首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
潜器在水下发射火箭时会产生复杂的运动变化,对其研究很有实际意义。参照格特勒运动方程,建立潜器运动的非线性数学模型。导入实验模型的参数,对其六自由度基本运动进行了仿真,并与水池实验结果相比较,验证了仿真模型的有效性。导入发射火箭时潜器受到的完整载荷,计算分析了不同航速下潜器的运动响应和运动控制。结果表明,发射载荷对潜器运动将产生较长时间的显著影响,包括速度损失、升沉运动和纵倾角振荡。航速越小,运动变化越大,恢复所需时间越长,控制越困难。  相似文献   

2.
The main objective of this work is to investigate the effects of the damping level as well as different excitation forms on the overall prediction of the hydrodynamic parameters in the equations describing the coupled heave and pitch motions for an Underwater Robotic Vehicle (URV) sailing near the sea surface in random waves. The response of an underwater vehicle heaving and pitching in random waves having wide-band and narrow-band spectra are generated. The RDLRNNT technique is used to identify the hydrodynamic parameters in the equations. The technique is based on a combination of a multiple linear regression algorithm and a neural networks technique. The combination of the classical parametric identification techniques and the neural networks technique provides robust results and does not require a large amount of computer time. The identification technique would be particularly useful in identifying the parameters for both moderately and lightly damped motions under the action of unknown excitations effected by a realistic sea. It is shown that the developed technique produces reliable results for the parameters in the equations describing the coupled heave and pitch motions for a URV.  相似文献   

3.
The authors focus on demonstrating a simple design procedure for the Odyssey III autonomous underwater vehicle (AUV) flight control system. This procedure can be carried out quickly and routinely to maximize vehicle effectiveness. A hydrodynamic model of the vehicle was first developed from theory and bench-top laboratory tests. Using this initial model, a controller was developed from basic principles. Then, using this initial controller to reach a desired typical operating condition, a very compact set of open-loop maneuvers was performed in the field. The vehicle model was optimized using the Nelder-Mead simplex method, and a revised controller was then implemented and tested successfully.  相似文献   

4.
In the paper, a hydrodynamic model including the characteristics of maneuvering and seakeeping is developed to simulate the six-degree of freedom motions of the underwater vehicle steering near the sea surface. The corresponding wave exciting forces on the underwater vehicle moving in waves are calculated by the strip theory, which is based on the source distribution method. With the hydrodynamic coefficients relevant to the maneuvering and seakeeping, the fourth-order Runge–Kutta numerical method is adopted to solve the equations of motions and six-degrees of freedom of the motions for the underwater vehicle steering near the free surface can be obtained. The wave effect on the corresponding motions of the underwater vehicle is investigated and some interesting phenomena with respect to different wave frequencies and headings are observed. The hydrodynamic numerical model developed here can be served as a valuable tool for analyzing the ascending and descending behaviors of the underwater vehicle near the sea surface.  相似文献   

5.
操纵性是气垫船最重要的性能之一,本文介绍了全垫升气垫船操纵性能的仿真研究,首先,利用平面运动机构进行了约束船模试验,测得了作用在气垫船上的水动力,然后,进行了仿真计算,预报了气垫船的回转运动,并讨论了直线稳定性  相似文献   

6.
The hydrodynamic interaction between an Autonomous Underwater Vehicle (AUV) manoeuvring in close proximity to a larger underwater vehicle can cause rapid changes in the motion of the AUV. This interaction can lead to mission failure and possible vehicle collision. Being self-piloted and comparatively small, an AUV is more susceptible to these interaction effects than the larger body. In an aim to predict the manoeuvring performance of an AUV under the effects of the interaction, the Australian Maritime College (AMC) has conducted a series of computer simulations and captive model experiments. A numerical model was developed to simulate pure sway motion of an AUV at different lateral and longitudinal positions relative to a larger underwater vehicle using Computational Fluid Dynamics (CFDs). The variables investigated include the surge force, sway force and the yaw moment coefficients acting on the AUV due to interaction effects, which were in turn validated against experimental results. A simplified method is presented to obtain the hydrodynamic coefficients of an AUV when operating close to a larger underwater body by transforming the single body hydrodynamic coefficients of the AUV using the steady-state interaction forces. This method is considerably less time consuming than traditional methods. Furthermore, the inverse of this method (i.e. to obtain the steady state interaction force) is also presented to obtain the steady-state interaction force at multiple lateral separations efficiently. Both the CFD model and the simplified methods have been validated against the experimental data and are capable of providing adequate interaction predictions. Such methods are critical for accurate prediction of vehicle performance under varying conditions present in real life.  相似文献   

7.
A hydrodynamic model of a two-part underwater manoeuvrable towed system is proposed in which a depressor is equipped with active horizontal and vertical control surfaces, and a towed vehicle is attached to the lower end of a primary cable. In such a system the towed vehicle can be manoeuvred in both vertical and horizontal planes when it is towed at a certain velocity and the coupling effect of excitations at the upper end of the primary cable and disturbances of control manipulations to the towed vehicle can be reduced. In the model the hydrodynamic behavior of an underwater vehicle is described by the six-degrees-of-freedom equations of motion for submarine simulations. The added masses of an underwater vehicle are obtained from the three-dimensional potential theory. The control surface forces of the vehicle are determined by the wing theory. The results indicate that with relative simple control measures a two-part underwater manoeuvrable towed system enables the towed vehicle to travel in a wide range with a stable attitude. The method in this model gives an effective numerical approach for determining hydrodynamic characteristics of an underwater vehicle especially when little or no experimental data are available or when costs prohibit doing experiments for determining these data.  相似文献   

8.
In the paper two types of numerical models – a lumped-parameter model and a high-resolution two-dimensional hydrodynamic model – are used to analyse the response of a system of partially-connected tidal basins to inhomogeneous open sea forcing. The equations of the lumped-parameter model, suitable for an arbitrary number of basins with sloping walls, are formulated based on one-dimensional continuity and momentum equations. Numerical solutions to the equations are thoroughly examined, showing the influence of inhomogeneous open sea forcing and of geometrical parameters of the basins on the tidal range and the water transport through the system, with particular emphasis given to inter-basin water exchange and cumulative water transport through basins boundaries. The results of the lumped-parameter model simulations for the tidal basins of the German Wadden Sea are successfully compared with the results of calculations with the two-dimensional hydrodynamic model, which is used to investigate in more detail circulation patterns and the influence of specific local features of inlet bathymetry on the hydrodynamic processes in the study area. The influence of wind on the basins response is discussed as well.  相似文献   

9.
In this paper, the hydrodynamic characteristic of a synthetic jet steered underwater vehicle is studied. The steering motion studied is the lateral motion and the yaw motion. The lateral motion is induced through the in-phase work of this two actuators and the yaw motion is realized through the out-of-phase work. The vehicle studied is REMUS AUV with synthetic jet actuator mounted inside. The hydrodynamic characteristic of the vehicle under different cruising speed is studied. The driving parameters of the SJ actuator keep invariant in different cases. When the two actuators work in phase, the average steering force is smaller than the thrust of the isolated actuator and keeps nearly invariant under different cruising speed. When the two actuators work out of phase, the average steering moment also keeps invariant with cruising speed. The mathematical model of the additional drag of the vehicle, the thrust of the actuator, the steering force as well as the steering moment is given. The velocity distribution is also given to assistant the analysis in this paper. From the analysis given it can be known the steering method based on SJ is realized through position control other than velocity control.  相似文献   

10.
An experimental set-up is developed and proved to be effective for laboratory study of an underwater towed system. The experimental technique gives a practical method for monitoring the kinematic and dynamic performance of an underwater towed system in a ship towing tank. Both the theoretical and experimental results in the investigation indicate that the hydrodynamic response of a towed vehicle to the wave induced motion of a towing ship can be significantly reduced by applying a two-part tow method. A comparison of the numerical and experimental results in the investigation demonstrates that the numerical simulation results are close to the experimental data, overall agreement between experimental and theoretical results is satisfactory. The results qualitatively verify the mathematical model of a two-part underwater towed system proposed by Wu and Chwang [Wu, J., Chwang, A.T., 2000. A hydrodynamic model of a two-part underwater towed system. Ocean Engineering 27 (5), 455–472].  相似文献   

11.
朱仰顺  刘臻  曲恒良 《海洋工程》2022,40(4):147-157
全被动式振荡水翼是振荡水翼式潮流能装置的主要型式之一。对全被动式振荡水翼进行了数值模拟研究,构建了二维数值模型,研究了雷诺数及升沉刚度对全被动式振荡水翼水动力性能的影响。通过流场结构及水动力性能分析研究了典型参量对全被动式振荡水翼获能性能的影响机理,确定了维持其良好水动力性能的参数范围。研究发现,水翼的水动力性能对雷诺数及升沉刚度的变化较为敏感。雷诺数增大,水翼所需升沉刚度随之增加,且水翼可以在更大的参数范围下获得较优的水动力性能。另外,水翼可以在没有升沉刚度的情况下实现周期性运动,其获能甚至优于一些有升沉刚度的情况。最优工况下,平均功率系数和能量转换效率分别为1.07和27.48%。  相似文献   

12.
邓春楠  葛彤  吴超 《海洋工程》2013,31(6):53-58
水下环境复杂多变,由于水流的不可预知性和多变性,潜器的水动力系数往往无法准确获取,使得依赖这种参数的潜器运动控制算法的应用受到了很大的局限。为了解决控制器对模型参数的依赖,设计了一种基于高阶滑模控制算法的模型无关控制器,并通过设置合理的过渡过程,解决了这种控制算法依赖初值的弊端。仿真结果表明,位置和姿态的控制能够快速的收敛,误差很小并且不依赖于初始条件,控制器需调节参数很少,并且算法简单,适用于工程的实际需要。  相似文献   

13.
This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that the vehicle can suit both submergence and flight, considering the tremendous differences between hydrodynamic configuration and aerodynamic configuration of a vehicle. The transition of the two shapes can be achieved by using morphing technology. The water-to-air process, including water-exit, morphing, take-off and steady flight, is analyzed. The hydrodynamic and aerodynamic model of the vehicle exiting the water surface obliquely and then taking off into the air has been founded. The control strategy after morphing is analyzed and the control method is given. Numerical method is used to validate the motion model of the water-exit process. Results of simulations show the validity of the proposed model and the feasibility of MUSAV in theory.  相似文献   

14.
The sensitivity of the added mass coefficients of a typical autonomous underwater vehicle (AUV) to changes in geometric parameters was investigated. Qualitative deductions were made concerning the effect of geometric variations. Then the added mass coefficients for several configurations of body geometry were generated for the Canadian Self-Contained Off-the-shelf Underwater Testbed (C-SCOUT) vehicle using the computer program Estimate Submarine Added Mass (ESAM). The changes in the added mass coefficients have direct relationships to the varied parameter. The results presented here are specific to the C-SCOUT, but may be extended to similar axisymmetric bodies.  相似文献   

15.
In this paper, a hydrodynamic model is developed to simulate the six degrees of freedom motions of the underwater remotely operated vehicle (ROV) including the umbilical cable effect. The corresponding hydrodynamic forces on the underwater vehicle are obtained by the planar motion mechanism test technique. With the relevant hydrodynamic coefficients, the 4th-order Runge–Kutta numerical method is then adopted to solve the equations of motions of the ROV and the configuration of the umbilical cable. The multi-step shooting method is also suggested to solve the two-end boundary-value problem on the umbilical cable with respect to a set of first-order ordinary differential equation system. All operation simulations for the ROV including forward moving, ascending, descending, sideward moving and turning motions can be analyzed, either with or without umbilical cable effect. The current effect is also taken into consideration. The present results reveal that the umbilical cable indeed significantly affects the motion of the ROV and should not be neglected in the simulation.  相似文献   

16.
杨新平  徐鹏飞  胡震 《海洋工程》2012,30(1):137-144
以载人深潜器的各种水动力参数和实际尺寸为基础,根据几何空间坐标方程建立了其运动学模型,采用MultiGen公司的Creator建模工具和Vega视景环境完成了在深海虚拟环境下的系统仿真。该系统可以实现深海机器人的可视化,更加直观、生动和实时的反映其位姿状态和水面、水下巡航过程。该系统实际应用在中国科学技术馆深海机器人展馆项目上,一方面展示载人深潜器的水下工作过程,同时也使得观众有机会亲身体验潜水器的操纵与驾驶。实际运行结果表明,该系统逼真地演示了载人深潜器水面备航、无动力下潜以及近海底巡航等仿真过程,能够满足系统仿真的实时性要求。该系统还可以应用到深海环境模拟研究、水下机器人运动仿真、控制系统调试以及操纵驾驶训练等中。  相似文献   

17.
The dynamic response of a towed cable system to ship maneuver is parametrically simulated. Three dimensionless parameters influence on towed cable system maneuverability is investigated. They are ratio of total length to turning radius R/L, ratio of cable mass to vehicle mass σ, and ratio of mass unit length to hydrodynamic force w/r. An oscillatory motion of towed vehicle is found in simulation of spiral towed courses. Features of this oscillation in different spiral courses are compared. The sharp turns, gradual turns and their transient states of towed cable dynamics for different course directions are discussed extensively. According to the characters of transient states and horizontal trajectories evolution of maneuvered cable system, the dynamic behaviors can be divided into three situations in Fig. 8 turning maneuvers. The behavior of towed cable system during a zigzag turning course is simulated in the end. Two ingredients of heave motion are found during small ratio of turning radii to length in this course. The primary damp to initial turning becomes weak and the response to alternative turns plays a more and more important role. The damping properties of the transient behavior in different maneuvers show a periodical invariance to σ during some turning maneuvers.  相似文献   

18.
基于模糊神经网络理论对水下拖曳体进行深度轨迹控制   总被引:2,自引:0,他引:2  
以华南理工大学开发的自主稳定可控制水下拖曳体为研究对象,首先通过水下拖曳体在拖曳水池样机中的试验取得试验数据后作为训练样本,采用LM BP算法,建立基于神经网络理论构建的可控制水下拖曳体轨迹与姿态水动力的数值模型。在此基础上设计了一个控制系统,它主要由两部分组成:基于遗传算法的神经网络辨识器和基于模拟退火改进的遗传算法的模糊神经网络控制器。以满足预先设定的拖曳体水下监测轨迹要求为控制依据,由控制系统确定为达到所要求的运动轨迹而应采用的迫沉水翼转角,以此作为输入参数,通过LM BP神经网络模型的模拟计算预报在这一操纵动作控制下的拖曳体所表现的轨迹与姿态特征。数值模拟计算结果表明:该系统的设计达到了所要求的目的;借助这一系统,可以有效地实现对拖曳体的深度轨迹控制。  相似文献   

19.
This paper presents an open-loop control system for a new experimental vehicle, named the biorobotic autonomous underwater vehicle (BAUV). The rigid cylindrical hull of the vehicle is attached with six strategically located fins to produce forces and moments in all orthogonal directions and axes with minimal redundancy. The fins are penguin-wing inspired and they implement the unsteady high-lift principle found widely in swimming and flying animals. The goal has been to design an underwater vehicle that is highly maneuverable by taking the inspiration from nature where unsteady hydrodynamic principles of lift generation and the phase synchronization of fins are common. We use cycle-averaged experimental data to analyze the hydrodynamic forces and moments produced by a single foil as a function of its kinematic motion parameters. Given this analysis, we describe a method for synthesizing and coordinating the sinusoidal motion of all six foils to produce any desired resultant mean force and moment vectors on the vehicle. The mathematics behind the resulting algorithm is elegant and effective, yielding compact and efficient implementation code. The solution method also considers and accommodates the inherent physical constraints of the foil actuators. We present laboratory experimental results that demonstrate the solution method and the vehicle's resulting high maneuverability.   相似文献   

20.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号