首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
SPOT 5 HRG Level 1A and 1B stereo scenes covering Zonguldak testfield in north-west Turkey have been analysed. They comprise the left and right image components with base to height ratio of 0·54. The pixel size on the ground is 5 m. The bundle orientation was executed by the PCI Geomatica V9.1.4 software package and resulted in 3D geopositioning to sub-pixel accuracies in each axis provided that at least six control points were used in the computation. Root mean square error (rmse) values and vectors of residual errors for Levels 1A and 1B are similar, even for different control and check point configurations. Based on the scene orientation, Level 1A and 1B digital elevation models (DEMs) of the testfield have been determined by automatic matching and validated by the reference DEM digitised from the 1:25 000 scale topographic maps, interferometric DEMs from Shuttle Radar Topography Mission (SRTM) X- and C-band SAR data and the GPS profiles measured along the main roads in the testfield. Although the accuracies of reference data-sets are too similar to the generated SPOT DEMs, these are the only high quality reference materials available in this area. Sub-pixel height accuracy was indicated by the comparison with profile points. However, they are in favourable locations where matching is always successful, so such a result may give a biased measure of the accuracy of the corresponding DEMs.  相似文献   

2.
Digital elevation models (DEMs) are essential to various applications in topography, geomorphology, hydrology, and ecology. The Shuttle Radar Topographic Mission (SRTM) DEM data set is one of the most complete and most widely used DEM data sets; it provides accurate information on elevations over bare land areas. However, the accuracy of SRTM data over vegetated mountain areas is relatively low as a result of the high relief and the penetration limitation of the C-band used for obtaining global DEM products. The objective of this study is to assess the performance of SRTM DEMs and correct them over vegetated mountain areas with small-footprint airborne Light Detection and Ranging (Lidar) data, which can develop elevation products and vegetation products [e.g., vegetation height, Leaf Area Index (LAI)] of high accuracy. The assessing results show that SRTM elevations are systematically higher than those of the actual land surfaces over vegetated mountain areas. The mean difference between SRTM DEM and Lidar DEM increases with vegetation height, whereas the standard deviation of the difference increases with slope. To improve the accuracy of SRTM DEM over vegetated mountain areas, a regression model between the SRTM elevation bias and vegetation height, LAI, and slope was developed based on one control site. Without changing any coefficients, this model was proved to be applicable in all the nine study sites, which have various topography and vegetation conditions. The mean bias of the corrected SRTM DEM at the nine study sites using this model (absolute value) is 89% smaller than that of the original SRTM DEM, and the standard deviation of the corrected SRTM elevation bias is 11% smaller.  相似文献   

3.
Accuracy assessment of GDEM,SRTM, and DLR-SRTM in Northeastern China   总被引:1,自引:0,他引:1  
This paper compares the accuracy of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), Shuttle Radar Topography Mission (SRTM) C-band and German Aerospace Centre (DLR)-SRTM X-band digital elevation models (DEMs) with the Ziyuan 3 (ZY-3) stereoscopic DEM and ground control points (GCPs). To date, the horizontal error of these DEMs has received little attention in accuracy assessments. Using the ZY-3 DEM as reference, this study examines (1) the horizontal offset between the three DEMs and the reference DEM using the normalised cross-correlation method, (2) the vertical accuracy of those DEMs using kinematic GPS data and (3) the relationship between the three DEMs and the reference ZY-3 DEM. The results show that the SRTM and DLR-SRTM have greater vertical accuracy after applying horizontal offset correction, whereas the vertical accuracy of the ASTER GDEM is less than the other two DEMs. These methods and results can be useful for researchers who use DEMs for various applications.  相似文献   

4.
Any errors in digital elevation models (DEMs) will introduce errors directly in gravity anomalies and geoid models when used in interpolating Bouguer gravity anomalies. Errors are also propagated into the geoid model by the topographic and downward continuation (DWC) corrections in the application of Stokes’s formula. The effects of these errors are assessed by the evaluation of the absolute accuracy of nine independent DEMs for the Iran region. It is shown that the improvement in using the high-resolution Shuttle Radar Topography Mission (SRTM) data versus previously available DEMs in gridding of gravity anomalies, terrain corrections and DWC effects for the geoid model are significant. Based on the Iranian GPS/levelling network data, we estimate the absolute vertical accuracy of the SRTM in Iran to be 6.5 m, which is much better than the estimated global accuracy of the SRTM (say 16 m). Hence, this DEM has a comparable accuracy to a current photogrammetric high-resolution DEM of Iran under development. We also found very large differences between the GLOBE and SRTM models on the range of −750 to 550 m. This difference causes an error in the range of −160 to 140 mGal in interpolating surface gravity anomalies and −60 to 60 mGal in simple Bouguer anomaly correction terms. In the view of geoid heights, we found large differences between the use of GLOBE and SRTM DEMs, in the range of −1.1 to 1 m for the study area. The terrain correction of the geoid model at selected GPS/levelling points only differs by 3 cm for these two DEMs.  相似文献   

5.
Digital Elevation Models (DEMs) contain topographic relief data that are vital for many geoscience applications. This study relies on the vertical accuracy of publicly available latest high-resolution (30?m) global DEMs over Cameroon. These models are (1) the ALOS World 3D-30?m (AW3D30), (2) the Shuttle Radar Topography Mission 1 Arc-Second C-Band Global DEM (SRTM 1) and (3) the Advanced Spaceborne Thermal Emission and Reflection Global DEM Version 2 (ASTER GDEM 2). After matching their coordinate systems and datums, the horizontal positional accuracy evaluation was carried out and it shows that geolocation errors significantly influence the vertical accuracy of global DEMs. After this, the three models are compared among them, in order to access random and systematic effects in the elevation data each of them contains. Further, heights from 555 GPS/leveling points distributed all over Cameroon are compared to each DEM, for their vertical accuracy determination. Traditional and robust statistical measures, normality test, outlier detection and removal were used to describe the vertical quality of the DEMs. The test of the normality rejected the hypothesis of normal distribution for all tested global DEMs. Overall vertical accuracies obtained for the three models after georeferencing and gross error removal in terms of Root Mean Square (RMS) and Normalized Median Absolute Deviation (NMAD) are: AW3D30 (13.06?m and 7.75?m), SRTM 1 (13.25?m and 7.41?m) and ASTER GDEM 2 (18.87?m and 13.30?m). Other accuracy measures (MED, 68.3% quantile, 95% quantile) supply some evidence of the good quality of AW3D30 over Cameroon. Further, the effect of land cover and slope on DEM vertical accuracy was also analyzed. All models have proved to be worse in the areas dominated by forests and shrubs areas. SRTM 1 and AW3D30 are more resilient to the effects of the scattering objects respectively in forests and cultivated areas. The dependency of DEMs accuracy on the terrain roughness is evident. In all slope intervals, AW3D30 is performing better than SRTM 1 and ASTER GDEM 2 over Cameroon. AW3D30 is more representative of the external topography over Cameroon in comparison with two others datasets and SRTM 1 can be a serious alternative to AW3D30 for a range of DEM applications in Cameroon.  相似文献   

6.
Depending on scale, topographic maps depicting the shape of the land surfaces of the Earth are produced from different data sources. National topographic maps at a scale of 1:25 000 (25K maps) produced by General Command of Mapping are used as the base map set in Turkey. This map set, which consists of approximately 5500 sheets, covers the whole country and is produced using photogrammetric methods. Digital Elevation Models (DEMs) created from these maps are also available. Recently, another data source, Synthetic Aperture Radar (SAR) interferometric data, has become more important than those produced by conventional methods. The Shuttle Radar Topography Mission (SRTM) contains elevation data with 3 arc-second resolution and 16 m absolute height error (90 percent confidence level). These data are freely available via the Internet for approximately 80 percent of the Earth's land mass. In this study, SRTM DEM was compared with DEM derived from 25K topographic maps for different parts of Turkey. The study areas, each covering four neighboring 25K maps, and having an area of approximately 600 km2, were chosen to represent various terrain characteristics. For the comparison, DEMs created from the 25K maps were obtained and organized as files for each map sheet in vector format, containing the digitized contour lines. From these data, DEMs in the resolution of 3 arc-second were created (25K-DEM), in the same structure as the SRTM DEM, allowing the 25K-DEMs and the SRTM DEM to be compared directly. The results show that the agreement of SRTM DEM to the 25K-DEM is within about 13 m, which is less than the SRTM's targeted error of 16 m. The spatial distribution of the height differences between SRTM-DEM and the 25K-DEM and correlation analysis show that the differences were mainly related to the topography of the test areas. In some areas, local height shifts were determined.  相似文献   

7.
The drainage network of a sixth-order tropical river basin, viz. Ithikkara river basin, was extracted from different sources such as Survey of India topographic maps (1: 50,000; TOPO) and digital elevation data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (30 m) and Shuttle Radar Topography Mapping Mission (SRTM) (90 m). Basin morphometric attributes were estimated to evaluate the accuracy of the digital elevation model (DEM)-derived drainage networks for hydrologic applications as well as terrain characterization. The stream networks derived from ASTER and SRTM DEMs show significant agreement (with slight overestimation of lower order streams) with that of TOPO. The study suggests that SRTM (despite the coarser spatial resolution) provides better results, in drainage delineation and basin morphometry, compared to ASTER. Further, the variability of basin morphometry among the data sources might be attributed to spatial variation of elevation, raster grid size and vertical accuracy of the DEMs as well as incapability of the surface hydrologic analysis functions in the GIS platform.  相似文献   

8.
Remotely sensed Digital Elevation Models (DEM) can be used to augment a standalone Global Positioning System (GPS) by adding an extra range observation which measures the distance to the Earth centre. This method so called height aiding can reduce the number of GPS satellites required to get a 3D position fix from four to three and hence improve the performance of the GPS navigation algorithm in terms of accuracy, reliability and availability. Up until now, the accuracy of height aided GPS navigation using higher resolution Synthetic Aperture Radar (SAR) and Light Detection and Ranging (LiDAR)-derived elevation data has not been fully evaluated in a broad spectrum of navigation scenarios. This article provides a robust and accurate analysis on how much range error is introduced by height aiding using 5 m spacing SAR and 1 m spacing LiDAR-derived DEMs under in-car and personal navigation situations. Based on the experimental results obtained from both dynamic and static tests, suggestions have been made on what level of vertical and positional accuracy can be achieved as well as the related DEM quality issues for navigation purposes.  相似文献   

9.
Glaciers have a high impact in the socio-economic sectors including water supply, energy production, flood and avalanches. A high precision digital elevation model (DEM) is required to monitor glaciers and to study various glacier processes. The present study deals with the qualitative and quantitative evaluation of the DEM generated from the bistatic TanDEM-X data by comparing it with GPS, Ice, Cloud, and land Elevation Satellite (ICESat) data and standard global DEMs such as Shuttle Radar Topography Mission (SRTM) and Advanced Space-borne Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM). The study area consists of highly undulating glaciated terrain in western Himalaya, India. The results reveal that TanDEM-X is slightly better than SRTM both qualitatively and quantitatively, whereas ASTER GDEM showing maximum discrepancy among the three DEMs. The Root Mean Square Error (RMSE) of the TanDEM-X DEM with respect to GPS is 3.5 m at lower relief and 11.9 m at glaciated terrain, against 6.7 and 12.5 m for SRTM and 9.3 and 19.8 m for ASTER GDEM, respectively, for the same sites. On an average, for the whole study area, the RMSE of TanDEM-X is 7.9 m, SRTM is 9.3 m and ASTER GDM is 14.2 m. The RMSE of TanDEM-X, SRTM and ASTER GDEM with respect to ICESat are 16.3, 19.9 and 101.1 m, respectively. It is evident from the analysis that though SRTM is closer to TanDEM-X in terms of accuracy in the mountainous terrain, however, TanDEM-X will be more useful for studying glacier dynamics and topography.  相似文献   

10.
The first data set of X-band Digital Elevation Model (DEM), derived from Shuttle Radar Topography Mission (SRTM), of Gujarat Earthquake affected area was processed to assess the geo-coding and height accuracy. A detailed survey of the study area was carried out using Differential-GPS systems to get accurate control points. Though, it is the first data set processed without Attitude and Orbit Determination Avionics, the geo-coding and height accuracy is good. It is observed that there is an average shift of-1.5 pixels in Latitude and 2.5 pixels in Longitude with 1.5 pixels Standard Deviation (STD). A comparison of SRTM and Differential-GPS heights indicates that there is a bias of 7.4 m with STD of 3.4 m. This is in agreement with the height errors reported by the Deutschen Zentrums fur Luft- und Raumfahrt (DLR) in Height Error Map (HEM) data set.  相似文献   

11.
魏德宏  张永毅  张兴福 《测绘通报》2018,(2):116-119,130
SRTM、ASTER GDEM和AW3D是比较有代表性的全球数字高程模型。本文探讨了采用车载动态PPP技术对上述3类模型的区域高程精度进行检核,首先沿广州至肇庆公路进行连续数据采集,采用动态精密单点定位(PPP)技术解算动态点的WGS-84坐标;然后利用EGM2008重力场模型和仪器高获得动态点的正常高;最后采用4种不同的插值方法对SRTM、ASTER GDEM和AW3D模型进行高程检验。检核结果显示:不同的插值方法具有较好的一致性,SRTM3 V4.1、ASTER GDEM V2、AW3D30的高程标准差分别优于3.4 m、4.1 m和3.3 m,均优于其全球标称高程精度;本文检核方法快速高效,有较好的适用性。  相似文献   

12.
Hydrological modelling of large river catchments is a challenging task for water resources engineers due to its complexity in collecting and handling of both spatial and non-spatial data such as rainfall, gauge discharges, and topographic parameters. In this paper an attempt has been made to use satellite-based rainfall products such as Climatic Prediction Centre (CPC)-National Oceanic and Atmospheric Administration (NOAA) data for hydrological modelling of larger catchment where the limited field rainfall data is available. Digital Elevation Models (DEM) such as Global DEM (1 km resolution) and Shuttle Radar Topography Mission (SRTM) 3-arc second (90 m resolution) DEM have been used to extract topographic parameters of the basin for hydrological modelling of the study area. Various popular distributed models have been used in this study for computing excess rainfall, direct runoff from each sub-basin, and flow routing to the main outlet. The Brahmaputra basin, which is very complex both hydraulically and hydrologically due to its shape, size, and geographical location, has been examined as study area in this study. A landuse map derived from the satellite remote sensing data in conjunction with DEM and soil textural maps have been used to derive various basin and channel characteristics such as each sub-basin and channel slope, roughness coefficients, lag-time. Percentage of residual flows computed between observed flows and simulated flows using Global and SRTM DEMs are discussed. It is found that the topographic parameters computed using SRTM DEM could improve the model accuracy in computing flood hydrograph. Need of using better resolution satellite data products and the use of high-density field discharge observations is discussed.  相似文献   

13.
Digital elevation model (DEM) data of Shuttle Radar Topography Mission (SRTM) are distributed at a horizontal resolution of 90 m (30 m only for US) for the world, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM data provide 30 m horizontal resolution, while CARTOSAT-1 (IRS-P5) gives 2.6 m horizontal resolution for global coverage. SRTM and ASTER data are available freely but 2.6 m CARTOSAT-1 data are costly. Hence, through this study, we found out a horizontal accuracy for selected ground control points (GCPs) from SRTM and ASTER with respect to CARTOSAT-1 DEM to implement this result (observed from horizontal accuracy) for those areas where the 2.6-m horizontal resolution data are not available. In addition to this, the present study helps in providing a benchmark against which the future DEM products (with horizontal resolution less than CARTOSAT-1) with respect to CARTOSAT-1 DEM can be evaluated. The original SRTM image contained voids that were represented digitally as ?140; such voids were initially filled using the measured values of elevation for obtaining accurate DEM. Horizontal accuracy analysis between SRTM- and ASTER-derived DEMs with respect to CARTOSAT-1 (IRS-P5) DEM allowed a qualitative assessment of the horizontal component of the error, and the appropriable statistical measures were used to estimate their horizontal accuracies. The horizontal accuracy for ASTER and SRTM DEM with respect to CARTOSAT-1 were evaluated using the root mean square error (RMSE) and relative root mean square error (R-RMSE). The results from this study revealed that the average RMSE of 20 selected GCPs was 2.17 for SRTM and 2.817 for ASTER, which are also validated using R-RMSE test which proves that SRTM data have good horizontal accuracy than ASTER with respect to CARTOSAT-1 because the average R-RMSE of 20 GCPs was 3.7 × 10?4 and 5.3 × 10?4 for SRTM and ASTER, respectively.  相似文献   

14.
本文介绍了InSAR卫星轨道状态矢量内插方法,基于荷兰Delft大学开发的Doris雷达干涉软件分析了SAR卫星轨道数据误差对基线参数、参考椭球面相位、地形干涉相位和数字高程模型(DEM)精度的影响。以西藏玛尼地区为例,采用ERS1/2卫星数据,利用Doris软件,分别生成了基于欧空局(ESA)粗略轨道数据和荷兰Delft大学精密轨道数据的数字高程模型(DEM),并以SRTMDEM为基准对其精度进行了对比分析。结果表明,基于粗轨数据获取的DEM明显存在系统偏差,而基于精轨数据获取的DEM与SRTM DEM吻合的很好,相对于前者,精度提高5倍。  相似文献   

15.
This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological response units (HRUs) in Sitla Rao watershed (North India). The HRUs were derived using water storage capacity and slope to produce surface runoff zones. The DEMs were evaluated on elevation accuracy and representation of morphometric features. The DEM derived from optical stereo pairs (ASTER and CARTOSAT) provided higher vertical accuracies than the SRTM and topographic map-based DEM. The SRTM with a coarse resolution of 90 m provided vertical accuracy but better morphometry compared to topographic map. The HRU maps derived from the fine resolution DEM (ASTER and CARTOSAT) were more detailed but did not provide much advantage for hydrological studies at the scale of Sitla Rao watershed (5800 ha).  相似文献   

16.
Topographic corrections of synthetic aperture radar (SAR) images over hilly regions are vital for retrieval of correct backscatter values associated with natural targets. The coarse resolution external digital elevation models (DEM) available for topographic corrections of high resolution SAR images often result into degradation of spatial resolution or improper estimation of backscatter values in SAR images. Also, many a times the external DEMs do not spatially co-register well with the SAR data. The present study showcases the methodology and results of topographic correction of ALOS-PALSAR image using high resolution DEM generated from the same data. High resolution DEMs of Jaipur region, India were generated using multiple pair SAR images acquired from ALOS-PALSAR using interferometric (InSAR) techniques. The DEMs were validated using differential global positioning system measured elevation values as ground control points and were compared with photogrammetric DEM (advanced spaceborne thermal emission and reflection radiometer – ASTER) and SRTM (Shuttle Radar Topography Mission) DEM. It was observed that ALOS-PALSAR images with optimum baseline parameters produced high resolution DEM with better height accuracy. Finally, the validated DEM was used for topographic correction of ALOS-PALSAR images of the same region and were found to produce better result as compared with ASTER and SRTM-DEM.  相似文献   

17.
The frequency of coastal flood damages is expected to increase significantly during the twenty-first century as sea level rises in the coastal floodplain. Coastal digital elevation model (DEM) data describing coastal topography are essential for assessing future flood-related damages and understanding the impacts of sea-level rise. The Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) are currently the most accurate and freely available DEM data. However, an accuracy assessment specifically targeted at DEMs over low elevation coastal plains is lacking. The present study focuses on these areas to assess the vertical accuracy of SRTM and ASTER GDEM using Ice, Cloud, and land Elevation Satellite, Geoscience Laser Altimeter System (ICESat/GLAS) and Real Time Kinematic (RTK) Global Positioning System (GPS) field survey data. The findings show that DEM accuracy is much better than the mission specifications over coastal plains. In addition, optical remote sensing image analysis further reveals the relationship between DEM vertical accuracy and land cover in these areas. This study provides a systematic approach to assess the accuracy of DEMs in coastal zones, and the results highlight the limitations and potential of these DEMs in coastal applications.  相似文献   

18.
Digital Elevation Models (DEMs) are indispensable tools in many environmental and natural resource applications. DEMs are frequently derived from contour lines. The accuracy of such DEMs depends on different factors. This research investigates the effect of sampling density used to derive contours, vertical interval between contours (spacing), grid cell size of the DEM (resolution), terrain complexity, and spatial filtering on the accuracy of the DEM and the slope derivative. The study indicated different alternatives to achieve an acceptable accuracy depending on the contour interval, the DEM resolution and the complexity of the terrain. The effect of these factors on the accuracy of the DEM and the slope derivative was quantified using models that determine the level of accuracy (RMSE). The implementation of the models will guide users to select the best combination to improve the results in areas with similar topography. For areas with variable terrain complexity, the suggestion is to generate DEMs and slope at a suitable resolution for each terrain separately and then to merge the results to produce one final layer for the whole area. This will provide accurate estimates of elevation and slope, and subsequently improve the analyses that rely on these digital derivatives.  相似文献   

19.
Validation of Indian National DEM from Cartosat-1 Data   总被引:1,自引:0,他引:1  
CartoDEM is an Indian National DEM generated from Cartosat-1 stereo data. Cartosat-1, launched in May, 2005, is an along track (aft ?5°, Fore +26°) stereo with 2.5 m GSD, give base-height ratio of 0.63 with 27 km swath. The operational procedure of DEM generation comprises stereo strip triangulation of 500?×?27 km segment with 10 m posting along with 2.5 m resolution ortho image and free—access posting of 30 m has been made available (bhuvan.nrsc.gov.in). A multi approach evaluation of CartoDEM comprising (a) absolute accuracy with respect to ground control points for two sites namely Jagatsinghpur -flat and Dharamshala- hilly; second site i.e. Alwar-plain and hilly with high resolution aerial DEM, (b) relative difference between SRTM and ASTERDEM (c) absolute accuracy with ICESat GLAS for two sites namely Jagatsinghpur-plain and Netravathi river, Western Ghats-hilly (d) relative comparison of drainage delineation with respect to ASTERDEM is reported here. The absolute height accuracy in flat terrain was 4.7 m with horizontal accuracy of 7.3 m, while in hilly terrain it was 7 m height with a horizontal accuracy of 14 m. While comparison with ICESat GLAS data absolute height difference of plain and hilly was 5.2 m and 7.9 m respectively. When compared to SRTM over Indian landmass, 90 % of pixels reported were within ±8 m difference. The drainage delineation shows better accuracy and clear demarcation of catchment ridgeline and more reliable flow-path prediction in comparison with ASTER. The results qualify Indian DEM for using it operationally which is equivalent and better than the other publicly available DEMs like SRTM and ASTERDEM.  相似文献   

20.
Digital Elevation Models (DEM) of a hilly–valley region are prepared using stereo images of Cartosat-1 and Shuttle Radar Topography Mission (SRTM) images. The procedure of ortho-image generation from Cartosat-1 stereo images and the estimation of ground features from ortho-image are elaborated in the paper. Comparison of DEMs prepared from both images is discussed in terms of the quality of ground features detection, hydrological applications and geometrical calculations. It is found that DEM prepared from Cartosat-1 images are more accurate in the valley region and hence it is better suited for hydrological applications. On the contrary, for hilly region, SRTM images produce better DEM. However, if ground control points and Rational Polynomial Coefficients can be obtained in the hilly region, more accurate DEM can be prepared using Cartosat-1 stereo images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号