首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将采集于青岛红星化工厂的铬污染土壤以槐糖脂生物表面活性剂为增效剂进行电动修复,考察槐糖脂浓度、电解液离子强度、电解液酸度对槐糖脂增效铬污染土壤电动修复效果的影响,其中,电解液离子强度和电解液酸度分别通过添加不同浓度的乙酸铵和乙酸来调节。结果表明:加入槐糖脂的电动修复体系中,电流强度显著增大,Cr~(6+)向阴极的迁移速率加快。与未添加槐糖脂的电动修复体系相比,Cr~(6+)和总Cr的去除率分别提高了134.8%和155.3%,这是由于槐糖脂对铬离子的络合增溶作用和竞争吸附作用,有效增加了土壤基质上的铬离子的解吸速率,进而增加其电迁移速率和去除效率。电解液离子强度和电解液酸度对铬去除率有显著影响。在电解液中含有0.1~1 mol·L~(-1)乙酸铵的修复体系中,Cr~(6+)和总Cr的去除率随电解液离子强度增大而增大;在添加乙酸浓度为0.01~1 mol·L~(-1)的范围内,随着添加的乙酸浓度的增大,阴极电解液pH值逐渐降低,在乙酸浓度为1 mol·L~(-1)的电动体系中,Cr~(6+)和总Cr的去除率相对于未添加乙酸的电动体系分别增加了38.3%和17.2%。  相似文献   

2.
在考察鼠李糖脂生物表面活性剂所形成胶束的临界胶束浓度(CMC)及其表面吸附行为的基础上,研究鼠李糖脂胶束直径随溶液浓度、pH、盐度的变化特征以及重金属Cd2+和Pb2+共存时对其胶束直径的影响。结果表明,鼠李糖脂的CMC为0.13mmol·L-1。由于鼠李糖脂分子具有较大的空间体积,在表面吸附层中占据较大的吸附面积,吸附量较小,在CMC时的表面最大吸附量(Γmax)为2.48×10-6 mol·m-2,单个分子占有的最小面积(Amin)较大,达到66.92。在0.2~0.8mmol·L-1的浓度范围内,鼠李糖脂形成尺寸较大的囊泡状胶束,其胶束直径分布在50~300nm范围内,集中于100~180nm,且随鼠李糖脂浓度、溶液盐度的增大和重金属离子的加入而增大;溶液pH对胶束尺寸具有显著影响,最大胶束直径出现在pH为5.5~6.0时。  相似文献   

3.
通过在天津油田区进行的生物修复石油污染盐碱土壤的现场实验,研究了添加肥料和接种菌剂,添加缓释肥料和种植碱蓬,及同时添加肥料、接种菌剂和种植碱蓬对石油烃的强化降解的影响。结果表明,2个月的生物修复期内,同时添加菌剂、肥料并种植碱蓬的体系中石油烃的降解率最高,达到47.3%,为油对照体系的3.1倍,该体系中土壤养分和石油烃降解菌总数的平均值也是最高的,表明植物-微生物共生体系能够利用混合肥料释放出来的营养元素而快速生长,加快石油烃的降解;其次为添加菌剂和肥料的体系,石油烃的降解率为38.6%,为油对照体系的2.6倍;然后为种植碱蓬并添加肥料的体系,石油烃的降解率为36.1%,是油对照体系的2.4倍。上述结果表明,所接种石油烃降解菌和碱蓬与所添加的肥料可协同提高盐碱土壤中的石油污染的生物降解。  相似文献   

4.
石油降解菌对石油烃的降解能力及影响因素研究   总被引:2,自引:0,他引:2  
采取油浓度梯度升高的方法,从胜利油田石油污染土壤中富集分离出以柴油为碳源和能源的优势除油混合菌B4。混合菌中分离出7株可培养菌。混合菌在含油0.5%的无机盐液体培养基中培养7天后柴油的去除率达到90.4%。该菌有较好的耐受性,当盐度达3.5时,油浓度达1.0%,亦有较好长势。混合菌对油污染土壤的修复有较好的效果,特别是加入营养盐,降解率达85.6%。混合菌脱氢酶动态变化的初步研究结果表明微生物活性变化与降解率有很好的相关性。  相似文献   

5.
石油开发导致的污染令人堪忧,因此,在石油污染场地对土著石油烃降解菌进行分离鉴定,并进行石油的微生物降解研究是十分必要的。在天津大港油田分离出三株石油烃降解菌株,利用16sRNA基因序列相似性分析确定三株菌株分别为Pseudomonassp.和Bacillussp.。通过单因素实验确定了各菌株最适宜的降解条件为:#1菌株最适宜的温度30°C、pH7.2、盐度3%;#2菌株最适宜的温度35°C、pH7.5、盐度3%;#3菌株最适宜的降解温度37°C、pH7.5、盐度5%。菌株按照2:1:2的比例投加时原油降解率最高。通过正交试验分析,在接菌量10%、原油浓度0.2%、pH7.0、N:P为3:1、盐度3.5%、温度35°C的条件下,原油降解率最高,可达到71.03%。  相似文献   

6.
生物表面活性剂在海洋溢油生物修复中的应用   总被引:3,自引:0,他引:3  
生物表面活性剂具有乳化和分散油污且不污染环境等特点,常被用于原油的生物降解过程中.本文概述了生物表面活性剂在海洋溢油生物修复中的应用现状,包括对微生物降解原油的促进作用,与化学表面活性剂促进效果的对比及处理油污染现场时的投加方式,并指出了应用中存在的问题与今后的发展方向.  相似文献   

7.
报导使用气相色谱法测定石油烃降解细菌对柴油的正烷烃的降解作用。结果表明 ,石油烃降解细菌对正烷烃有明显的降解作用 ,混合菌株的降解率明显高于单菌株的降解率 ;在2 0℃的条件下 ,经过 2 1 d后 ,绝大部分的正烷烃被降解 ,总的降解率为 94.93% ,其中细菌的降解率为 75.67% ,理化降解率为 1 9.2 6% ;温度对正烷烃的降解率有明显的影响 ,温度在 1 0℃时 ,正烷烃降解速度较慢 ,在 2 0℃正烷烃的降解比 1 0℃快 ,在 35℃的条件下 ,正烷烃的降解速度最快。  相似文献   

8.
生物表面活性剂及其在油污染生物修复技术中的应用   总被引:13,自引:0,他引:13  
生物表面活性剂是由微生物等产生的具有表面活性的天然物质,其物化性质相近或优于人工合成的表面活性剂,并且具有环境兼容性和能够生物降解等特点,其应用前景十分广阔。系统地概述了生物表面活性剂的特性、种类及其在石油污染生物修复技术中的应用。  相似文献   

9.
报道使用气相色谱法测定了石油烃降解 细菌对柴油的正烷烃的降解作用。结果表明,石油烃降解细菌对正烷烃有明显的降解作用, 混合菌株的降解率明显高于单菌株的降解率;在20℃的条件下,经过21d后,绝大部分的正 烷烃被降解。总的降解率为94.93%, 其中细菌的降解率为75.67%, 理化因子降解率为19.26% ;温度对正烷烃的降解率有明显的影响,在10℃时,其降解速度较慢,20℃降解加快,35℃ 温度使正烷烃的降解速度最快。  相似文献   

10.
石油污染是当前海洋污染中最为严重和急待解决的问题。有关海面上石油的净化和海底沉积层中石油分解研究的报道较多。特别是微生物对石油的降解作用,在国外四十年代以来就从各方面进行较系统的研究[1]。  相似文献   

11.
室内试验研究小头虫的生物扰动作用对沉积物油污降解的影响。实验在混加定量20~#柴油的小生境中进行6个月。期间对氧化还原电位不连续展(RPD)深度,Eh,烃类氧化菌菌量以及油浓度等参数做了连续测定。结果表明,小头虫的生物扰动作用通过改善沉积物次表层氧含量水平而促进了烃类氧化菌的生长,并因此使得沉积物中油污的生物降解提高了15%。  相似文献   

12.
分析了表面活性剂和非水溶相有机污染物在水和土壤环境中的相互作用,以及表面活性的特性,解释了表面活性剂增效修复水和土壤环境中非水溶相污染物的机制。表面活性剂溶液通过增溶作用和增流作用,驱除地下水含水层中的非水相液体以及吸附于土壤颗粒物上的污染物,提高地下水和土壤中憎水性有机污染物的现场修复速率。增效修复效果依赖于临界胶束浓度(CMC)、污染物和表面活性剂的吸附特性、污染物的溶解性和土壤类型等。表面活性剂能增加化合物的溶解度,降低与水的界面张力,并形成乳液。  相似文献   

13.
本文报导了浙江省海岛海域中石油烃降解细菌的丰度分布及其种群组成。在整个浙江海域所布设的102个站位中,96%的站位可以分离到石油烃降解细菌,其数量分布范围在3.0×102~1.1×105个/dm3;低值出现在南麂列岛附近海域;在杭州湾南部水域所布设的26个站位中100%的站位可以分离到石油烃降解细菌,其数量分布范围在40×102~1.2×105个/dm3;石油烃降解细菌与异养细菌比值的高低与该海区受油类物质污染程度呈正相关关系;本海区所分离到的石油烃降解菌的优势菌为假单胞杆菌属Pseudomonas和黄单胞菌属Xanthomonas。  相似文献   

14.
本文报导了浙江省海岛海域中石油烃降解细菌的丰度分布及其种群组成。在整个浙江海域所布设的102个站位中,96%的站位可以分离到石油烃降解细菌、其数量分布范围在3.0×10^2-1.1×10^5个/dm^3,低值出现在南麂列岛附近海域;在杭州湾南部水域所布设的26个站位中100%的站位可以分离到石油烃降解细菌,其数量分布范围在40×10^2-1.2×10^5个/dm^3;石油烃降解到石油烃降解细菌其数  相似文献   

15.
从385株南极海洋细菌中筛选出2株石油烃降解菌,并对其降解特性进行了初步研究。以柴油为唯一碳源进行降解实验的结果表明,南极嗜冷菌NJ276和NJ341在5℃、20d内对柴油的降解率分别达到23.47%和32.15%,在15℃、20d内降解率分别达到43.95%和62.47%,其降解能力随着培养温度的升高而显著增强;石油烃降解残油组分的GC~MS分析表明,柴油经过NJ276降解后的残油组分中能检测到C15~C21七种烷烃,柴油经过NJ341降解后的残油组分只能检测到少量C16,C17和C18三种烷烃。对它们进行16S rDNA基因序列的同源性和系统发育分析表明,菌株NJ276属于假交替单胞菌属(Pseudoalteromonas),NJ341属于科尔韦尔氏属(Colwellia)。  相似文献   

16.
南极石油烃降解嗜冷菌的筛选及其降解特性的研究   总被引:6,自引:0,他引:6  
从385株南极海洋细菌中筛选出2株石油烃降解菌NJ276和NJ341,并对其降解特性进行了初步研究。以柴油为唯一碳源进行降解实验的结果表明,它们在5℃时20 d内对柴油的降解率分别达到23.47%和32.15%,在15℃时20 d内降解率分别达到43.95%和62.47%,其降解能力随着培养温度的升高而显著增强;石油烃降解残油组分的GC-MS分析结果表明,柴油经过嗜冷菌NJ276降解后的残油组分中能检测到C15~C21七种烷烃,经过嗜冷菌NJ341降解后的残油组分只能检测到少量C16,C17和C18三种烷烃。对它们进行16S rDNA基因序列的同源性和系统发育分析结果表明,菌株NJ276属于假交替单胞菌属(Pseudoaltero monas),菌株NJ341属于科尔韦尔氏属(Colwellia)。  相似文献   

17.
表面活性剂在生物修复海洋油污染中的应用及发展   总被引:2,自引:0,他引:2  
生物修复法是治理海洋油污染的主要途径。它通常采用投加表面活性剂,投加外源微生物以及投加氮磷营养源三种方式,其中投加表面活性剂在应用中存在较大分歧。本文从结构及其作用机理的角度重点探讨了表面活性剂尤其是生物表面活性剂在生物修复海洋油污染中的应用,指出生物表面活性剂的应用是未来主要发展方向,提出其应用方面存在的问题。  相似文献   

18.
海洋丝状真菌降解原油研究Ⅰ.石油烃降解的实验室模拟   总被引:1,自引:0,他引:1  
本文报道了分离自近岸海洋环境中的4株降解石油烃丝状真菌的实验室模拟研究。结果表明,受试海洋丝状真菌与海洋细菌相比,其降解速率高;适应油种、油量和油组分的范围广;并且在降解石油烃时不需要增加溶解氧和氮、磷营养盐等附加条件。这些证明,应用海洋丝状真菌清除海上油污更具开发前景。  相似文献   

19.
沙滩水体中溶解性石油烃的降解及吸附研究   总被引:2,自引:0,他引:2  
以海水体系和海水-砂体系作为对比,研究了沙滩水体中溶解性石油烃的降解及吸附作用。实验结果表明,1d内海水中石油浓度的降低主要是由于砂的快速吸附作用,3d以后生物对石油烃的降解作用逐渐占据优势。两种体系中降烃菌数量及石油浓度的变化曲线表明,砂对油的快速吸附显著降低了海水中石油污染物的浓度,使得海水含砂体系中石油降解菌的数量远高于海水体系。海水中石油污染物的降解符合一级动力学模式,当含砂体系中砂的粒径不同时,石油污染物降解的半衰期可由海水体系的31.9d缩短到22.4d和19.5d。系统中砂的存在有利于海水中石油污染物的去除,有约20%的石油污染物被吸附到砂上,然而这种去除是物理去除。  相似文献   

20.
本文叙述了选自厦门海区分离的10株烃降解菌在25℃7天中对8种烃及其混合烃的降解作用,采用气相色谱法测定其降解率.实验结果表明,不同菌株对8种烃的降解率不同,表现了菌属间的差异:烷烃的降解率高于芳烃,所有菌株都能降解正十六烷,而对芳烃的降解率较低,但在混合烃中它的降解率高于单一芳烃的降解率;碳数少的烃类降解率高于碳数多的;联合菌株比单一菌株对混合烃的降解率有一定促进作用;烃浓度是影响降解率的重要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号