首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper presents the first detailed sedimentological study of annual moraines formed by an alpine valley glacier. The moraines have been forming since at least AD 1980 by a subsidiary lobe of Gornergletscher, Switzerland that advances up a reverse bedrock slope. They reach heights of 0.5–1.5 m, widths of up to 6 m and lengths of up to several hundreds of metres. Sediments in these moraines are composed of proglacial outwash and debris flow units; subglacial traction till is absent entirely. Based on four representative sections, three genetic process combinations have been identified: (i) inefficient bulldozing of a gently sloping ice margin transfers proglacial sediments onto the ice, causing differential ablation and dead‐ice incorporation upon retreat; (ii) terrestrial ice‐contact fans are formed by the dumping of englacial and supraglacial material from point sources such as englacial conduit fills; debris flows and associated fluvial sediments are stacked against a temporarily stationary margin at the start, and deformed during glacier advance in the remainder, of the accumulation season; (iii) a steep ice margin without supraglacial input leads to efficient bulldozing and deformation of pre‐existing foreland sediments by wholesale folding. Ice‐surface slope appears to be a key control on the type of process responsible for moraine formation in any given place and year. The second and third modes result in stable and higher moraines that have a higher preservation potential than those containing dead ice. Analysis of the spacing and climatic records at Gornergletscher reveals that winter temperature controls marginal retreat and hence moraine formation. However, any climatic signal is complicated by other factors, most notably the presence of a reverse bedrock slope, so that the extraction of a clear climatic signal is not straightforward. This study highlights the complexity of annual moraine formation in high‐mountain environments and suggests avenues for further research.  相似文献   

2.
Controlled moraines are supraglacial debris concentrations that become hummocky moraine upon de-icing and possess clear linearity due to the inheritance of the former pattern of debris-rich folia in the parent ice. Linearity is most striking wherever glacier ice cores still exist but it increasingly deteriorates with progressive melt-out. As a result, moraine linearity has a low preservation potential in deglaciated terrains but hummocky moraine tracts previously interpreted as evidence of areal stagnation may instead record receding polythermal glacier margins in which debris-rich ice was concentrated in frozen toe zones. Recent applications of modern glaciological analogues to palaeoglaciological reconstructions have implied that: (a) controlled moraine development can be ascribed to a specific process (e.g. englacial thrusting or supercooling); and (b) controlled moraine preservation potential is good enough to imply the occurrence of the specific process in former glacier snouts (e.g. ancient polythermal or supercooled snouts). These assumptions are tested using case studies of controlled moraine construction in which a wide range of debris entrainment and debris-rich ice thickening mechanisms are seen to produce the same geomorphic features. Polythermal conditions are crucial to the concentration of supraglacial debris and controlled moraines in glacier snouts via processes that are most effective at the glacier–permafrost interface. End moraines lie on a process–form continuum constrained by basal thermal regime. The morphological expression of englacial structures in controlled moraine ridges is most striking while the moraines retain ice cores, but the final deposits/landforms tend to consist of discontinuous transverse ridges with intervening hummocks, preserving only a weak impression of the former englacial structure. These are arranged in arcuate zones of hummocky moraine up to 2 km wide containing ice-walled lake plains and lying down flow of streamlined landforms produced by warm-based ice. A variety of debris entrainment mechanisms can produce the same geomorphic signature. Spatial and temporal variability in process–form relationships will lead to the sequential development of different types of end moraines during the recession of a glacier or ice sheet margin.  相似文献   

3.
Ice‐cored lateral and frontal moraine complexes, formed at the margin of the small, land‐based Rieperbreen glacier, central Svalbard, have been investigated through field observations and interpretations of aerial photographs (1936, 1961 and 1990). The main focus has been on the stratigraphical and dynamic development of these moraines as well as the disintegration processes. The glacier has been wasting down since the ‘Little Ice Age’ (LIA) maximum, and between 1936 and 1990 the glacier surface was lowered by 50–60 m and the front retreated by approximately 900 m. As the glacier wasted, three moraine ridges developed at the front, mainly as melting out of sediments from debris‐rich foliation and debris‐bands formed when the glacier was polythermal, probably during the LIA maximum. The disintegration of the moraines is dominated by wastage of buried ice, sediment gravity‐flows, meltwater activity and some frost weathering. A transverse glacier profile with a northward sloping surface has developed owing to the higher insolation along the south‐facing ice margin. This asymmetric geometry also strongly affects the supraglacial drainage pattern. Lateral moraines have formed along both sides of the glacier, although the insolation aspect of the glacier has resulted in the development of a moraine 60 m high along its northern margin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Debris transported by glacier is derived either supraglacially from nunataks and valley sides or from erosion of the subglacial bed. Debris produced above the glacier by fracturing of rock walls has a dominant coarse fraction with angular boulders. Subsequent englacial or supraglacial transport is relatively passive and little comminution occurs. Debris eroded from subglacial bedrock is initially transported in a basal zone of traction, where particles frequently come into contact with the glacier bed and are retarded by it so that large forces may be generated between particles and the bed and at interparticle contacts. The material introduced into this tractional zone may be subglacial bedrock which has undergone a crushing-plucking event and which has a dominant coarse fraction, or supraglacially derived material which finds its way to the glacier bed. These parent debris assemblages are further comminuted by failure in response to locally concentrated compressive stresses, and attrition at shearing interfaces. Boulders transported through the tractional zone will tend to be rounded and bear several directions of striation. Large boulders embedded in lodgement till will tend to be streamlined with striae parallel to glacier flow and with an abruptly truncated distal extremity, rather like a roche moutonnée. Textural and boulder shape characteristics can be used to help distinguish different types of till.  相似文献   

5.
This paper focuses on the structural glaciology, dynamics, debris transport paths and sedimentology of the forefield of Soler Glacier, a temperate outlet glacier of the North Patagonian Icefield in southern Chile. The glacier is fed by an icefall from the icefield and by snow and ice avalanches from surrounding mountain slopes. The dominant structures in the glacier are ogives, crevasses and crevasse traces. Thrusts and recumbent folds are developed where the glacier encounters a reverse slope, elevating basal and englacial material to the ice surface. Other debris sources for the glacier include avalanche and rockfall material, some of which is ingested in marginal crevasses. Debris incorporated in the ice and on its surface controls both the distribution of sedimentary facies on the forefield and moraine ridge morphology. Lithofacies in moraine ridges on the glacier forefield include large isolated boulders, diamictons, gravel, sand and fine-grained facies. In relative abundance terms, the dominant lithofacies and their interpretation are sandy boulder gravel (ice-marginal), sandy gravel (glaciofluvial), angular gravel (supraglacial) and diamicton (basal glacial). Proglacial water bodies are currently developing between the receding glacier and its frontal and lateral moraines. The presence of folded sand and laminites in moraine ridges in front of the glacier suggests that, during a previous advance, Soler Glacier over-rode a former proglacial lake, reworking lacustrine deposits. Post-depositional modification of the landform/sediment assemblage includes melting of the ice-core beneath the sediment cover, redistribution of finer material across the proglacial area by aeolian processes and fluvial reworking. Overall, the preservation potential of this landform/sediment assemblage is high on the centennial to millennial timescale.  相似文献   

6.
Terminal-moraine ridges up to 6 m high have been forming at the snout of Styggedalsbreen for two decades. Based on intermittent observations during this period, combined with a detailed study of ridge morphology, sedimentary structures and composition during the 1993 field season, a model of terminal-moraine formation that involves the interaction of glacial and glacio-fluvial processes at a seasonally oscillating ice margin is presented. In winter, subglacial debris is frozen-on to the glacier sole; in summer, ice-marginal and supraglacial streams deposit sediments on the wasting ice tongue. The ice tongue overrides an embryonic moraine ridge during a late-winter advance and a double layer of sediment (diamicton overlain by sorted sands and gravels) is added to the moraine ridge during the subsequent ablation season. Particular ridges grow incrementally over many years and exert positive feedback by enhancing snout up-arching during the winter advance and constraining the course of summer meltwater streams close to the ice margin. The double-layer annual-meltout model is related to moraine formation by the stacking of subglacial frozen-on sediment slabs (Krüger 1993). Moraine ridges of this type have a complex origin. are not push moraines, and may be characteristic of dynamic high-latitude and high-altitude temperate glaciers.  相似文献   

7.
贡巴冰川边缘冰碛垄特征与形成过程   总被引:2,自引:1,他引:2  
康建成 《冰川冻土》1989,11(2):172-176
  相似文献   

8.
This paper presents the sediment, landform and dynamic context of four avalanche-fed valley glaciers (Khumbu, Imja, Lhotse and Chukhung) in the Mount Everest (Sagarmatha) region of Nepal. All four glaciers have a mantle of debris dominated by sandy boulder-gravel that suppresses melting to an increasing degree towards the snout, leading to a progressive reduction in the overall slope of their longitudinal profile. Prominent lateral–terminal moraine complexes, also comprising sandy bouldergravel, enclose the glaciers. These terminal moraines originally grew by accretion of multiple sedimentary facies of basal glacial and supraglacial origin, probably by folding and thrusting when the glaciers were more dynamic during the Little Ice Age. The four glaciers are in various stages of recession, and demonstrate a range of scenarios from down-wasting of the glacier tongue, through morainedammed lake development, to post-moraine-dam breaching. Khumbu Glacier is at the earliest stage of supraglacial pond formation and shows no sign yet of developing a major lake, although one is likely to develop behind its >250 m high composite terminal moraine. Imja Glacier terminates in a substantial body of water behind a partially ice-cored moraine dam (as determined from geophysical surveys), but morphologically appears unlikely to be an immediate threat. Chukhung Glacier already has a breached moraine and a connected debris fan, and therefore no longer poses a threat. Lhotse Glacier has an inclined, free-draining tongue that precludes hazardous lake development. From the data assembled, a conceptual model, applicable to other Himalayan glaciers, is proposed to explain the development of large, lateral-terminal moraine complexes and associated potentially hazardous moraine dams. – 2008 Elsevier Ltd. All rights reserved.  相似文献   

9.
《Quaternary Science Reviews》2007,26(5-6):743-758
Detailed examination of the Tekapo Formation in the Tasman Valley, New Zealand has identified 20 facies, and five facies associations. These associations are delta foresets and bottomsets, sediment density flows, ice-contact lake sediments with ice-rafted debris and resedimentation deposits, and outwash gravels. Interpretation of the sediment-landform associations informed by observations at modern glacier termini suggests that the Late Pleistocene Tekapo Formation moraines have been formed by downwasting of a more expanded Tasman Glacier. During the early stages of glacier retreat, ponds on the glacier surface develop into thermokarst lakes which enlarge and coalesce to form a large supraglacial lake. Continued downwasting causes the lake outlet river to entrench into the impounding latero-frontal ice-cored moraine, lowering the lake level. This exposes lake-bottom sediments and forms shorelines on the proximal slopes of the ice-cored moraine. As the ice-cored moraine melts, these lake sediments are deformed and deposited against the Mt. John moraine. The observations and interpretations reported here suggest the Late Pleistocene end moraine is a constructional feature not a structural (glaciotectonic) feature as suggested by previous studies.  相似文献   

10.
山东蒙山第四纪冰川组合遗迹的发现及初步研究   总被引:1,自引:0,他引:1  
本文介绍了山东蒙山地区南坡保存的丰富而清晰的第四纪冰川遗迹,重点展示了兰溪山谷的冰石河、侧碛堤组合,并对相伴产出的擦痕、磨光面、颤痕等冰川遗迹进行了调查与测量。同时对冰石河、侧碛堤的分布、规模、物质组成、岩石特征进行了介绍。根据侧碛堤的排列位置及砾石的风化程度,初步确定为末次冰期的冰碛遗迹;对山谷两侧磨光面上的擦痕进行了测量统计,显示谷壁磨光面上擦痕的长宽比具有10:1左右的比例规律;根据侧碛最大高度法(MELM),结合对于蒙山侧碛的调查,对蒙山雪线的高度进行了估算,初步估算蒙山南坡末次冰期时的雪线高度约为700 m左右。蒙山地区这些组合冰川遗迹的发现,为中国东部第四纪冰川的研究提供了直接的证据。  相似文献   

11.
The macro‐ and micro‐sedimentology of a supraglacial melt‐out till forming at the Matanuska Glacier was examined in relationship to the properties of the stratified basal zone ice and debris from which it is originating. In situ melting of the basal ice has produced a laminated to bedded diamicton consisting mainly of silt. Macroscopic properties include: discontinuous laminae and beds; lenses of sand, silt aggregates and open‐work gravel; deformed and elongate clasts of clay; widely dispersed pebbles and cobbles, those that are prolate usually with their long axes subparallel to parallel to the bedding. Evidence for deformation is absent except for localized bending of beds over or under rock clasts. Microscopic properties are a unique element of this work and include: discontinuous lineations; silt to granule size laminae; prolate coarse sand and rock fragments commonly with their long axis subparallel to bedding; subangular to subrounded irregular shaped clay clasts often appearing as bands; sorted and unsorted silt to granule size horizons, sometimes disrupted by pore‐water pathways. Limited deformation occurs around rock clasts and thicker parts of lamina. This study shows that in situ melting of debris‐rich basal ice can produce a laminated and bedded diamicton that inherits and thereby preserves stratified basal ice properties. Production and preservation of supraglacial melt‐out till require in situ melting of a stagnant, debris‐rich basal ice source with a low relief surface that becomes buried by a thick, stable, insulating cover of ice‐marginal sediment. Also required are a slow melt rate and adequate drainage to minimize pore‐water pressures in the till and overlying sediment cover to maintain stability and uninterrupted deposition. Many modern and ancient hummocky moraines down glacier of subglacial overdeepenings probably meet these process criteria and their common occurrence suggests that both modern and pre‐modern supraglacial melt‐out tills may be more common than previously thought.  相似文献   

12.
The rock glacier Innere Ölgrube, located in a small side valley of the Kauner Valley (Ötztal Alps, Austria), consists of two separate, tongue-shaped rock glaciers lying next to each other. Investigations indicate that both rock glaciers contain a core of massive ice. During winter, the temperature at the base of the snow cover (BTS) is significantly lower at the active rock glacier than on permafrost-free ground adjacent to the rock glacier. Discharge is characterized by strong seasonal and diurnal variations, and is strongly controlled by the local weather conditions. Water temperature of the rock glacier springs remains constantly low, mostly below 1°C during the whole melt season. The morphology of the rock glaciers and the presence of meltwater lakes in their rooting zones as well as the high surface flow velocities of >1 m/yr point to a glacial origin. The northern rock glacier, which is bounded by lateral moraines, evolved from the debris-covered tongue of a small glacier of the Little Ice Age with its last highstand around A.D. 1850. Due to the global warming in the following decades, the upper parts of the steep and debris-free ice glacier melted, whereas the debris-covered glacier tongue transformed into an active rock glacier. Due to this evolution and due to the downslope movement, the northern rock glacier, although still active, at present is cut off from its ice and debris supply. The southern rock glacier has developed approximately during the same period from a debris-covered cirque glacier at the foot of the Wannetspitze massif.  相似文献   

13.
The Kuannersuit Glacier surged 11 km between 1995 and 1998. The surge resulted in the formation of an ice cored thrust moraine complex constructed by subglacial and proglacial glaciotectonic processes. Four main thrust zones are evident in the glacier snout area with phases of compressional folding and thrusting followed by hydrofracture in response to the build-up of compressional stresses and the aquicludal nature of submarginal permafrost and naled. Various types of stratified debris-rich ice facies occur within the marginal zone: The first (Facies I) comprises laterally continuous strata of ice with sorted sediment accumulations, and is reworked and thrust naled ice. The second is laterally discontinuous stratified debris-rich ice with distinct tectonic structures, and is derived through subglacial extensional deformation and localised regelation (Facies II), whilst the third type is characterised by reworked and brecciated ice associated with the reworking and entrainment of meteoric ice (Facies III). Hydrofracture dykes and sills (Facies IV) cross-cut the marginal ice cored thrust moraines, with their sub-vertically frozen internal contact boundaries and sedimentary structures, suggesting supercooling operated as high-pressure evacuation of water occurred during thrusting, but this is not related to the formation of basal stratified debris-rich ice. Linear distributions of sorted fines transverse to ice flow, and small stratified sediment ridges that vertically cross-cut the ice surface up-ice of the thrust zone relate to sediment migration along crevasse traces and fluvial infilling of crevasses. From a palaeoglaciological viewpoint, marginal glacier tectonics, ice sediment content and sediment delivery mechanisms combine to control the development of this polythermal surge valley landsystem. The bulldozing of proglacial sediments and the folding and thrusting of naled leads to the initial development of the outer zone of the moraine complex. This becomes buried in bulldozed outwash sediment and well-sorted fines through surface ablation of naled. Up-ice of this, the heavily thrust margin becomes buried in sediment melted out from basal debris-rich ice and subglacial diamicts routed along thrusts. These mechanisms combine to deliver sediment to supraglacial localities, and promote the initial preservation of structurally controlled moraines through insulation, and the later development of kettled dead ice terrain.  相似文献   

14.
Matthews, John A. 1987 06 01: Regional variation in the composition of Neoglacial end moraines. Jotunheimen, Norway: an altitudinal gradient in clast roundness and its possible palaeoclimatic significance Boreas , Vol. 16, pp. 173–188. Oslo. ISSN 0300–9483.
Quantitative indices of clast roundness from Neoglacial end moraines in front of 81 Jotunheimen glaciers were compared and analysed. Statistical techniques, including non-metric multidimensional scaling, multiple regression and partial correlation, were used to relate clast roundness to selected environmental variables. Three independent variables – site altitude, glacier length (interchangeable with height of headwall relative to glacier length) and aspect – cumulatively accounted for about 58% of the variability in clast roundness. A climatic factor complex (represented by altitude and aspect) was found more important than morphological factors (such as glacier size and headwall size) in accounting for clast roundness variations between glaciers. The scale of the independent effects of altitude, morphology, aspect and geology was found in the approximate proportions 4:1.5:1:1. Several theoretical mechanisms are proposed which could explain a causal relationship between climate and clast roundness by influencing the relative importance of supraglacial and subglacial debris supply. The palaeoclimatic implications of the results are discussed with particular reference to the prediction of mean annual temperatures from clast roundness; one unit increase in clast roundness corresponding to an increase in mean annual temperature of about 1.4°C within the study area.  相似文献   

15.
Lateroglacial valleys and landforms in the Karakoram Mountains (Pakistan)   总被引:1,自引:0,他引:1  
Lasafam Iturrizaga 《GeoJournal》2001,54(2-4):397-428
Lateroglacial landforms play a major role in the geomorphological landscape assemblage of the Karakoram Mountains. Nevertheless, in the past they have received only little attention in the glacial-geomorphological literature. In this article, the lateroglacial landscape will be presented as a geomorphological landscape unit. The Karakoram glaciers with lengths of up to 60 km are accompanied by lateroglacial sediment complexes over tens of kilometers. Besides their large horizontal distribution, they are spread over a considerable vertical range and occur between 2500 m–5000 m.The traditional view is that primary processes of rock disintegration such as ice avalanches and freeze-thaw processes as well as glaciofluvial sediments are the main debris suppliers for the formation of lateroglacial sediment complexes. However, the investigation of the lateroglacial sediment landscape of the Karakoram glaciers showed, that firstly the secondary debris supply in form of reworking of older glacigenic deposits (Late glacial slope moraines) represents a major debris source. Secondly, the lateroglacial sediments are composed to a major part of debris supplies from the tributary valleys. In this regard, the sediment input by mudflow events accords a prominent role. Therefore a considerable proportion of the lateroglacial sediments is of non-glacial origin. This fact has to be taken into consideration regarding glacier reconstruction in recent unglaciated mountain valleys. Further on, resedimented mudflow deposits could be identified as important parent material for recent lateral moraine formation. The distribution of lateroglacial valleys (`lateral moraine valleys') was traditionally closely linked to differences in insolation, which are in the subtropical latitude very high (`ablation valleys'). Therefore the S-faced valley flank was seen as the favourable location for lateroglacial valleys. However, field observations on more than 20 glaciers in the Karakoram Mountains proved that lateroglacial valleys occur in all exposures, and can be even absent in S-exposure. Topographical factors seem to be more important than insolation differences for the distribution pattern. Only the distribution of `true ablation valleys' can be regarded as a result of insolation differences. In fact, they can act as initial form for the formation of lateral moraine valleys.  相似文献   

16.
Hilda Glacier, a small cirque glacier in the Canadian Rocky Mountains, yields two principal types of sediment: ablation till, deficient in fine material and produced by rockfalls and avalanches falling on to the glacier surface, and basal lodgement till, rich in fines and formed mainly by subglacial erosion. Recent recession from its Neoglacial maximum has exposed large areas of basal till with thin veneers of ablation till which, when combined with present subglacial and supraglacial debris, provide abundant material for erosion and transport by the mcltwatcr stream. Sediment transport measurements over two summers (1977–1978) showed that bed load and suspended load occur in approximately equal proportions and that dissolved loads are minor. Local source variations, especially bank slumps, are a major cause of scatter in sediment rating curves. Suspended-sediment concentrations are greater early in the melt season due to availability of loose sediment produced by freezing and thawing. Other contributors to scatter in suspended-sediment rating curves include rain showers and diurnal hysteretic effects. Although the distinction between bed load and suspended load is never sharp, available data suggest that the sand/ gravel grain-size boundary (-1ø) approximates the suspendcd-load/bed-load division for characteristic Hilda flows transporting gravel. This approximation, combined with till grain-size analyses, suspended-sediment measurements, and spatial distributions of till types, leads to the following computations of fluvial sediment sources: for suspended load - 6% supraglacial, 47% subglacial, 47% channel banks; for bed load - 46% supraglacial, 27% each subglacial and channel banks. Supraglacial debris provides only about one-fourth of all fluvial sediment, but nearly half of the bed load.  相似文献   

17.
Despite a long history of glaciological research, the palaeo‐environmental significance of moraine systems in the Kebnekaise Mountains, Sweden, has remained uncertain. These landforms offer the potential to elucidate glacier response prior to the period of direct monitoring and provide an insight into the ice‐marginal processes operating at polythermal valley glaciers. This study set out to test existing interpretations of Scandinavian ice‐marginal moraines, which invoke ice stagnation, pushing, stacking/dumping and push‐deformation as important moraine forming processes. Moraines at Isfallsglaciären were investigated using ground‐penetrating radar to document the internal structural characteristics of the landform assemblage. Radar surveys revealed a range of substrate composition and reflectors, indicating a debris‐ice interface and bounding surfaces within the moraine. The moraine is demonstrated to contain both ice‐rich and debris‐rich zones, reflecting a complex depositional history and a polygenetic origin. As a consequence of glacier overriding, the morphology of these landforms provides a misleading indicator of glacial history. Traditional geochronological methods are unlikely to be effective on this type of landform as the fresh surface may post‐date the formation of the landform following reoccupation of the moraine rampart by the glacier. This research highlights that the interpretation of geochronological data sets from similar moraine systems should be undertaken with caution.  相似文献   

18.
19.
The morphology, sedimentology and architecture of an end moraine formed by a ~9 km surge of Brúarjökull in 1963–64 are described and related to ice‐marginal conditions at surge termination. Field observations and accurate mapping using digital elevation models and high‐resolution aerial photographs recorded at surge termination and after the surge show that commonly the surge end moraine was positioned underneath the glacier snout by the termination of the surge. Ground‐penetrating radar profiles and sedimentological data reveal 4–5 m thick deformed sediments consisting of a top layer of till overlying gravel and fine‐grained sediments, and structural geological investigations show that the end moraine is dominated by thrust sheets. A sequential model explaining the formation of submarginal end moraines is proposed. The hydraulic conductivity of the bed had a major influence on the subglacial drainage efficiency and associated porewater pressure at the end of the surge, thereby affecting the rates of subglacial deformation. High porewater pressure in the till decreased its shear strength and raised its strain rate, while low porewater pressure in the underlying gravel had the opposite effect, such that the gravel deformed more slowly than the till. The principal velocity component was therefore located within the till, allowing the glacier to override the gravel thrust sheets that constitute the end moraine. The model suggests that the processes responsible for the formation of submarginal end moraines are different from those operating during the formation of proglacial end moraines.  相似文献   

20.
Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691~505 kaBP middle Pleistocene ice age, 75–40 kaBP the early stage of last glacier, 27–8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn’t erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn’t form stable lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号