首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
Experimental Constraints on the Origin of the 1991 Pinatubo Dacite   总被引:12,自引:2,他引:12  
Crystallization (dacite) and interaction (dacite–peridotite)experiments have been performed on the 1991 Pinatubo dacite(Luzon Island, Philippines) to constrain its petrogenesis. Inthe dacite–H2O system at 960 MPa, magnetite and eitherclinopyroxene (low H2O) or amphibole (high H2O) are the liquidusphases. No garnet is observed at this pressure. Dacite–peridotite interaction at 920 MPa produces massive orthopyroxenecrystallization, in addition to amphibole ± phlogopite.Amphibole crystallizing in dacite at 960 MPa has the same compositionas the aluminium-rich hornblende preserved in the cores of amphibolephenocrysts in the 1991 dacite, suggesting a high-pressure stageof dacite crystallization with high melt H2O contents (>10wt %) at relatively low temperature (<950°C). The compositionsof plagioclase, amphibole and melt inclusion suggest that thePinatubo dacite was water-rich, oxidized and not much hotterthan 900°C, when emplaced into the shallow magma reservoirin which most phenocrysts precipitated before the onset of the1991 eruption. The LREE-enriched REE pattern of the whole-rockdacite demands garnet somewhere during its petrogenesis, whichin turn suggests high-pressure derivation. Partial melting ofsubducted oceanic crust yields melts unlike the Pinatubo dacite.Interaction of these slab melts with sub-arc peridotite is unableto produce a Pinatubo type of dacite, nor is a direct mantleorigin conceivable on the basis of our peridotite–daciteinteraction experimental results. Dehydration melting of underplatedbasalts requires unrealistically high temperatures and doesnot yield dacite with the low FeO/MgO, and high H2O, Ni andCr contents typical of the Pinatubo dacite. The most plausibleorigin of the Pinatubo dacite is via high-pressure fractionationof a hydrous, oxidized, primitive basalt that crystallized amphiboleand garnet upon cooling. Dacite melts produced in this way weredirectly expelled from the uppermost mantle or lower crust toshallow-level reservoirs from which they erupted occasionally.Magmas such as the Pinatubo dacite may provide evidence forthe existence of particularly H2O-rich conditions in the sub-arcmantle wedge rather than the melting of the young, hot subductingoceanic plate. KEY WORDS: Pinatubo dacite; slab melt; experimental petrology; arc magmas  相似文献   

2.
TAMURA  Y. 《Journal of Petrology》1995,36(2):417-434
The Mio-Pliocene Shirahama Group, Izu Peninsula, Central Japan,a well-exposed submarine volcanic arc complex of lava flows,pyroclastic rocks and associated shallow intrusives, is characterizedby a tholeiitic series (basalt to dacite) and a calc-alkalineseries (andesite to dacite). Chemical variations in the tholeiiticseries and calc-alkaline series are consistent with crystalfractionation from basalt and magnesian andesite (boninite),respectively. Crystal–liquid phase relations of thesemagmas have been investigated by study of sample suites fromthese two series. Compositions of liquids in equilibrium withphenocrysts were determined by microprobe grid analyses, inwhich 49 points were averaged in 03 mm 03 mm groundmassareas. The liquid compositions, coupled with the phenocrystmineralogy of the same samples, define the liquid lines of descentof these volcanic arc magmas. Major findings include the following:(1) Crystallization of the tholeiitic series magma is consistentwith early stage crystallization in the simple system Fo–Di–Silica–H2O,with olivine having a reaction relation to augite and the tholeiiticliquid. (2) The later stage products of the tholeiitic seriesmagma are, however, crystal-poor (<10%) dacites with no maficminerals, suggesting that tholeiitic liquids, hypersthene andaugite were no longer on the cotectic (3) A characteristic ofthe calc-alkaline series magmas is the development of rhyoliticliquids. Hypersthene, augite, plagioclase and Fe–Ti oxideoccur in most calc-alkaline rocks studied, and hornblende andquartz can be found in about half of these. However, their differentiationpaths show that the cotectic relation between quartz and liquidended at a later stage, resulting in the resorption of quartzphenocrysts and ultimately in the formation of quartz-free magmas.(4) The late-stage liquids of both the tholeiitic and calc-alkalineseries have deviated from their cotectics, which cannot be explainedby fractional crystallization alone. The addition of H2O froman outside system is probably required to explain the differentiationpaths. (5) The formation of chilled margins, the in situ crystallizationof a magma chamber in the solidification zone, and/or the migrationof groundwater into the magma chamber are thought to be likelyprocesses affecting magmas during their migration and intrusioninto the crust. An extreme effect of H2O addition would be tolower the liquidus temperatures of all precipitating silicatephases far below their restorable range before eruption, resultingin the production of aphyric magmas. Even when a temperaturedecrease in the magma chamber causes a liquid to intersect theliquidus of a pre-existing phase, the addition of H2O shiftsthe cotectic toward SiO2, resulting in quartz being the lastphase to crystallize. The resorption of quartz is interpretedto be the result of a liquidus boundary shift caused by theaddition of H2O. The genesis of aphyric rhyolites is thereforeinferred to result from fractional crystallization followingaddition of H20. KEY WORDS: Shirahama Group; Japan; island arc; rhyolite; magma series  相似文献   

3.
Phase equilibria simulations were performed on naturally quenchedbasaltic glasses to determine crystallization conditions priorto eruption of magmas at the Mid-Atlantic Ridge (MAR) east ofAscension Island (7–11°S). The results indicate thatmid-ocean ridge basalt (MORB) magmas beneath different segmentsof the MAR have crystallized over a wide range of pressures(100–900 MPa). However, each segment seems to have a specificcrystallization history. Nearly isobaric crystallization conditions(100–300 MPa) were obtained for the geochemically enrichedMORB magmas of the central segments, whereas normal (N)-MORBmagmas of the bounding segments are characterized by polybariccrystallization conditions (200–900 MPa). In addition,our results demonstrate close to anhydrous crystallization conditionsof N-MORBs, whereas geochemically enriched MORBs were successfullymodeled in the presence of 0·4–1 wt% H2O in theparental melts. These estimates are in agreement with direct(Fourier transform IR) measurements of H2O abundances in basalticglasses and melt inclusions for selected samples. Water contentsdetermined in the parental melts are in the range 0·04–0·09and 0·30–0·55 wt% H2O for depleted and enrichedMORBs, respectively. Our results are in general agreement (within±200 MPa) with previous approaches used to evaluate pressureestimates in MORB. However, the determination of pre-eruptiveconditions of MORBs, including temperature and water contentin addition to pressure, requires the improvement of magma crystallizationmodels to simulate liquid lines of descent in the presence ofsmall amounts of water. KEY WORDS: MORB; Mid-Atlantic Ridge; depth of crystallization; water abundances; phase equilibria calculations; cotectic crystallization; pressure estimates; polybaric fractionation  相似文献   

4.
Mechanisms of fractional crystallization with simultaneous crustalassimilation (AFC) are examined for the Kutsugata and Tanetomilavas, an alkali basalt–dacite suite erupted sequentiallyfrom Rishiri Volcano, northern Japan. The major element variationswithin the suite can be explained by boundary layer fractionation;that is, mixing of a magma in the main part of the magma bodywith a fractionated interstitial melt transported from the mushyboundary layer at the floor. Systematic variations in SiO2 correlatewith variations in the Pb, Sr and Nd isotopic compositions ofthe lavas. The geochemical variations of the lavas are explainedby a constant and relatively low ratio of assimilated mass tocrystallized mass (‘r value’). In the magma chamberin which the Kutsugata and Tanetomi magmas evolved, a strongthermal gradient was present and it is suggested that the marginalpart of the reservoir was completely solidified. The assimilantwas transported by crack flow from the partially fused floorcrust to the partially crystallized floor mush zone throughfractures in the solidified margin, formed mainly by thermalstresses resulting from cooling of the solidified margin andheating of the crust. The crustal melt was then mixed with thefractionated interstitial melt in the mushy zone, and the mixedmelt was further transported by compositional convection tothe main magma, causing its geochemical evolution to be characteristicof AFC. The volume flux of the assimilant from the crust tothe magma chamber is suggested to have decreased progressivelywith time (proportional to t–1/2), and was about 3 x 10–2m/year at t = 10 years and 1 x 10–2 m/year at t = 100years. It has been commonly considered that the heat balancebetween magmas and the surrounding crust controls the couplingof assimilation and fractional crystallization processes (i.e.absolute value of r). However, it is inferred from this studythat the ratio of assimilated mass to crystallized mass canbe controlled by the transport process of the assimilant fromthe crust to magma chambers. KEY WORDS: assimilation and fractional crystallization; mass balance model; magma chamber; melt transport; Pb isotope  相似文献   

5.
The Proterozoic (950 Ma) Lyngdal granodiorite of southern Norwaybelongs to a series of hornblende–biotite metaluminousferroan granitoids (HBG suite) coeval with the post-collisionalRogaland Anorthosite–Mangerite–Charnockite (AMC)suite. This granitoid massif shares many geochemical characteristicswith rapakivi granitoids, yet granodiorites dominate over granites.To constrain both crystallization (P, T, fO2, H2O in melt) andmagma generation conditions, we performed crystallization experimentson two samples of the Lyngdal granodiorite (with 60 and 65 wt% SiO2) at 4–2 kbar, mainly at fO2 of NNO (nickel–nickeloxide) to NNO + 1, and under fluid-saturated conditions withvarious H2O–CO2 ratios for each temperature. Comparisonbetween experimental phase equilibria and the mineral assemblagein the Lyngdal granodiorite indicates that it crystallized between4 and 2 kbar, from a magma with 5–6 wt % H2O at an fO2of NNO to NNO + 1. These oxidized and wet conditions sharplycontrast with the dry and reduced conditions inferred for thepetrogenesis of the AMC suite and many other rapakivi granitesworldwide. The high liquidus temperature and H2O content ofthe Lyngdal granodiorite imply that it is not a primary magmaproduced by the partial melting of the crust but is derivedby the fractionation of a mafic magma. Lyngdal-type magmas appearto have volcanic equivalents in the geological record. In particular,our results show that oxidized high-silica rhyolites, such asthe Bishop Tuff, could be derived via fractionation of oxidizedintermediate magmas and do not necessarily represent primarycrustal melts. This study underlines the great variability ofcrystallization conditions (from anhydrous to hydrous and reducedto oxidized) and petrogenetic processes among the metaluminousferroan magmas of intermediate compositions (granodiorites,quartz mangerites, quartz latites), suggesting that there isnot a single model to explain these rocks. KEY WORDS: ferroan granitoids; crystallization conditions; experiments; Norway; Sveconorwegian; Bishop Tuff  相似文献   

6.
The Oto-Zan lava in the Setouchi volcanic belt is composed ofphenocryst-poor, sparsely plagioclase-phyric andesites (sanukitoids)and forms a composite lava flow. The phenocryst assemblagesand element abundances change but Sr–Nd–Pb isotopiccompositions are constant throughout the lava flow. The sanukitoidat the base is a high-Mg andesite (HMA) and contains Mg- andNi-rich olivine and Cr-rich chromite, suggesting the emplacementof a mantle-derived hydrous (7 wt % H2O) HMA magma. However,Oto-Zan sanukitoids contain little H2O and are phenocryst-poor.The liquid lines of descent obtained for an Oto-Zan HMA at 0·3GPa in the presence of 0·7–2·1 wt % H2Osuggest that mixing of an HMA magma with a differentiated felsicmelt can reasonably explain the petrographical and chemicalcharacteristics of Oto-Zan sanukitoids. We propose a model wherebya hydrous HMA magma crystallizes extensively within the crust,resulting in the formation of an HMA pluton and causing liberationof H2O from the magma system. The HMA pluton, in which interstitialrhyolitic melts still remain, is then heated from the base byintrusion of a high-T basalt magma, forming an H2O-deficientHMA magma at the base of the pluton. During ascent, this secondaryHMA magma entrains the overlying interstitial rhyolitic melt,resulting in variable self-mixing and formation of a zoned magmareservoir, comprising more felsic magmas upwards. More effectiveupwelling of more mafic, and hence less viscous, magmas througha propagated vent finally results in the emplacement of thecomposite lava flow. KEY WORDS: high-Mg andesite; sanukitoid; composite lava; solidification; remelting  相似文献   

7.
The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust   总被引:49,自引:15,他引:49  
When basalt magmas are emplaced into continental crust, meltingand generation of silicic magma can be expected. The fluid dynamicaland heat transfer processes at the roof of a basaltic sill inwhich the wall rock melts are investigated theoretically andalso experimentally using waxes and aqueous solutions. At theroof, the low density melt forms a stable melt layer with negligiblemixing with the underlying hot liquid. A quantitative theoryfor the roof melting case has been developed. When applied tobasalt sills in hot crust, the theory predicts that basalt sillsof thicknesses from 10 to 1500 m require only 1 to 270 y tosolidify and would form voluminous overlying layers of convectingsilicic magma. For example, for a 500 m sill with a crustalmelting temperature of 850 ?C, the thickness of the silicicmagma layer generated ranges from 300 to 1000 m for countryrock temperatures from 500 to 850?C. The temperatures of thecrustal melt layers at the time that the basalt solidifies arehigh (900–950?C) so that the process can produce magmasrepresenting large degrees of partial fusion of the crust. Meltingoccurs in the solid roof and the adjacent thermal boundary layer,while at the same time there is crystallization in the convectinginterior. Thus the magmas formed can be highly porphyritic.Our calculations also indicate that such magmas can containsignificant proportions of restite crystals. Much of the refractorycomponents of the crust are dissolved and then re-precipitatedto form genuine igneous phenocrysts. Normally zoned plagioclasefeldspar phenocrysts with discrete calcic cores are commonlyobserved in many granitoids and silicic volcanic rocks. Suchpatterns would be expected in crustal melting, where simultaneouscrystallization is an inevitable consequence of the fluid dynamics. The time-scales for melting and crystallization in basalt-inducedcrustal melting (102–103 y) are very short compared tothe lifetimes of large silicic magma systems (>106 y) orto the time-scale for thermal relaxation of the continentalcrust (> l07 y). Several of the features of silicic igneoussystems can be explained without requiring large, high-level,long-lived magma chambers. Cycles of mafic to increasingly largevolumes of silicic magma with time are commonly observed inmany systems. These can be interpreted as progressive heatingof the crust until the source region is partially molten andbasalt can no longer penetrate. Every input of basalt triggersrapid formation of silicic magma in the source region. Thismagma will freeze again in time-scales of order l02–103y unless it ascends to higher levels. Crystallization can occurin the source region during melting, and eruption of porphyriticmagmas does not require a shallow magma chamber, although suchchambers may develop as magma is intruded into high levels inthe crust. For typical compositions of upper crustal rocks,the model predicts that dacitic volcanic rocks and granodiorite/tonaliteplutons would be the dominant rock types and that these wouldascend-from the source region and form magmas ranging from thosewith high temperature and low crystal content to those withhigh crystal content and a significant proportion of restite.  相似文献   

8.
Mt. Shasta andesite and dacite lavas contain high MgO (3.5–5 wt.%), very low FeO*/MgO (1–1.5) and 60–66 wt.% SiO2. The range of major and trace element compositions of the Shasta lavas can be explained through fractional crystallization (~50–60 wt.%) with subsequent magma mixing of a parent magma that had the major element composition of an H2O-rich primitive magnesian andesite (PMA). Isotopic and trace element characteristics of the Mt. Shasta stratocone lavas are highly variable and span the same range of compositions that is found in the parental basaltic andesite and PMA lavas. This variability is inherited from compositional variations in the input contributed from melting of mantle wedge peridotite that was fluxed by a slab-derived, fluid-rich component. Evidence preserved in phenocryst assemblages indicates mixing of magmas that experienced variable amounts of fractional crystallization over a range of crustal depths from ~25 to ~4 km beneath Mt. Shasta. Major and trace element evidence is also consistent with magma mixing. Pre-eruptive crystallization extended from shallow crustal levels under degassed conditions (~4 wt.% H2O) to lower crustal depths with magmatic H2O contents of ~10–15 wt.%. Oxygen fugacity varied over 2 log units from one above to one below the Nickel-Nickel Oxide buffer. The input of buoyant H2O-rich magmas containing 10–15 wt.% H2O may have triggered magma mixing and facilitated eruption. Alternatively, vesiculation of oversaturated H2O-rich melts could also play an important role in mixing and eruption.  相似文献   

9.
DUFEK  J.; BERGANTZ  G. W. 《Journal of Petrology》2005,46(11):2167-2195
We present a quantitative assessment of the thermal and dynamicresponse of an amphibolitic lower crust to the intrusion ofbasaltic dike swarms in an arc setting. We consider the effectof variable intrusion geometry, depth of intrusion, and basaltflux on the production, persistence, and interaction of basalticand crustal melt in a stochastic computational framework. Distinctmelting and mixing environments are predicted as a result ofthe crustal thickness and age of the arc system. Shallow crustal(30 km) environments and arc settings with low fluxes of mantle-derivedbasalt are likely repositories of isolated pods of mantle andcrustal melts in the lower crust, both converging on daciticto rhyodacitic composition. These may be preferentially rejuvenatedin subsequent intrusive episodes. Mature arc systems with thickercrust (50 km) produce higher crustal and residual basaltic meltfractions, reaching 0·4 for geologically reasonable basaltfluxes. The basaltic to basaltic andesite composition of bothcrustal and mantle melts will facilitate mixing as the networkof dikes collapses, and Reynolds numbers reach 10–4–1·0in the interiors of dikes that have been breached by ascendingcrustal melts. This may provide one mechanism for melting, assimilation,storage and homogenization (MASH)-like processes. Residual mineralassemblages of crust thickened by repeated intrusion are predictedto be garnet pyroxenitic, which are denser than mantle peridotiteand also generate convective instabilities where some of thecrustal material is lost to the mantle. This reconciles thethinner than predicted crust in regions that have undergonea large flux of mantle basalt for a prolonged period of time,and helps explain the enrichment of incompatible elements suchas K2O, typical of mature arc settings, without the associatedmass balance problem. KEY WORDS: crustal anatexis; delamination; lower crust; magma mixing; thermal model  相似文献   

10.
Olivine + clinopyroxene ± amphibole cumulates have beenwidely documented in island arc settings and may constitutea significant portion of the lowermost arc crust. Because ofthe low melting temperature of amphibole (1100°C), suchcumulates could melt during intrusion of primary mantle magmas.We have experimentally (piston-cylinder, 0·5–1·0GPa, 1200–1350°C, Pt–graphite capsules) investigatedthe melting behaviour of a model amphibole–olivine–clinopyroxenerock, to assess the possible role of such cumulates in islandarc magma genesis. Initial melts are controlled by pargasiticamphibole breakdown, are strongly nepheline-normative and areAl2O3-rich. With increasing melt fraction (T > 1190°Cat 1·0 GPa), the melts become ultra-calcic while remainingstrongly nepheline-normative, and are saturated with olivineand clinopyroxene. The experimental melts have strong compositionalsimilarities to natural nepheline-normative ultra-calcic meltinclusions and lavas exclusively found in arc settings. Theexperimentally derived phase relations show that such naturalmelt compositions originate by melting according to the reactionamphibole + clinopyroxene = melt + olivine in the arc crust.Pargasitic amphibole is the key phase in this process, as itlowers melting temperatures and imposes the nepheline-normativesignature. Ultra-calcic nepheline-normative melt inclusionsare tracers of magma–rock interaction (assimilative recycling)in the arc crust. KEY WORDS: experimental melting; subduction zone; ultra-calcic melts; wehrlite  相似文献   

11.
Extremely low-K basaltic andesite to andesite lavas at Nekomavolcano, situated in the frontal volcanic zone of the NE Honshuarc, were produced from melts that originated in the lower crust.Multiple incompatible trace element model calculations suggestthat extremely low-K basalt found in the same arc is a naturalanalog for the source composition. However, fractional crystallization,magma mixing, and crustal contamination models of primary low-Kbasalt cannot reproduce the Nekoma chemical composition. Derivationof melts from an extremely low-K amphibolitic lower-crustalrock with the residual mineral phases hornblende, olivine, pyroxenes,plagioclase, and magnetite is plausible. Major element compositionsof Nekoma lavas are very similar to those of experimental meltsof amphibolite dehydration melting, which further support theproposal. Light rare earth elements are slightly enriched, buttotal rare earth element abundances are relatively low, suggestinga high degree of partial melting of the source. Ba/Th ratiosare low for frontal arc lavas, reflecting modification of theratio during partial melting. Zr/Hf and Nb/Ta ratios are significantlygreater than is usual for arc lavas, suggesting an anomaloussource composition. Markedly low K, Rb, Cs contents in the extremelylow-K lavas are attributed to an extremely low-K source. Underplatingof an extremely low-K basalt originating from a hydrous depletedmantle wedge could form such an amphibolite. In contrast, Ndand Sr isotope ratios fall close to Bulk Earth values, indicatingan isotopically enriched source. Hornblende-bearing rocks maypredominate in the lower crust of the NE Honshu arc, based onthe observation of crustal xenoliths. The presence of largelow-Vp regions at lower-crustal depths beneath the frontal arcis suggested by geophysical observations. These observationsfurther support lower-crustal melting beneath Nekoma as theorigin of the intermediate low-K lavas. KEY WORDS: amphibolite source; crustal melting; low-K andesite; Sr–Nd isotopes; trace element  相似文献   

12.
Quartz-rich xenoliths in lavas and pyroclastic rocks from VulcanoIsland, part of the Aeolian arc, Italy, contain silicic meltinclusions with high SiO2 (73–80 wt %) and K2O (3–6wt %) contents. Two types of inclusions can be distinguishedbased on their time of entrapment and incompatible trace element(ITE) concentrations. One type (late, ITE-enriched inclusions)has trace element characteristics that resemble those of themetamorphic rocks of the Calabro-Peloritano basement of theadjacent mainland. Other inclusions (early, ITE-depleted) havevariable Ba, Rb, Sr and Cs, and low Nb, Zr and rare earth element(REE) contents. Their REE patterns are unfractionated, witha marked positive Eu anomaly. Geochemical modelling suggeststhat the ITE-depleted inclusions cannot be derived from equilibriummelting of Calabro-Peloritano metamorphic rocks. ITE-enrichedinclusions can be modelled by large degrees (>80%) of meltingof basement gneisses and schists, leaving a quartz-rich residuerepresented by the quartz-rich xenoliths. Glass inclusions inquartz-rich xenoliths represent potential contaminants of Aeolianarc magmas. Interaction between calc-alkaline magmas and crustalanatectic melts with a composition similar to the analysed inclusionsmay generate significant enrichment in potassium in the magmas.However, ITE contents of the melt inclusions are comparablewith or lower than those of Vulcano calc-alkaline and potassicrocks. This precludes the possibility that potassic magmas inthe Aeolian arc may originate from calc-alkaline parents throughdifferent degrees of incorporation of crustal melts. KEY WORDS: melt inclusions; crustal anatexis; magma assimilation; xenoliths; Vulcano Island  相似文献   

13.
New H2O, CO2 and S concentration data for basaltic glasses fromLoihi seamount, Hawaii, allow us to model degassing, assimilation,and the distribution of major volatiles within and around theHawaiian plume. Degassing and assimilation have affected CO2and Cl but not H2O concentrations in most Loihi glasses. Waterconcentrations relative to similarly incompatible elements inHawaiian submarine magmas are depleted (Loihi), equivalent (Kilauea,North Arch, Kauai–Oahu), or enriched (South Arch). H2O/Ceratios are uncorrelated with major element composition or extentor depth of melting, but are related to position relative tothe Hawaiian plume and mantle source region composition, consistentwith a zoned plume model. In front of the plume core, overlyingmantle is metasomatized by hydrous partial melts derived fromthe Hawaiian plume. Downstream from the plume core, lavas tapa depleted source region with H2O/Ce similar to enriched Pacificmid-ocean ridge basalt. Within the plume core, mantle components,thought to represent subducted oceanic lithosphere, have waterenrichments equivalent to (KEA) or less than (KOO) that of Ce.Lower H2O/Ce in the KOO component may reflect efficient dehydrationof the subducting oceanic crust and sediments during recyclinginto the deep mantle. KEY WORDS: basalt; Hawaii; mantle; plumes; volatiles  相似文献   

14.
The study of melt microinclusions in olivine megacrysts from meimechites and alkali picrites of the Maimecha–Kotui alkali ultramafic and carbonatite province (Polar Siberia) revealed that the melt compositions corrected for loss of olivine due to post-entrapment crystallization of olivine on inclusion walls (differentiates of primary meimechite magma) match well to the composition of nephelinites and olivine melilitites belonging to carbonatite magmatic series. Modeling of fractional crystallization of meimechite magmas results in the high-alkali melt compositions corresponding to the silicate–carbonate liquid immiscibility field. The appearance of volatile-rich melts at the base of magma-generating plume systems at early stages of partial melting can be explained by extraction of incompatible elements including volatiles, by near-solidus melts at low degrees of partial melting, and meimechites are an example of such magmas. Subsequent accumulation of CO2 in the residual melt results in generation of carbonate magma.  相似文献   

15.
The Massif du Sud is a large ophiolitic complex that crops out in the southern region of New Caledonia (SW Pacific). It is dominated by harzburgite tectonite that locally shows a transitional gradation to massive dunite up section. Clinopyroxene, orthopyroxene and plagioclase progressively appear in dunite up to the transition to layered wehrlite and orthopyroxene–gabbro. The dunite–wehrlite and wehrlite–gabbro contacts are parallel and the latter defines the paleo-Moho.Highly depleted modal, mineral and bulk rock compositions indicate that harzburgites are residues after high degrees (20–30%) of partial melting mainly in the spinel-stability field. Their relative enrichment in HFSE, LREE and MREE is due to re-equilibration of melting residues with percolating melts. Dunite formed in the Moho transition zone by reaction between residual mantle harzburgite and olivine-saturated melts that led to pyroxene dissolution and olivine precipitation. Rare clinopyroxene and plagioclase crystallized in interstitial melt pores of dunite from primitive, low-TiO2, ultra-depleted liquids with a geochemical signature transitional between those of island arc tholeiites and boninites.Ascending batches of relatively high-SiO2, ultra-depleted melts migrated through the Moho transition zone and generated wehrlite by olivine dissolution and crystallization of clinopyroxene, orthopyroxene and plagioclase in variable amounts. These liquids were more evolved and were produced by higher degrees of melting or from a more depleted source compared with melts that locally crystallized clinopyroxene in dunite. Ultra-depleted magmas, non-cogenetic with those that formed the Moho transition zone, ascended to the lower crust and generated gabbroic cumulates with subduction-related affinity. Thus, the ultramafic and mafic rocks in the Moho transition zone and lower crust of the Massif du Sud ophiolite are not products of fractional crystallization from a single magma-type but are the result of migration and accumulation of different melts in a multi-stage evolution.The record of high partial melting in the mantle section, and migration and accumulation of ultra-depleted subduction-related melts in the Moho transition zone and lower crust support that the Massif du Sud ophiolite is a portion of forearc lithosphere generated in an extensional regime during the early phases of the subduction zone evolution. Our results show the existence of different types of ultra-depleted melt compositions arriving at the Moho transition zone and lower crust of an infant intraoceanic paleo-arc. Ultra-depleted melts may thus be a significant component of the melt budget generated in oceanic spreading forearcs prior to aggregation and mixing of a large range of melt compositions in the crust.  相似文献   

16.
Pressures of Crystallization of Icelandic Magmas   总被引:1,自引:0,他引:1  
Iceland lies astride the Mid-Atlantic Ridge and was createdby seafloor spreading that began about 55 Ma. The crust is anomalouslythick (20–40 km), indicating higher melt productivityin the underlying mantle compared with normal ridge segmentsas a result of the presence of a mantle plume or upwelling centeredbeneath the northwestern edge of the Vatnajökull ice sheet.Seismic and volcanic activity is concentrated in 50 km wideneovolcanic or rift zones, which mark the subaerial Mid-AtlanticRidge, and in three flank zones. Geodetic and geophysical studiesprovide evidence for magma chambers located over a range ofdepths (1·5–21 km) in the crust, with shallow magmachambers beneath some volcanic centers (Katla, Grimsvötn,Eyjafjallajökull), and both shallow and deep chambers beneathothers (e.g. Krafla and Askja). We have compiled analyses ofbasalt glass with geochemical characteristics indicating crystallizationof ol–plag–cpx from 28 volcanic centers in the Western,Northern and Eastern rift zones as well as from the SouthernFlank Zone. Pressures of crystallization were calculated forthese glasses, and confirm that Icelandic magmas crystallizeover a wide range of pressures (0·001 to 1 GPa), equivalentto depths of 0–35 km. This range partly reflects crystallizationof melts en route to the surface, probably in dikes and conduits,after they leave intracrustal chambers. We find no evidencefor a shallow chamber beneath Katla, which probably indicatesthat the shallow chamber identified in other studies containssilica-rich magma rather than basalt. There is reasonably goodcorrelation between the depths of deep chambers (> 17 km)and geophysical estimates of Moho depth, indicating that magmaponds at the crust–mantle boundary. Shallow chambers (<7·1 km) are located in the upper crust, and probablyform at a level of neutral buoyancy. There are also discretechambers at intermediate depths (11 km beneath the rift zones),and there is strong evidence for cooling and crystallizing magmabodies or pockets throughout the middle and lower crust thatmight resemble a crystal mush. The results suggest that themiddle and lower crust is relatively hot and porous. It is suggestedthat crustal accretion occurs over a range of depths similarto those in recent models for accretionary processes at mid-oceanridges. The presence of multiple stacked chambers and hot, porouscrust suggests that magma evolution is complex and involvespolybaric crystallization, magma mixing, and assimilation. KEY WORDS: Iceland rift zones; cotectic crystallization; pressure; depth; magma chamber; volcanic glass  相似文献   

17.
Melt inclusion and host glass compositions from the easternend of the Southwest Indian Ridge show a progressive depletionin light rare earth elements (LREE), Na8 and (La/Sm)n, but anincrease in Fe8, from the NE (64°E) towards the SW (49°E).These changes indicate an increase in the degree of mantle meltingtowards the SW and correlate with a shallowing of the ridgeaxial depth and increase in crustal thickness. In addition,LREE enrichment in both melt inclusions and host glasses fromthe NE end of the ridge are compatible with re-fertilizationof a depleted mantle source. The large compositional variations(e.g. P2O5 and K2O) of the melt inclusions from the NE end ofthe ridge (64°E), coupled with low Fe8 values, suggest thatmelts from the NE correspond to a variety of different batchesof melts generated at shallow levels in the mantle melting column.In contrast, the progressively more depleted compositions andhigher Fe8 values of the olivine- and plagioclase-hosted meltinclusions at the SW end of the studied region (49°E), suggestthat these melt inclusions represent batches of melt generatedby higher degrees of melting at greater mean depths in the mantlemelting column. Systematic differences in Fe8 values betweenthe plagioclase- and the olivine-hosted melt inclusions in theSW end (49°E) of the studied ridge area, suggest that theplagioclase-hosted melt inclusions represent final batches ofmelt generated at the top of the mantle melting column, whereasthe olivine-hosted melt inclusions correspond to melts generatedfrom less depleted, more fertile mantle at greater depths. KEY WORDS: basalt; melt inclusions; olivine; plagioclase; Southwest Indian Ridge  相似文献   

18.
The evolution of large bodies of silicic magma is an importantaspect of planetary differentiation. Melt and mineral inclusionsin phenocrysts and zoned phenocrysts can help reveal the processesof differentiation such as magma mixing and crystal settling,because they record a history of changing environmental conditions.Similar major element compositions and unusually low concentrationsof compatible elements (e.g. 0·45–4·6 ppmBa) in early-erupted melt inclusions, matrix glasses and bulkpumice from the Bishop Tuff, California, USA, suggest eutectoidfractional crystallization. On the other hand, late-eruptedsanidine phenocrysts have rims rich in Ba, and late-eruptedquartz phenocrysts have CO2-rich melt inclusions closest tocrystal rims. Both features are the reverse of in situ crystallizationdifferentiation, and they might be explained by magma mixingor crystal sinking. Log(Ba/Rb) correlates linearly with log(Sr/Rb)in melt inclusions, and this is inconsistent with magma mixing.Melt inclusion gas-saturation pressure increases with CO2 fromphenocryst core to rim and suggests crystal sinking. Some inclusionsof magnetite in late-erupted quartz are similar to early-eruptedmagnetite phenocrysts, and this too is consistent with crystalsinking. We argue that some large phenocrysts of late-eruptedquartz and sanidine continued to crystallize as they sank severalkilometers through progressively less differentiated melts.Probable diffusive modification of Sr in sanidine phenocrystsand the duration of crystal sinking are consistent with an evolutionaryinterval of some 100 ky or more. Crystal sinking enhanced thedegree of differentiation of the early-erupted magma and pointsto the importance of H2O (to diminish viscosity and enhancethe rate of crystal sinking) in the evolution of silicic magmas. KEY WORDS: crystal settling; differentiation; melt inclusions; rhyolite; trace elements  相似文献   

19.
The concentrations and ratios of the major elements determine the physical properties and the phase equilibria behavior of peridotites and basalts in response to the changing energy contents of the systems. The behavior of the trace elements and isotopic features are influenced in their turn by the phase equilibria, by the physical character of the partial melting and partial crystallization processes, and by the way in which a magma interacts with its wall rocks. Concentrating on the trace element and isotope contents of basalts to the exclusion of the field relations, petrology, major element data, and phase equilibria is as improvident as slaughtering the buffalo for the sake of its tongue. The crust is a cool boundary layer and a density filter, which impedes the upward transfer of hot, dense “primary” picritic and komatiitic liquids. Planetary crusts are sites of large-scale contamination and extensive partial crystallization of primitive melts striving to escape to the surface. Escape of truly unmodified primitive melts to the surface is a rare event, requiring the resolution of daunting problems in chemical and mechanical engineering. Primary status for volumetrically abundant basalts such as mid-ocean ridge basalt, ocean island basalt, and continental flood basalts is denied by their low-pressure cotectic character, first remarked upon on petrological grounds in 1928 and on experimental grounds in 1962. These basalt liquids are products of crystal-liquid separation at low pressure. Primary status for these common basalts is further denied by the phase equilibria of such compositions at elevated pressures, when the required residual mantle mineralogy (magnesian olivine and orthopyroxene) is not stable at the liquidus. It is also denied by the picritic or komatiitic nature of partial melts of candidate upper-mantle compositions at high pressures—a conclusion supported by calculation of the melt composition, which would need to be extracted in order to explain the chemical variation between fertile and residual peridotite in natural ultramafic rock suites. The subtleties of magma chamber partial crystallization processes can produce an astounding array of “pseudospidergrams,” a small selection of which have been explored here. Major modification of the trace element geochemistry and trace element ratios, even those of the highly incompatible elements, must always be entertained whenever the evidence suggests the possibility of partial crystallization. At one extreme, periodically recharged, periodically tapped magma chambers might undergo partial crystallization by ∼95% consolidation of a succession of small packets of the magma. Refluxing of the 5% residual melts from such a process into the main body of melt would lead to eventual discrimination between highly incompatible elements in that residual liquid comparable with that otherwise achieved by 0.1 to 0.3% liquid extraction in equilibrium partial melting. Great caution needs to be exercised in attempting the reconstruction of more primitive compositions by addition of troctolite, gabbro, and olivine to apparently primitive lava compositions. Special attention is focussed on the phase equilibria involving olivine, plagioclase (i.e., troctolite), and liquid because a high proportion of erupted basalts carry these two phases as phenocrysts, yet the equilibria are restricted to crustal pressures and are only encountered by wide ranges of basaltic compositions at pressures less than 0.5 GPa. The mere presence of plagioclase phenocrysts may be sufficient to disqualify candidate primitive magmas. Determination of the actual contributions of crustal processes to petrogenesis requires a return to detailed field, experimental, and forensic petrologic studies of individual erupted basalt flows; of a multitude of cumulate gabbros and their contacts; and of upper-mantle outcrops.  相似文献   

20.
The Jurassic Grayback pluton was emplaced in a back-arc settingbehind a contemporaneous oceanic arc. Th\alphae main stage ofthe pluton consists of an early, reversely zoned tonalite togabbro that was intruded by synplutonic noritic and gabbroicmagmas. Late-stage activity was characterized by intrusion oftonalitic and granitic dikes, many of which contain mafic enclavesand hybrid zones. Most mafic rocks in the pluton are calc-alkaline,with characteristic magnesian clinopyroxene, calcic cores inplagioclase, and elemental abundances similar to H2O-rich arcbasalts. However, some mafic rocks contain relatively Fe-richclinopyroxene, lack calcic cores in plagioclase, and are compositionallysimilar to evolved high-alumina tholeiite. Compositional variation in the main stage can be modeled inpart by fractional crystallization and crusted assimilationduring which parental calc-alkaline basalt evolved to graniticcompositions. Cumulates related to this process are representedby modally variable melagabbro and pyroxenite. Mixing of basalticand tonalitic magmas accounts for the compositions of most main-stageintermediate rocks, but mixing of basaltic and granitic magmaswas uncommon until late in the pluton's history. Oxygen, Sr and Nd isotopic data indicate that virtually allmain-stage magmas in the pluton contain a crustal component.Isotopic and trace element data further suggest that late-stagetonalitic dikes represent melts derived from older, metavolcanicarc crust Deep crustal contamination of main-stage rocks tookplace below the level of emplacement, probably in a magma-richzone where basalts ponded and mixed with crustal melts. The Grayback pluton illustrates the diversity of Jurassic back-arcmagmatism in the Klamath province and demonstrates that ancientmagmatism with arc-like features need not be situated in anarc setting. KEY WORDS: Grayback Pluton; Klamath Mountains; Oregon; back arc; crustal contamination *Corresponding author  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号