coincides with a major lake level lowstand during the 1940s. It was preceded by a period of successively declining lake level, in which two other haplotypes appeared in the lake. One of these putatively belongs to another species documented in historical and recent Kenyan lake sediments. The analysis of plankton population dynamics through historical time can reveal patterns of population persistence and turnover in relation to environmental changes.  相似文献   

15.
We used ostracod species assemblages and their δ18O values in a 32-m sediment core from Lake Qinghai, China, along with information from cores collected at other sites in the lake, to infer lake evolution and hydroclimate changes since the last glacial. Dominant ostracod species Ilyocypris bradyi and its low δ18O values showed that Lake Qinghai was small in size or even consisted of several playa lakes, and the 1F core site could have even been in a wetland setting, under cold and dry climate conditions before 15.0 ka. Presence of Limnocythere inopinata with low δ18O values, and absence of I. bradyi after 15.0 ka, indicate the lake area increased or that the playas merged. The decrease or disappearance of ostracods with high δ18O values showed that the lake shrunk under dry climate from 12.0 to 11.6 ka. After 11.6 ka, hydroclimate shifts inferred from ostracod species changes (Eucypris mareotica and L. inopinata) and their δ18O values were as follows: (1) 11.6–7.4 ka—larger, but still small lake area with greater moisture availability under primarily dry climate conditions, (2) 7.4 to 3.2 ka—increasing lake level under a warmer and wetter climate, and (3) 3.2 ka to present—stable, large, brackish lake. The low ratio of lake water volume to runoff, and close proximity of the core site to freshwater input from the river mouth would have resulted in relatively lower ostracod δ18O values when Lake Qinghai was small in area during the interval from 32.0 to 15.0 ka. Lower ostracod δ18O values during interstadials and throughout the entire Last Glacial Maximum and early deglacial (ca. 24.0–16.0 ka) were caused by a greater contribution of seasonal meltwater from ice or snow and low incoming precipitation δ18O values related to cold climate conditions in the region at that time.  相似文献   

16.
We examined the effects of heavy pulp mill discharges on the Lake Lievestuoreenjärvi ecosystem and the later recovery of diatom and chironomid communities from age-dated short core samples. Beginning in 1927 the lake received a heavy effluent load from a sulphite pulp mill. Except for the recession during the Second World War and the temporary closure of the mill from 1967 to 1971, the industrial load, containing large quantities of nutrients, organic matter and toxic compounds, increased continuously. In the early 1980s, laboratory documents were falsified by the directors of the mill and the systematic illegal effluent overload led to a collapse of the whole lake ecosystem. In 1985, the outdated plant was finally closed down. Based on the assessment of chemical properties and biological remains of the sediment, we distinguished five developmental phases in the ecological state of the lake. In the pre-industrial phase, the pelagic and profundal benthic communities were dominated by species preferring ultraoligotrophic or oligotrophic lakes. Concomitant with the increasing discharge and deposition of chlorine compounds, resin acids, and mercury, as well as strong acidity and hypolimnetic and epilimnetic anoxia, the ecological status changed in a short period from excellent to bad. Finally, in the early 1960s, the majority of the lake was virtually dead and the aquatic life survived only in the uppermost littoral zone. Since 1985, a fast recovery in the water quality has led to a strong, but temporary eutrophy in pelagic communities. The main peak of eutrophication was caused by the invasion of a species new to the lake,Aulacoseira granulata var.angustissima. Later, the pelagic communities shifted towards oligotrophy, but the original, pre-industrial status has not been re-established. The profundal benthic communities have not achieved the pre-industrial structure, but at present indicate mesotrophy.  相似文献   

17.
A 1.2 m sediment core from Lake Forsyth, Canterbury, New Zealand, records the development of the catchment/lake system over the last 7000 years, and its response to anthropogenic disturbance following European settlement c. 1840 AD. Pollen was used to reconstruct catchment vegetation history, while foraminifera, chironomids, Trichoptera, and the abundance of Pediastrum simplex colonies were used to infer past environmental conditions within the lake. The basal 30 cm of core records the transition of the Lake Forsyth Basin from a tidal embayment to a brackish coastal lake. Timing of closure of the lake mouth could not be accurately determined, but it appears that Lake Forsyth had stabilised as a slightly brackish, oligo-mesotrophic shallow lake by about 500 years BP. Major deforestation occurred on Banks Peninsula between 1860 AD and 1890 AD. This deforestation is marked by the rapid decline in the main canopy trees (Prumnopitys taxifolia (matai) and Podocarpus totara/hallii (totara/mountain totara), an increase in charcoal, and the appearance of grasses. At around 1895 AD, pine appears in the record while a willow (Salix spp.) appears somewhat later. Redundancy analysis (RDA) of the pollen and aquatic species data revealed a significant relationship between regional vegetation and the abundance of aquatic taxa, with the percentage if disturbance pollen explaining most (14.8%) of the constrained variation in the aquatic species data. Principle components analysis (PCA) of aquatic species data revealed that the most significant period of rapid biological change in the lakes history corresponded to the main period of human disturbance in the catchment. Deforestation led to increased sediment and nutrient input into the lake which was accompanied by a major reduction in salinity. These changes are inferred from the appearance and proliferation of freshwater algae (Pediastrum simplex), an increase in abundance and diversity of chironomids, and the abundance of cases and remains from the larvae of the caddisfly, Oecetis unicolor. Eutrophication accompanied by increasing salinity of the lake is inferred from a significant peak and then decline of P. simplex, and a reduction in the abundance and diversity of aquatic invertebrates. The artificial opening of the lake to the Pacific Ocean, which began in the late 1800s, is the likely cause of the recent increase in salinity. An increase in salinity may have also encouraged blooms of the halotolerant and hepatotoxic cyanobacteria Nodularia spumigena.  相似文献   

18.
Biomonitoring past salinity changes in an athalassic subarctic lake   总被引:1,自引:0,他引:1  
A short sediment core was taken from a small saline lake located on an intermontane plateau in the central Yukon Territory, Canada. In July 1990, chemical analyses indicated that, although the lake was shallow (Zmax=1.1 m), it was also chemically stratified, with hyposaline (9.9 to 10.0 g L−1) surface waters and slightly mesosaline (22.0 g L−1) deeper waters. The surface water was dominated by Na+ and HCO 3 . To our knowledge, this is the northernmost athalassic saline lake yet recorded. Quantification of algal (diatom, chrysophyte, and pigment) and invertebrate (chironomid, ceratopogonid, andChaoborus) fossils at four stratigraphic levels indicated that the lake sediments preserved numerous biological indicators that could be used to infer recent lake development. Many of the taxa are found in other athalassic salt lakes. The most striking stratigraphic change was a remarkable drop in the species richness of diatoms and invertebrates in the recent sediments, which parallels the elimination of species characteristic of less saline conditions. Halophilous taxa dominate the most recent sediments, indicating the development of more saline conditions. At the same time, a significant shift in chrysophyte cyst composition was observed. Fossil carotenoids and chlorophylls indicated a decrease in total algal abundance in recent sediments, as green and blue-green algae replaced diatoms and chrysophytes. Together, these paleolimnological data suggest a recent shift to drier conditions or increased evaporation in the central Yukon Territory.  相似文献   

19.
Ecology of testate amoebae (thecamoebians) in subtropical Florida lakes   总被引:1,自引:1,他引:0  
Fifty-seven surface sediment samples from 35 Florida lakes were collected to study testate amoebae. Seven genera, 17 species, and 28 strains were identified in the 46 sediment samples from 31 lakes that contained testate rhizopods. Seven species accounted for ≥90% of the individuals in all samples. Sediment total phosphorus (TPsed), organic matter (OM), and total carbon:total nitrogen ratio (TC:TN) were measured to assess the effect of these variables on thecamoebian assemblages. OM content was the only sediment variable that influenced presence/absence of thecamoebians. Samples with <5% OM contained no thecamoebians. Lakes with multiple surface sediment samples showed high Morisita–Horn similarity values (0.74–0.99), indicating that all sites at which samples were collected in a lake provided representative thecamoebian assemblages. No relationship was observed between thecamoebian diversity indices and sediment variables. Lake trophic state and pH were examined to explore potential water column influences on thecamoebian communities. Highest thecamoebian diversity indices were found in mesotrophic to eutrophic lakes with pH near 8.0. These results suggest that water column conditions have a greater influence on thecamoebian assemblages than do sediment variables. We used multivariate analysis to evaluate the relations between water quality variables and testate rhizopod assemblages. Canonical correspondence analysis (CCA) showed that alkalinity and pH are the water column variables that most influence the relative abundance of species. Thecamoebians thus hold promise as bioindicators of acidification in Florida lakes. Thecamoebian remains in lake sediment cores should be useful to infer past anthropogenic shifts in lake pH.  相似文献   

20.
Albeit subfossil Cladocera remains are considered as a reliable proxy for tracking historical lake development, they have been scarcely studied in large subalpine lakes south of the Alps. In this study, subfossil Cladocera remains from Lake Garda in northern Italy were analyzed to track the lake’s environmental changes since the Middle Ages. One core was retrieved from the largest sub-basin of Lake Garda (Brenzone, 350 m deep) and two cores were retrieved from the profundal and littoral zone of the smaller lake sub-basin (Bardolino, 80 and 40 m deep, respectively). The species distribution of Cladocera remains in recent sediment layers was similar to that observed in contemporary water samples. The deepest sections of the three cores were characterized by species sensitive to water temperature, which suggest a key role of major climatic events in driving the lake response during the late Holocene. The most evident change in Cladocera assemblages in the studied cores was observed during the 1960s, when planktonic taxa such as Daphnia spp. and Bosmina spp. became dominant at the expense of littoral taxa. Despite the highly coherent general pattern of subfossil Cladocera, the cores showed a set of minor differences, which were attributed to different morphological and hydrological features of the two basins forming Lake Garda. Multivariate analysis revealed a clear relation of Cladocera to climate variability during periods of low lake nutrient levels (i.e. before the 1960s). This provides additional information on past ecological responses of Lake Garda, as contrast previous data from subfossil diatom and pigment analyses did not fully capture effects of climate change during the same period. Since the 1960s shifts in assemblage composition of Cladocera and diatoms were highly coherent, in response to nutrient increase and the following, less pronounced, decrease in nutrient concentrations. During the last five decades, the response of the Cladocera to climate variability appeared to be masked by nutrient change. This work points up the potential of the multi-proxy approach for disentangling the multifaceted biological responses to multiple environmental stressors in large and deep lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号