共查询到18条相似文献,搜索用时 156 毫秒
1.
2.
Chua电路是一个非光滑系统.本文通过广义哈密顿系统和观测器方法,将具有非线性控制的Chua电路的混沌同步问题转化成研究具有非线性控制的光滑系统的零解稳定性;进而利用滑模控制对该光滑系统的零解稳定性进行了研究,从而使得Chua电路达到了混沌同步.最后,将上述方法应用到具体系统,数值结果也表明其正确性. 相似文献
3.
研究Lorenz混沌系统的同步控制问题,提出1种在多输入的情况下实现混沌同步的变结构控制算法.利用该算法设计的变结构同步控制律使得同步误差系统的运动在切换面上成为渐近稳定的滑动模态,从而较快的实现了混沌同步.通过对 Lorenz 混沌系统的理论分析和数值仿真,说明了该变结构同步控制策略的实用性和有效性. 相似文献
4.
研究一类混沌系统的同步问题。基于李雅普诺夫稳定性理论,利用线性反馈法给出了同步混沌系统的3种控制方案,得到了2个混沌系统同步的充分条件。为了更清楚地了解每种方案下系统的同步行为,还给出了以增益为分岔参数时同步误差的变化图。理论分析和数值仿真结果都表明了文中所给方法的有效性和可行性。 相似文献
5.
本文研究了基于滑模控制的一类不确定分数阶广义系统的可容许性和鲁棒无源性问题。首先,设计了一种含有奇异矩阵的分数阶积分型切换函数,对其求分数阶导数推导出等效控制,进而得到滑动模态方程。其次,针对滑动模态方程和系统输出方程,利用线性矩阵不等式技巧,给出了系统滑动模态具有鲁棒无源性和可容许性的充分性判据,并进一步建立了鲁棒无源可容许的可解性条件。同时,设计的分数阶滑模控制律保证了闭环系统状态轨迹能够到达预设的切换面。最后,通过一个仿真实例验证了本文结果的有效性。 相似文献
6.
时间分数阶色散方程用以描述带有记忆性的色散现象。本文研究分数阶色散方程的高精度差分方法,利用紧致差分格式的构造技巧,得到了求解时间分数阶色散方程的四点四阶和五点六阶2个紧致隐式差分格式,收敛阶分别为O(τ2+h4)和O(τ2+h6).数值算例表明本文方法是高精度有效的,且具有很好的数值稳定性。 相似文献
7.
《中国海洋大学学报(自然科学版)》2017,(7)
利用滑模控制方法研究了一类分数阶参数不确定混沌系统的自适应同步控制问题,基于Lyapunov稳定性理论和分数阶微积分的相关理论,给出分数阶参数不确定系统取得滑模同步的充分性条件,并给出了严格的证明,研究表明,一定条件下分数阶不确定系统是滑模混沌同步的,仿真结果表明了方法的可行性。 相似文献
8.
9.
10.
11.
Based on the idea of tracking control and stability theory of fractional-order systems, a controller is designed to synchronize the fractional-order chaotic system with chaotic systems of integer orders, and synchronize the different fractional-order chaotic systems. The proposed synchronization approach in this paper shows that the synchronization between fractional-order chaotic systems and chaotic systems of integer orders can be achieved, and the synchronization between different fractional-order chaotic systems can also be realized. Numerical experiments show that the present method works very well. 相似文献
12.
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method. 相似文献
13.
In this paper, a novel robust impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the theory of impulsive functional differential equations and a new differential inequality, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined region. Finally, some numerical simulations for the Lorenz system and Chen system are given to demonstrate the effectiveness and feasibility of the proposed method. Compared with the existing results based on so-called dual-stage impulsive control, the derived results reduce the complexity of impulsive controller, moreover, a larger stable region can be obtained under the same parameters, which can be shown in the numerical simulations finally. 相似文献
14.
Since the past two decades, the time delay feedback control method has attracted more and more attention in chaos control studies because of its simplicity and efficiency compared with other chaos control schemes. Recently, it has been proposed to suppress low-dimensional chaos with the notch filter feedback control method, which can be implemented in a laser system. In this work, we have analytically determined the controllable conditions for notch filter feedback controlling of Chen chaotic system in terms of the Hopf bifurcation theory. The conditions for notch filter feedback controlled Chen chaoitc system having a stable limit cycle solution are given. Meanwhile, we also analysed the Hopf bifurcation direction, which is very important for parameter settings in notch filter feedback control applications. Finally, we apply the notch filter feedback control methods to the electronic circuit experiments and numerical simulations based on the theoretical analysis. The controlling results of notch filter feedback control method well prove the feasibility and reliability of the theoretical analysis. 相似文献
15.
This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincaré map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using non-feedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to period-motions by adding an excitation term. 相似文献
16.
17.