首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The possibility that the Earth's tides are a triggering factor of Vrancea subcrustal earthquakes is investigated in the first part of this paper. A possible correlation between Vrancea subcrustal earthquakes and geomagnetic jerks is demonstrated in the second part. The last part of the paper presents a number of results concerning a possible relationship between the regularities of strong Vrancea subcrustal seismicity and the Chandler nutation parameters. An attempt is made to integrate all of these phenomena in a more general framework that takes into account physical processes in the Earth mantle and core. A long-term prediction of the next strong Vrancea earthquake is finally attempted.  相似文献   

2.
Seismicity patterns that characterize the seismic regime of the Vrancea intermediate-depth earthquakes are investigated using an earthquake catalogue extending from 1974 to 1998. The analysis is made separately on two characteristic segments of the subducted plate (active zones) which hosted the major earthquakes of 4 March 1977, 30 August 1986 and 30 May 1990. Precursory anomalies preceding the occurrence of the major shock of 1986 (Mw = 7.3) in the lower part of the subducted slab are outlined when analyzing the time variation of the parameter (defined as the ratio of small to moderate events in a given active zone and a given time interval) and of the fractal dimension of the earthquake space distribution. Nothing similar is noticed in the upper part of the Vrancea slab. The analyzed time interval covering 25 years shows that, in contrast to previous studies, the statistical fluctuations of the parameter, computed for a time window of 5 months, appear to be too large to be considered as precursory anomalies. Significant differences among characteristic depth segments are also outlined in the frequency–magnitude distribution and are possibly related to differences in the physical mechanism of the earthquake generation process.  相似文献   

3.
A parameterization derived from the Weibull distribution is used to model the seismic activity of the Vrancea region.The analysis of 498 crustal earthquakes with local magnitudes greater than 2.0, and 1377 subcrustal events with local magnitudes greater than 2.5 emphasizes that the shallow sequences show a strong clustering tendency, while the intermediate depth mainshock sequences are modeled by a completely random pattern in space and time. These results are not influenced by the magnitude threshold and the width of the time window.The difference between the seismicity patterns in the crust and in the subcrustal zone correlates with the difference between the stress field within these two regions.  相似文献   

4.
Several source parameters (source dimensions, slip, particle velocity, static and dynamic stress drop) are determined for the moderate-size October 27th, 2004 (MW = 5.8), and the large August 30th, 1986 (MW = 7.1) and March 4th, 1977 (MW = 7.4) Vrancea (Romania) intermediate-depth earthquakes. For this purpose, the empirical Green's functions method of Irikura [e.g. Irikura, K. (1983). Semi-Empirical Estimation of Strong Ground Motions during Large Earthquakes. Bull. Dis. Prev. Res. Inst., Kyoto Univ., 33, Part 2, No. 298, 63–104., Irikura, K. (1986). Prediction of strong acceleration motions using empirical Green's function, in Proceedings of the 7th Japan earthquake engineering symposium, 151–156., Irikura, K. (1999). Techniques for the simulation of strong ground motion and deterministic seismic hazard analysis, in Proceedings of the advanced study course seismotectonic and microzonation techniques in earthquake engineering: integrated training in earthquake risk reduction practices, Kefallinia, 453–554.] is used to generate synthetic time series from recordings of smaller events (with 4 ≤ MW ≤ 5) in order to estimate several parameters characterizing the so-called strong motion generation area, which is defined as an extended area with homogeneous slip and rise time and, for crustal earthquakes, corresponds to an asperity of about 100 bar stress release [Miyake, H., T. Iwata and K. Irikura (2003). Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bull. Seism. Soc. Am., 93, 2531–2545.] The parameters are obtained by acceleration envelope and displacement waveform inversion for the 2004 and 1986 events and MSK intensity pattern inversion for the 1977 event using a genetic algorithm. The strong motion recordings of the analyzed Vrancea earthquakes as well as the MSK intensity pattern of the 1977 earthquake can be well reproduced using relatively small strong motion generation areas, which corresponds to small asperities with high stress drops (300–1200 bar) and high particle velocities (3–5 m/s). These results imply a very efficient high-frequency radiation, which has to be taken into account for strong ground motion prediction, and indicate that the intermediate-depth Vrancea earthquakes are inherently different from crustal events.  相似文献   

5.
Mäntyniemi  P.  Mârza  V.  Kijko  A.  Retief  P. 《Natural Hazards》2003,29(3):371-385
In this paper we apply a probabilistic methodology to map specific seismic hazard induced by the Vrancea Seismogenic Zone, which represents the uttermost earthquake danger to Romania as well as its surroundings. The procedure is especially suitable for the estimation of seismic hazard at an individual site, and seismic hazard maps can be created by applying it repeatedly to grid points covering larger areas. It allows the use of earthquake catalogues with incompletely reported historical and complete instrumental parts. When applying themethodology, special attention was given to the effect of hypocentral depth and the variation of attenuation according to azimuth. Hazard maps specifying a 10% chance of exceedance of the given peak ground acceleration value for an exposure time of 50 years were prepared for three different characteristic depths of earthquakes in the Vrancea area. These maps represent a new realistic contribution to the mitigation of the earthquake risk caused by the Vrancea Seismogenic Zone in terms of: (1) input data (consistent, reliable, and the most complete earthquake catalogue), (2) appropriate and specific attenuation relationships (considering both azimuthal and depth effects); and (3) a new and versatile methodology.  相似文献   

6.
Reprocessing of industry deep seismic reflection data (Ramnicu Sarat and Braila profiles) from the SE Carpathian foreland of Romania provides important new constraints on geodynamic models for the origin of the intermediate depth Vrancea Seismogenic Zone (VSZ). Mantle (70–200 km) earthquakes of the VSZ are characterized by high magnitudes (greater than 6.5), frequent occurrence rates (approximately 25 years), and confinement in a very narrow (30 × 70 × 200 km3) near vertical zone atypical for a Wadati–Benioff plane, located in front of the orogen. These two deep (20 s) seismic reflection profiles (70 km length across the foreland) reveal (1) a high-amplitude, gently east-dipping reflection across most of the section from what we interpret to be the Moho at  15 s (40–42 km) on the Ramnicu Sarat line to  16 s (47–48 km) on the Braila line, (2) a thick sedimentary cover increasing in thickness from east (1 s;  800 m) to west (7.5 s; 14 km), (3) an eastward increase in crustal thickness from 38 km (near VSZ) to  45 km, (4) seismic and topographic evidence for a newly imaged, possibly seismically active basement fault with a surface offset of 30 m observed on the Ramnicu Sarat line, (5) a lack of notable west-dipping structures in the crust and across the Moho, and (6) variable displacements on Peceneaga–Camena Fault of  5 km at Moho and  200 m at the basement–sedimentary cover contact.These observations appear to argue against recent models for west-dipping subduction of oceanic lithosphere at or in the vicinity of the Vrancea Seismogenic Zone given the lack of west-dipping fabrics in the lower crust and across the crust–mantle boundary. Consequently, one possible explanation for the geodynamic origin of VSZ could be partial delamination of the continental lithosphere in an intra-plate setting along a sub-horizontal lithospheric interface in the Carpathian hinterland that likely involves remnant lithospheric coupling between the crust and uppermost mantle in the foreland.  相似文献   

7.
The DACIA PLAN (Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics) deep seismic sounding survey was performed in August–September 2001 in south-eastern Romania, at the same time as the regional deep refraction seismic survey VRANCEA 2001. The main goal of the experiment was to obtain new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea zone, including the Focsani Basin. The seismic reflection line had a WNW–ESE orientation, running from internal East Carpathians units, across the mountainous south-eastern Carpathians, and the foreland Focsani Basin towards the Danube Delta. There were 131 shot points along the profile, with about 1 km spacing, and data were recorded with stand-alone RefTek-125s (also known as “Texans”), supplied by the University Texas at El Paso and the PASSCAL Institute. The entire line was recorded in three deployments, using about 340 receivers in the first deployment and 640 receivers in each of the other two deployments. The resulting deep seismic reflection stacks, processed to 20 s along the entire profile and to 10 s in the eastern Focsani Basin, are presented here. The regional architecture of the latter, interpreted in the context of abundant independent constraint from exploration seismic and subsurface data, is well imaged. Image quality within and beneath the thrust belt is of much poorer quality. Nevertheless, there is good evidence to suggest that a thick (10 km) sedimentary basin having the structure of a graben and of indeterminate age underlies the westernmost part of the Focsani Basin, in the depth range 10–25 km. Most of the crustal depth seismicity observed in the Vrancea zone (as opposed to the more intense upper mantle seismicity) appears to be associated with this sedimentary basin. The sedimentary successions within this basin and other horizons visible further to the west, beneath the Carpathian nappes, suggest that the geometry of the Neogene and recent uplift observed in the Vrancea zone, likely coupled with contemporaneous rapid subsidence in the foreland, is detached from deeper levels of the crust at about 10 km depth. The Moho lies at a depth of about 40 km along the profile, its poor expression in the reflection stack being strengthened by independent estimates from the refraction data. Given the apparent thickness of the (meta)sedimentary supracrustal units, the crystalline crust beneath this area is quite thin (< 20 km) supporting the hypothesis that there may have been delamination of (lower) continental crust in this area involved in the evolution of the seismic Vrancea zone.  相似文献   

8.
Sphalerite (ZnS) is an abundant ore mineral and an important carrier of elements such as Ge, Ga and In used in high‐technology applications. In situ measurements of trace elements in natural sphalerite samples using LA‐ICP‐MS are hampered by a lack of homogenous matrix‐matched sulfide reference materials available for calibration. The preparation of the MUL‐ZnS1 calibration material containing the trace elements V, Cr, Mn, Co, Ni, Cu, Ga, Ge, As, Se, Mo, Ag, Cd, In, Sn, Sb, Tl and Pb besides Zn, Fe and S is reported. Commercially available ZnS, FeS, CdS products were used as the major components, whereas the trace elements were added by doping with single‐element ICP‐MS standard solutions and natural mineral powders. The resulting powder mixture was pressed to pellets and sintered at 400 °C for 100 h using argon as an inert gas. To confirm the homogeneity of major and trace element distributions within the MUL‐ZnS1 calibration material, measurements were performed using EPMA, solution ICP‐MS, ICP‐OES and LA‐ICP‐MS. The results show that MUL‐ZnS‐1 is an appropriate material for calibrating trace element determination in sphalerite using LA‐ICP‐MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号