首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The construction of multiple dams and barrages in many Indian River basins over the last few decades significantly reduced river flow to the sea and affected the sediment regime. More reservoir construction is planned through the proposed National River Linking Project (NRLP), which will transfer massive amounts of water from the North to the South of India. The impacts of these developments on fertile and ecologically sensitive deltaic environments are poorly understood and quantified at present. In this paper an attempt is made to identify, locate and quantify coastal erosion and deposition processes in one of the major river basins in India—the Krishna—using a time series of Landsat images for 1977, 1990 and 2001 with a spatial resolution ranging from 57.0 m to 28.5 m. The dynamics of these processes are analyzed together with the time series of river flow, sediment discharge and sediment storage in the basin. Comparisons are made with similar processes identified and quantified earlier in the delta of a neighboring similarly large river basin—the Godavari. The results suggest that coastal erosion in the Krishna Delta progressed over the last 25 years at the average rate of 77.6 ha yr− 1, dominating the entire delta coastline and exceeding the deposition rate threefold. The retreat of the Krishna Delta may be explained primarily by the reduced river inflow to the delta (which is three times less at present than 50 years ago) and the associated reduction of sediment load. Both are invariably related to upstream reservoir storage development.  相似文献   

2.
人为干扰导致的城市河流退化在地理科学和水文学领域引发了广泛关注, 针对城市河流形态及演变过程的研究成为退化河流生态修复的一项重要内容, 然而, 目前国内相关基础理论的系统梳理相对缺乏。本文回顾了半个多世纪以来城市河流形态及稳定性演变的研究成果, 从研究内容和方法两方面对不同城市化阶段河流形态及稳定性变化的特征和原因进行总结, 同时评述了不同研究方法的特点与局限。本文认为, 城市化进程改变了河流自然演化过程, 破坏了河流原有形态及稳定性, 其中, 沉积和径流体系变化是其根本原因。为了更好地运用河流演变机理进行河流修复, 学者们发展了河流分类体系, 主要包括形态导向法、过程导向法和综合分类法, 重点从河流退化的地貌形态、沉积和径流变化过程、河流演变的时间周期等方面概述各分类体系的优缺点, 阐述具有预测功能的河流分类体系不断完善的过程。本文通过梳理城市河流演变的研究成果, 以期为中国城市河流修复与管理提供科学依据和现实借鉴。  相似文献   

3.
The accelerated urbanization has resulted in new soil erosion in the Loess Plateau region since the 1980s. A concept of urban erosion and its impacts on environment are discussed. The experimental studies and field investigations show that those loose silt and earth piles formed by urban construction can be eroded seriously: Under stormy rain, the amount of sediment from steep man-dumped slope is 10.8–12.2 times that of from uncovered slope land; the result of experiments with the wind tunnel also shows that the damage to the surface structure of dry loess can cause serious soil erosion by wind in some cities of the region. Even if in the urban built-up area, there are many loose sandy soil, mud and silt, which are washed into rivers by city’s ground flow in the rainy season. So, anthropogenically induced soil erosion has made soil erosion more serious around the urban areas. And the urban eroded environment has several characteristics such as fragility, complexity, seasonality and quick variability. Urban areas witness a quick economic growth and have more construction projects than rural areas, which brings more intensive changes of environments during a short period of time or adds some new elements to the erosion system. Therefore erosion has experienced more intensive impact by human activities. So, the possible impact of urbanization on erosion environment must be taken into consideration when designing or planning to exploit natural resources or to develop urban areas in the Loess Plateau.  相似文献   

4.
The estimation of fluvial sediment transport rate from measurements of morphological change has received growing recent interest. The revival of the ‘morphological method’ reflects continuing concern over traditional methods of rate determination but also the availability of new survey methods capable of high-precision, high-resolution topographic monitoring. Remote sensing of river channels through aerial digital photogrammetry is a potentially attractive alternative to labour intensive ground surveys. However, while photogrammetry presents the opportunity to acquire survey data over large areas, data precision and accuracy, particularly in the vertical dimension are lower than in traditional ground survey methods. This paper presents results of recent research in which digital elevation models (DEMs) have been developed for a reach of a large braided gravel-bed river in Scotland using both digital photogrammetry and high-resolution RTK GPS ground surveys. A statistical level of change detection is assessed by comparing surfaces with independent check points. The methodological sensitivity of the annual channel sediment budget (1999–2000) to the threshold is presented. Results suggest that while the remote survey methods employed here can be used to develop qualitatively convincing, moderate precision DEMs of channel topography (RMSE=±0.21 m), the remaining errors imply significant limits on reliable change detection which lead to important information losses. Tests at a 95% confidence interval for change detection show that over 60% of channel deposition and 40% of erosion may be obscured by the lower level of precision associated with photogrammetric monitoring when compared to ground survey measurements. This bias reflects the difficulty of detecting the topographic signature of widespread, but shallow deposition on bar tops.  相似文献   

5.
The impacts of urbanization on soil erosion in the Loess Plateau region   总被引:1,自引:0,他引:1  
The accelerated urbanization has resulted in new soil erosion in the Loess Plateau region since the 1980s. A concept of urban erosion and its impacts on environment are discussed. The experimental studies and field investigations show that those loose silt and earth piles formed by urban construction can be eroded seriously: Under stormy rain, the amount of sediment from steep man-dumped slope is 10.8-12.2 times that of from uncovered slope land; the result of experiments with the wind tunnel also shows that the damage to the surface structure of dry loess can cause serious soil erosion by wind in some cities of the region. Even if in the urban built-up area, there are many loose sandy soil, mud and silt, which are washed into rivers by city’s ground flow in the rainy season. So, anthropogenically induced soil erosion has made soil erosion more serious around the urban areas. And the urban eroded environment has several characteristics such as fragility, complexity, seasonality and quick variability. Urban areas witness a quick economic growth and have more construction projects than rural areas, which brings more intensive changes of environments during a short period of time or adds some new elements to the erosion system. Therefore erosion has experienced more intensive impact by human activities. So, the possible impact of urbanization on erosion environment must be taken into consideration when designing or planning to exploit natural resources or to develop urban areas in the Loess Plateau.  相似文献   

6.
1 IntroductionThe Loess Plateau region covers an area of 62.4(104 km2 and lies in the center of northern China. Urbanization and economic development have been quickened in recent decades. Both the number of towns established and scale of cities have increased. Although the pace of urbanization has been accelerated, the eco-environmental control in urban areas still lags behind relatively. Moreover, the construction and development of cities damaged the already vulnerable eco-environment to …  相似文献   

7.
Fire can alter sediment sources and transport rates in river basins, changing landforms and aquatic habitats and degrading downstream water quality. Variability in the response between environments, between fires, and with time since fire makes predicting the catchment-scale effect of individual fires difficult. This study applies the fallout radionuclides 137Cs and 210Pbxs to trace the sources and transport of fine sediment through a river network following a wildfire of moderate to extreme severity in the 629-km2 eucalypt-forested Nattai River water-supply catchment near Sydney, Australia. The tracer analysis showed that post-fire erosion caused a switch in fine (< 10 µm) sediment sources from 80% subsoil derived from gully and river bank erosion to 86% topsoil derived from hillslope surface erosion. The fine sediment phosphorus content increased 4–10 fold over pre-fire levels. Annual post-fire sediment yields estimated from suspended solids rating curves were 109–250 times higher than they would have been without fire. A large additional amount of sediment remained stored within the river network for at least four years, particularly in lower-gradient reaches. Analysis of a sediment core showed that surface erosion following a previous fire had supplied at least 29% of total catchment sediment yield over the past 36 years. It is concluded that wildfire can alter catchment sediment budgets in two ways. Firstly, a spatially-diffuse pulse of elevated erosion is associated with moderate or intense rainfall events in post-fire years. Secondly, pulses of elevated catchment sediment yield are driven by the timing and river sediment transport capacity of runoff events. Severe post-fire erosion and high interannual hydrologic variability can result in large sediment stores persisting within the river network for many years. Fallout radionuclide tracers are shown to be useful in quantifying fine sediment sources and transport dynamics following wildfire, and the contribution of wildfire to catchment sediment yield.  相似文献   

8.
The last decade has witnessed the development of a series of cellular models that simulate the processes operating within river channels and drive their geomorphic evolution. Their proliferation can be partly attributed to the relative simplicity of cellular models and their ability to address some of the shortcomings of other numerical models. By using relaxed interpretations of the equations determining fluid flow, cellular models allow rapid solutions of water depths and velocities. These can then be used to drive (usually) conventional sediment transport relations to determine erosion and deposition and alter the channel form. The key advance of using these physically based yet simplified approaches is that they allow us to apply models to a range of spatial scales (1–100 km2) and time periods (1–100 years) that are especially relevant to contemporary management and fluvial studies.However, these approaches are not without their limitations and technical problems. This paper reviews the findings of nearly 10 years of research into modelling fluvial systems with cellular techniques, principally focusing on improvements in routing water and how fluvial erosion and deposition (including lateral erosion) are represented. These ideas are illustrated using sample simulations of the River Teifi, Wales. A detailed case study is then presented, demonstrating how cellular models can explore the interactions between vegetation and the morphological dynamics of the braided Waitaki River, New Zealand. Finally, difficulties associated with model validation and the problems, prospects and future issues important to the further development and application of these cellular fluvial models are outlined.  相似文献   

9.
Fluvial process and morphology of the Brahmaputra River in Assam, India   总被引:1,自引:0,他引:1  
The Brahmaputra River finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh. The slope of the river decreases suddenly in front of the Himalayas and results in the deposition of sediment and a braided channel pattern. It flows through Assam, India, along a valley comprising its own Recent alluvium. In Assam the basin receives 300 cm mean annual rainfall, 66–85% of which occurs in the monsoon period from June through September. Mean annual discharge at Pandu for 1955–1990 is 16,682.24 m3 s 1. Average monthly discharge is highest in July (19%) and lowest in February (2%). Most hydrographs exhibit multiple flood peaks occurring at different times from June to September. The mean annual suspended sediment load is 402 million tons and average monthly sediment discharge is highest in June (19.05%) and lowest in January (1.02%). The bed load at Pandu was found to be 5–15% of the total load of the river. Three kinds of major geomorphic units are found in the basin. The river bed of the Brahmaputra shows four topographic levels, with increasing height and vegetation. The single first order primary channels of this braided river split into two or more smaller second order channels separated by bars and islands. The second order channels are of three kinds. The maximum length and width of the bars in the area under study are 18.43 km and 6.17 km, respectively. The Brahmaputra channel is characterised by mid-channel bars, side bars, tributary mouth bars and unit bars. The geometry of meandering tributary rivers shows that the relationship between meander wavelength and bend radius is most linear. The Brahmaputra had been undergoing overall aggradation by about 16 cm during 1971 to 1979. The channel of the Brahmaputra River has been migrating because of channel widening and avulsion. The meandering tributaries change because of neck cut-off and progressive shifting at the meander bends. The braiding index of the Brahmaputra has been increasing from 6.11 in 1912–1928 to 8.33 in 1996. During the twentieth century, the total amount of bank area lost from erosion was 868 km2. Maximum rate of shift of the north bank to south resulting in erosion was 227.5 m/year and maximum rate of shift of the south bank to north resulting in accretion was 331.56 m/year. Shear failure of upper bank and liquefaction of clayey-silt materials are two main causes of bank erosion.  相似文献   

10.
长江干流河道对流域输沙的调节作用   总被引:1,自引:0,他引:1  
戴仕宝  杨世伦  李鹏 《地理学报》2006,61(5):461-470
利用长江干流和主要支流上测站1956~2004年的输沙量资料,对干流未测区域的来沙进行了估计。根据泥沙平衡 (Sediment budget) 概念,对长江干流河道的冲淤对来水来沙的响应以及对入海泥沙的影响进行研究发现,长江干流屏山至大通河道平均淤积速率为88.58×106 t/a,河道淤积占总的来沙量及大通站输沙量比例分别为14%与21%。由于河道淤积,大通站输沙量减少了17.5%。总体来说上游淤积较轻,宜昌至汉口区间淤积严重,汉口至大通区间为微冲。长江干流的河道冲淤与流域总的来沙具有显著的相关关系,但各段河道的冲淤对流域来沙的响应各不一样。上游的冲淤与流域的径流量和来沙量均没有很好的相关性,宜昌-汉口段河道冲淤的变化与宜昌站的来沙具有显著的相关性;影响汉口-大通间河道的冲淤变化的主要因素是流域的来水量,河道的冲淤与大通站径流量的存在显著的负相关关系。三峡水库蓄水后整个长江干流的冲淤形势发生了根本的变化。三峡水库的蓄水运用有效地减轻了洞庭湖的泥沙淤积,同时也降低了洞庭湖的对长江干流泥沙的调节作用;长江上游干流河道淤积增强,中下游河道出现冲刷,但不同的河段表现不一;中下游河道冲刷量小于预测值,三峡水库的蓄水运用直接导致了长江入海泥沙的减少。  相似文献   

11.
The stability of flood channels has attracted considerable attention because of their complicated interactions with the prevailing hydrodynamics and importance in ship navigation. This research examines long-term morphodynamic evolution in the Yangtze Estuary from 1861 to 2002 and the equilibrium mechanism of the Xinqiao Channel in the Yangtze Estuary by digitizing 15 selected maritime charts and calculating the volume of the channel. Although the total period of channel development is much longer than the historical data used in this paper, three stages are identified during the study period: the first embryonic stage (66 years), the second formation stage (33 years) and the third equilibrium stage (45 years). Variations in coastline location, channel volume, and hydrodynamics in the channel during the three stages indicate that the channel equilibrium was reached and maintained when the channel direction was aligned with the direction of offshore tidal wave propagation. Variations in river and sediment discharges affect erosion and deposition in the channel and thus channel geometry. However, future reduction in sediment supply by 10–33% due to the ongoing river engineering projects would increase the volume of the Xinqiao Channel only by 1–3%. It seems unlikely that the above change in sediment discharge will disrupt the equilibrium of the Xinqiao Channel.  相似文献   

12.
2002年开始的黄河调水调沙改变了进入黄河口的水沙条件,必然引起尾闾河道地貌的显著调整.根据黄河尾闾河道利津以下的断面实测高程数据,建立基于正交曲线网格的河道DEM,结合河床形态与水沙条件变化,综合研究黄河尾闾河道冲淤的时空演变及其影响因素.结果表明,调水调沙以来尾闾河道冲刷明显,2002-2017年累计冲刷6240万...  相似文献   

13.
陈小红 《热带地理》2000,20(1):22-26
通过对60年代和90年代珠江三角洲河网典型汊河泥沙分配变化的对比分析,认为(1)珠江河口区的泥沙主要来自陆相径流挟带的下行泥沙和随潮流挟带的上溯泥沙,其中径流及其挟带的泥沙是现代珠江三角洲建造过程中的基本动力和物质,起着主导作用,而珠江河口区由径流挟带的悬移质泥沙又主要来自西江。(2)西北江干沙处于逐年淤积的总趋势,其中河流段冲淤变化不大,过渡段有冲有淤,以淤为主,潮流段由是普遍淤积。(4)海平面  相似文献   

14.
Over the past decades, > 50,000 dams and reforestation on the Yangtze River (Changjiang) have had little impact on water discharge but have drastically altered annual and particularly seasonal sediment discharge. Before impoundment of the Three Gorges Dam (TGD) in June 2003, annual sediment discharge had decreased by 60%, and the hysteresis of seasonal rating curves in the upper reaches at Yichang station had shifted from clockwise to counterclockwise. In addition, the river channel in middle-lower reaches had changed from depositional to erosional in 2002.During the four years (2003–2006) after TGD impoundment, ~ 60% of sediment entering the Three Gorges Reservoir was trapped, primarily during the high-discharge months (June–September). Although periodic sediment deposition continues downstream of the TGD, during most months substantial erosion has occurred, supplying ~ 70 million tons per year (Mt/y) of channel-derived sediment to the lower reaches of the river. If sand extraction (~ 40 Mt/y) is taken into consideration, the river channel loses a total of 110 Mt/y. During the extreme drought year 2006, sediment discharge in the upper reaches drastically decreased to 9 Mt (only 2% of its 1950–1960s level) because of decreased water discharge and TGD trapping. In addition, Dongting Lake in the middle reaches, for the first time, changed from trapping net sediment from the mainstem to supplying 14 Mt net sediment to the mainstem. Severe channel erosion and drastic sediment decline have put considerable pressure on the Yangtze coastal areas and East China Sea.  相似文献   

15.
Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939–2006 is ~ 0.6 m/yr, which is equivalent to ~ 24,000 m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25–50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8 m/yr during 1939–1990 to ~ 1.4 m/yr during 1990–2006. Erosion rates for the downdrift beach derived from the 2004–2007 topographic surveys vary between 0 and 13 m/yr, with an average of 3.8 m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100 mm) than the foreshore (mean grain size ~ 30 mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant shellfish collections from the low-tide beach, we suggest that it is an armored layer of cobble clasts that are not generally competent in the physical setting of the delta. Thus, the cobble low-tide terrace is very likely a geomorphological feature caused by coastal erosion of a coastal plain and delta, which in turn is related to the impacts of the dams on the Elwha River to sediment fluxes to the coast.  相似文献   

16.
J. Vandenberghe   《Geomorphology》2008,98(3-4):275
A previously established non-linear theory of river cyclicity as a response to climate change states that short phases of fluvial instability occur both at the transition from relatively warm (temperate) to cold (periglacial) and from relatively cold to warm periods. Such instability typically starts with vertical erosion, successively followed by sedimentary fill of the erosive scar. In spite of frequent confirmation of this theory by geomorphological reconstructions, a few problems arise. First, there are fewer incision phases than climatic transitions. Secondly, remnants of erosion at ‘cold–warm’ transitions are scarce, in contrast to obvious erosion relics at ‘warm–cold’ transitions. Furthermore, it appears that the incision style is strikingly different at both kinds of climatic transitions. Similarly, the long stable phases are also expressed in terms of different floodplain development in cold and warm periods. These arguments require a modification of the general non-linear theory.At the transition from relatively temperate to colder conditions, rivers transformed gradually from a regular, low-energy, single-channel course to a periodically high-energy, multi-channel type. The latter (braided) type is characterized by intense lateral movement, rather than by deep vertical erosion. This results in a well-expressed morphology of wide, extensive floodplains and terraces. In contrast, the linear and constrained, meandering channels incise with small width–depth ratio and build floodplains of limited lateral extent. Consequences are twofold: 1) the spatial limitation of the deeply incised, meandering valleys at the beginning of warm periods counts against their recognition; 2) relatively strong, lateral migration of the braided rivers removes most traces of previous (meandering) systems, which contrasts with the limited lateral activity of confined meandering channels. It means that in a ‘warm–cold–warm’ alternation generally only one phase of vertical erosion is preserved, the one that is caused by the high-energy, braided river at the start of the cold period.  相似文献   

17.
Earthworks of assumed age and their initial and current morphologies provide an ideal basis for developing and testing models for long-term landform erosion. Inca agricultural terraces abandoned at  1532 A.D in the drylands of southern Peru may be used to document morphological changes since the abandonment. The objective of this research is to determine the erosion pattern and process to estimate the erosion rate.The development of rills and channels on the Inca agricultural terraces is evidence for erosion by wash processes on slopes where the anchoring effect of vegetation is absent and loose material is available for removal. The pattern and amount of erosion from 1532–2005 A.D. is estimated by comparing elevation models of the observed morphology and reconstructed models of the original morphology of the Inca terraces. The results show that in areas of sediment accumulation surface elevation increased up to 0.5 m. Elevation lowering on the terrace treads was 0.7 m at maximum, and a temporally and spatially averaged lowering rate was 0.094 mm yr− 1. This gives insights about how the rate of erosion occurs on currently disturbed lands in arid environments where soil resources are scarce and lands are prone to desertification.  相似文献   

18.
As part of a study using lake sediments to determine the extent and causes of human impacts to lakes along an east–west transect following the Yangtse River, sediment cores were taken from Taihu in eastern China. Previous studies have focussed on the impacts of direct inputs of pollutants from municipal and industrial wastewater but little work has been undertaken on trends in atmospheric deposition from the many industrial sources surrounding the lake. Analysis of the Taihu sediment cores for atmospheric pollutant indicators such as trace metals, magnetic parameters and spheroidal carbonaceous particles (SCPs) show the lake has become increasingly contaminated over the last 40–50 years. Sediment levels of atmospherically deposited pollutants are currently similar to some of the more contaminated lakes in Europe. Further, sediment nitrogen, phosphorus and geochemical analyses confirm the dramatic increase in eutrophication at the site and periods of recent soil erosion in the catchment.  相似文献   

19.
Using the USPED (Unit Stream Power Erosion Deposition) model, three land use scenarios were analysed for an Italian small catchment (15 km2) of high landscape value. The upper Orme stream catchment, located in the Chianti area, 30 km south of Florence, has a long historical agriculture record. Information on land use and soil conservation practices date back to 1821, hence offering an opportunity to model impacts of land use change on erosion and deposition. For this study, a procedure that takes into account soil conservation practices and potential sediment storage is proposed. The approach was to calculate and model the flow accumulation considering rural and logging roads, location of urban areas, drainage ditches, streams, gullies and permanent sediment sinks. This calculation attempts to assess the spatial variability, especially the impact of support practices (P factor). Weather data from 1980–2003 were taken into account to calculate the R factor. However, to consider the intense pluviometric conditions in terms of the erosivity factor, the 0.75th quantile was used, while the lowest erosivity was modelled using the 0.25th quantile. Results of the USPED model simulation show that in 1821 the mean annual net erosion for the watershed was 2.8 Mg ha− 1 y− 1; in 1954 it was 4.2 Mg ha− 1 y− 1; and in 2004 it was 5.3 Mg ha− 1 y− 1. Conservation practices can reduce erosion processes by ≥ 20 Mg ha− 1 y− 1 when the 1821 practices are introduced in the present management. On the other hand, if the support practices are not considered in the model, soil erosion risk is overestimated. Field observation for the present-day simulation confirmed that erosion and associated sediment deposition predicted by the model depend, as expected, on geomorphology and land use. The model shows limitations that are mainly due to the input data. A high resolution DEM is essential for the delineation of reliable topographic potential to predict erosion and deposition especially in vineyards.  相似文献   

20.
Over the past 150 years, major land use changes have occurred in the Stemple Creek Watershed in northern California that have caused erosion to move soils from the upland to the flood plain, stream channels, and the bay. The purpose of this study is to document the recent (1954 to present) sediment deposition patterns in the flood plain area adjacent to Stemple Creek using the 137Cesium technique. Sediment deposition ranged from 0.26 to 1.84 cm year−1 for the period from 1964 to 2002 with an average of 0.85±0.41 cm year−1. Sediment deposition rates were higher for the 1954 to 1964 period with a range of 0.31–3.50 cm year−1 and an average of 1.29±1.04 cm year−1. These data indicate that sediment deposition in the flood plain has decreased since the middle 1950s, probably related to reduction in row crop agriculture and an increase in pasturelands. This study shows that the flood plains in the Stemple Creek Watershed are a significant sink for the soils being eroded from the upland area. Given the significance of the flood plain for trapping eroded materials before they reach the stream channels or the bay, efforts need to be made to manage these flood plain areas to insure that they do not change and become a source rather than a sink for eroded materials as improved management practices on the upland areas reduce sediment input to the flood plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号