首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tiegelongnan Cu (Au) deposit is the largest copper deposit newly discovered in the Bangong–Nujiang metallogenic belt. The deposit has a clear alteration zoning consisting of, from core to margin, potassic to propylitic, superimposed by phyllic and advanced argillic alteration. The shallow part of the deposit consists of a high sulphidation‐state overprint, mainly comprising disseminated pyrite and Cu–S minerals such as bornite, covellite, digenite, and enargite. At depth porphyry‐type mineralization mainly comprises disseminated chalcopyrite, bornite, pyrite, and a minor vein molybdenite. Mineralization is disseminated and associated with veins contained within the porphyry intrusions and their surrounding rocks. The zircon U–Pb ages of the mineralized diorite porphyry and granodiorite porphyry are 123.1 ± 1.7 Ma (2σ) and 121.5 ± 1.5 Ma (2σ), respectively. The molybdenite Re–Os age is 121.2 ± 1.2 Ma, suggesting that mineralization was closely associated with magmatism. Andesite lava (zircon U–Pb age of 111.7 ± 1.6 Ma, 2σ) overlies the ore‐bodies and is the product of post‐mineralization volcanic activity that played a critical role in preserving the ore‐bodies. Values of ?4.6 ‰ to + 0.8 ‰ δ34S for the metal sulfides (mean ? 1.55 ‰) suggest that S mainly has a deep magmatic source. The H and O isotopic composition is (δD = ?87 ‰ to ?64 ‰; δ18OH2O = 5.5 ‰ to 9.0 ‰), indicating that the ore‐forming fluids are mostly magmatic‐hydrothermal, possibly mixed with a small amount of meteoric water. The zircon εHf(t) of the diorite porphyry is 3.7 to 8.3, and the granodiorite porphyry is 1.8 to 7.5. Molybdenite has a high Re from 382.2 × 10?6 to 1600 × 10?6. Re and Hf isotope composition show that Tiegelongnan has some mantle source, maybe the juvenile lower crust from crust–mantle mixed source. Metallogenesis of the Tiegelongnan giant porphyry system was associated with intermediate to acidic magma in the Early Cretaceous (~120 Ma). The magma provenance of the Tiegelongnan deposit has some mantle‐derived composition, possibly mixed with the crust‐derived materials.  相似文献   

2.
《China Geology》2018,1(2):225-235
For the first time, we present the rare earth element (REE) and sulfur isotopic composition of hydrothermal precipitates recovered from the Tangyin hydrothermal field (THF), Okinawa Trough at a water depth of 1206 m. The natural sulfur samples exhibit the lowest ΣREE concentrations (ΣREE= 0.65×10–6–4.580×10–6) followed by metal sulfides (ΣREE=1.71×10–6–11.63×10–6). By contrast, the natural sulfur-sediment samples have maximum ΣREE concentrations (ΣREE=11.54×10–6–33.06×10–6), significantly lower than those of the volcanic and sediment samples. Nevertheless, the δEu, δCe, (La/Yb)N, La/Sm, (Gd/Yb)N and normalized patterns of the natural sulfur and metal sulfide show the most similarity to the sediment. Most hydrothermal precipitate samples are characterized by enrichments of LREE (LREE/HREE=10.09–24.53) and slightly negative Eu anomalies or no anomaly (δEu=0.48–0.99), which are different from the hydrothermal fluid from sediment-free mid-oceanic ridges and back-arc basins, but identical to the sulfides from the Jade hydrothermal field. The lower temperature and more oxidizing conditions produced by the mixing between seawater and hydrothermal fluids further attenuate the leaching ability of hydrothermal fluid, inducing lower REE concentrations for natural sulfur compared with metal sulfide; meanwhile, the negative Eu anomaly is also weakened or almost absent. The sulfur isotopic compositions of the natural sulfur (δ34S=3.20‰–5.01‰, mean 4.23‰) and metal sulfide samples (δ34S=0.82‰–0.89‰, mean 0.85‰) reveal that the sulfur of the chimney is sourced from magmatic degassing.  相似文献   

3.
Greenstone belts contain several clues about the evolutionary history of primitive Earth. Here, we describe the volcano-sedimentary rock association exposed along the eastern margin of the Gavião Block, named the Northern Mundo Novo Greenstone Belt (N-MNGB), and present data collected with different techniques, including U–Pb–Hf–O isotopes of zircon and multiple sulfur isotopes (32S, 33S, 34S, and 36S) of pyrite from this supracrustal sequence. A pillowed metabasalt situated in the upper section of the N-MNGB is 3337 ± 25 Ma old and has zircon with εHf(t) =  ?2.47 to ?1.40, Hf model ages between 3.75 Ga and 3.82 Ga, and δ18O = +3.6‰ to +7.3‰. These isotopic data, together with compiled whole-rock trace element data, suggest that the mafic metavolcanic rocks formed in a subduction-related setting, likely a back-arc basin juxtaposed to a continental arc. In this context, the magma interacted with older Eoarchean crustal components from the Gavião Block. Detrital zircons from the overlying quartzites of the Jacobina Group are sourced from Paleoarchean rocks, in accordance with previous studies, yielding a maximum depositional age of 3353 ± 22 Ma. These detrital zircons have εHf(t) =  ?5.40 to ?0.84, Hf model ages between 3.66 Ga and 4.30 Ga, and δ18O = +4.8‰ to +6.4‰. The pyrite multiple sulfur isotope investigation of the 3.3 Ga supracrustal rocks from the N-MNGB enabled a further understanding of Paleoarchean sulfur cycling. The samples have diverse isotopic compositions that indicate sulfur sourced from distinct reservoirs. Significantly, they preserve the signal of the anoxic Archean atmosphere, expressed by MIF-S signatures (Δ33S between ?1.3‰ to +1.4‰) and a Δ36S/Δ33S slope of ?0.81 that is indistinguishable from the so-called Archean array. A BIF sample has a magmatic origin of sulfur, as indicated by the limited δ34S range (0 to +2‰), Δ33S ~ 0‰, and Δ36S ~ 0‰. A carbonaceous schist shows positive δ34S (2.1‰–3.5‰) and elevated Δ33S (1.2‰–1.4‰) values, with corresponding negative Δ36S between ?1.2‰ to ?0.2‰, which resemble the isotopic composition of Archean black shales and suggest a source from the photolytic reduction of elemental sulfur. The pillowed metabasalt displays heterogeneous δ34S, Δ33S, and Δ36S signatures that reflect assimilation of both magmatic sulfur and photolytic sulfate during hydrothermal seafloor alteration. Lastly, pyrite in a massive sulfide lens is isotopically similar to barite of several Paleoarchean deposits worldwide, which might indicate mass dependent sulfur processing from a global and well-mixed sulfate reservoir at this time.  相似文献   

4.
The Neoproterozoic (593–532 Ma) Dahongliutan banded iron formation (BIF), located in the Tianshuihai terrane (Western Kunlun orogenic belt), is hosted in the Tianshuihai Group, a dominantly submarine siliciclastic and carbonate sedimentary succession that generally has been metamorphosed to greenschist facies. Iron oxide (hematite), carbonate (siderite, ankerite, dolomite and calcite) and silicate (muscovite) facies are all present within the iron-rich layers. There are three distinctive sedimentary facies BIFs, the oxide, silicate–carbonate–oxide and carbonate (being subdivided into ankerite and siderite facies BIFs) in the Dahongliutan BIF. They demonstrate lateral and vertical zonation from south to north and from bottom to top: the carbonate facies BIF through a majority of the oxide facies BIF into the silicate–carbonate–oxide facies BIF and a small proportion of the oxide facies BIF.The positive correlations between Al2O3 and TiO2, Sc, V, Cr, Rb, Cs, Th and ∑REE (total rare earth element) for various facies of BIFs indicate these chemical sediments incorporate terrigenous detrital components. Low contents of Al2O3 (<3 wt%), TiO2 (<0.15 wt%), ∑REE (5.06–39.6 ppm) and incompatible HFSEs (high field strength elements, e.g., Zr, Hf, Th and Sc) (<10 ppm), and high Fe/Ti ratios (254–4115) for a majority of the oxide and carbonate facies BIFs suggest a small clastic input (<20% clastic materials) admixtured with their original chemical precipitates. The higher abundances of Al2O3 (>3 wt%), TiO2, Zr, Th, Cs, Sc, Cr and ∑REE (31.2–62.9 ppm), and low Fe/Ti ratios (95.2–236) of the silicate–carbonate–oxide facies BIF are consistent with incorporation of higher amounts of clastic components (20%–40% clastic materials). The HREE (heavy rare earth element) enrichment pattern in PAAS-normalized REE diagrams exhibited by a majority of the oxide and carbonate facies BIFs shows a modern seawater REE signature overprinted by high-T (temperature) hydrothermal fluids marked by strong positive Eu anomalies (Eu/Eu1PAAS = 2.37–5.23). The low Eu/Sm ratios, small positive Eu anomaly (Eu/Eu1PAAS = 1.10–1.58) and slightly MREE (middle rare earth element) enrichment relative to HREE in the silicate–carbonate–oxide facies BIF and some oxide and carbonate facies BIFs indicate higher contributions from low-T hydrothermal sources. The absence of negative Ce anomalies and the high Fe3+/(Fe3+/Fe2+) ratios (0.98–1.00) for the oxide and silicate–carbonate–oxide BIFs do not support ocean anoxia. The δ13CV-PDB (−4.0‰ to −6.6‰) and δ18OV-PDB (−14.0‰ to −11.5‰) values for siderite and ankerite in the carbonate facies BIF are, on average, ∼6‰ and ∼5‰ lower than those (δ13CV-PDB = −0.8‰ to + 3.1‰ and δ18OV-PDB = −8.2‰ to −6.3‰) of Ca–Mg carbonates from the silicate–carbonate–oxide facies BIF. This feature, coupled with the negative correlations between FeO, Eu/Eu1PAAS and δ13CV-PDB, imply that a water column stratified with regard to the isotopic omposition of total dissolved CO2, with the deeper water, from which the carbonate facies BIF formed, depleted in δ13C that may have been derive from hydrothermal activity.Integration of petrographic, geochemical, and isotopic data indicates that the silicate–carbonate–oxide facies BIF and part of the oxide facies BIF precipitated in a near-shore, oxic and shallow water environment, whereas a majority of the oxide and carbonate facies BIFs deposited in anoxic but Fe2+-rich deeper waters, closer to submarine hydrothermal vents. High-T hydrothermal solutions, with infusions of some low-T hydrothermal fluids, brought Fe and Si onto a shallow marine, variably mixed with detrital components from seawaters and fresh waters carrying continental landmass and finally led to the alternating deposition of the Dahongliutan BIF during regression–transgression cycles.The Dahongliutan BIF is more akin to Superior-type rather than Algoma-type and Rapitan-type BIF, and constitutes an additional line of evidence for the widespread return of BIFs in the Cryogenian and Ediacaran reflecting the recurrence of anoxic ferruginous deep sea and anoxia/reoxygenation cycles in the Neoproterozoic. In combination with previous studies on other Fe deposits in the Tianshuihai terrane, we propose that a Fe2+-rich anoxic basin or deep sea probably existed from the Neoproterozoic to the Early Cambrian in this area.  相似文献   

5.
Gold in the Sahinli and Tespih Dere intermediate sulfidation gold-base metal deposits in Western Turkey occurs in relatively deep epithermal quartz veins along with base metal minerals which have epithermal textures, including plumose quartz, vug infills, comb and cockade textures and matrix-supported milled breccias. The total sulfide content of the veins in the area is variable ranging from < 1% to 60% and is dominated by pyrite, galena, sphalerite and chalcopyrite. Sphalerite is Fe-poor (0.6 to 1.4 mol% FeS). Minor amounts of Ag-rich tetrahedrite are present. Primary hydrothermal alteration minerals include illite/muscovite, mixed-layer illite/smectite (11.6 Å) and clinochlore towards the east and, alunite, dickite/nacrite and pyrophyllite towards the west at Sahinli; major illite/muscovite and dickite occur at Tespih Dere and Sarioluk, respectively.Fluid inclusions in main-stage quartz at Sahinli are only liquid-rich, with homogenization temperatures ranging from 220 to 322 °C and the majority of Th values between 250 and 300 °C. Salinity ranges from 4.3 to 6.9 wt.% NaCl equiv. First ice-melting temperatures (Tmf) between ?24.5 and ?19.0 °C indicate that the fluids were dominated by NaCl  H2O during mineralization. The relatively higher average Th at the Tespih Dere deposit (295 °C) is attributed to a relatively deeper level of exposure.Calculated δ18O values indicate that ore-forming hydrothermal fluids in the study area had δ18OH2O ranging from + 1.1 to + 9.7‰ (average = 3.8‰), strongly 18O-enriched compared with present-day hydrothermal meteoric water in the area (δ18O = ?8.5‰). δD values of fluid inclusions in quartz range from ?58 to ?93‰ and δD values of clay minerals and alunite from ?40 to ?119‰. δD values from intermediate argillic alteration (average = ?68‰) in the study area are very similar to δD values of the present-day local geothermal system (average δD = ?54‰) whereas δD values from advanced-argillic alteration (average δD = ?33‰) are very different from the present-day local geothermal system.The δ34S values in samples from the Sahinli and Tespih Dere deposits average ?2.9‰ for pyrite; ?3.3‰ for chalcopyrite; ?5.4‰ for sphalerite and ?7.6‰ for galena. These data are consistent with derivation of the sulfur from either igneous rocks or possibly from local wallrock.  相似文献   

6.
Various metacarbonate and associated calc-silicate rocks form minor but genetically significant components of the lithological units in the Bohemian Massif of the Variscan orogen in Central Europe.These rocks vary in terms of their lithostratigraphy,chemical composition and mineral assemblage(dolomite/calcite ratio,silicate abundance).Tourmaline is present in five paragenetic settings within the metacarbonate and calc-silicate units.TypeⅠcomprises individual,euhedral,prismatic grains and grain aggregates in a carbonate-dominant(calcite±dolomite)matrix poor in silicates.TypeⅡis characterized by euhedral to subhedral grains and coarse-to fine-grained aggregates in silicate-rich layers/nests within metacarbonate bodies whereas typeⅢoccurs as prismatic grains and aggregates at the contact zones between carbonate and associated silicate host rocks.TypeⅣis in veins crosscutting metacarbonate bodies,and typeⅣtourmaline occurs at the exocontacts of elbaite-subtype granitic pegmatite.Tourmaline from the different settings shows distinctive compositional features.Typical for typeⅠare Mg-rich compositions,with fluor-uvite>dravite>>magnesio-lucchesiite.Tourmalines from typeⅡsilicate-rich layers/nests are highly variable,corresponding to oxy-schorl,magnesio-foitite,Al-rich dravite and fluor-uvite.Typical for typeⅢtourmalines are Ca,Ti-bearing oxy-dravite compositions.The typeⅣveins feature dravite and fluor-uvite tourmaline compositions whereas typeⅤtourmaline is Li,F-rich dravite.Tourmaline is the only Bbearing phase in paragenetic typesⅠ-Ⅳ,where it is characterised by two principal ranges of B-isotope composition(δ^11B=-13‰to-9‰and-18‰to-14‰).These ranges correspond to regionally different units of the Moldanubian Zone.Thus,the Svratka Unit(Moldanubian Zone s.l.)contains only isotopically lighter tourmaline(δ^11B=-18‰to-14‰),whereas metacarbonates in the Poli?ka unit(Teplá-Barrandian Zone)and Olesnice unit(Moravicum of the Moravo-Silesian Zone)has exclusively isotopically heavier tourmaline(δ^11B=-9‰to-13‰).Tourmalines from metacarbonates in the Variegated Unit cover both ranges of isotope composition.The isotopically light end of the B isotope range may indicate the presence of continental evaporites within individual investigated areas.On the other hand,variations in the range of~8δ-units is consistent with the reported shift in B isotopic composition of metasedimentary rocks of the Bohemian Massif due to the prograde metamorphism from very-low grade to eclogite facies.In contrast to the metacarbonate-hosted settings,tourmaline of paragenetic type V from the exocontact of granitic pegmatites displays a significantly heavier range ofδ^11B(as low as-7.7‰to-0.6‰),which is attributed to partitioning of 10 B to cogenetic axinite and/or different B-signature of the source pegmatite containing tourmaline with heavyδ^11B signature.  相似文献   

7.
The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation, and are structurally controlled by the fault and anticline. The ore-forming process can be divided into three main stages, based on field geological features and mineral assemblages. The mineral assemblages of hydrothermal stage I are pale-yellow coarse grain, low Fe sphalerite, pyrite with pits, barite and biotite. The mineral assemblages of hydrothermal stage II are black-brown cryptocrystalline, high Fe shalerite, pyrite without pits, marcasite or arsenopyrite replace the pyrite with pits, K-feldspar. The features of hydrothermal stage III are calcite-quartz-sulfide vein cutting the laminated, banded ore body. Forty-two sulfur isotope analyses, twenty-five lead isotope analyses and nineteen carbon and oxygen isotope analyses were determined on sphalerite, pyrite, galena and calcite. The δ34 S values of stage I(20.3 to 29.0‰) are consistent with the δ34 S of sulfate(barite) in the stratum. Combined with geological feature, inclusion characteristics and EPMA data, we propose that TSR has played a key role in the formation of the sulfides in stage I. The δ34 S values of stage II sphalerite and pyrite(15.1 to 23.0‰) are between sulfides in the host rock, magmatic sulfur and the sulfate(barite) in the stratum. This result suggests that multiple S reservoirs were the sources for S2-in stage II. The δ34 S values of stage III(13.1 to 22‰) combined with the structure of the geological and mineral features suggest a magmatic hydrothermal origin of the mineralization. The lead isotope compositions of the sulfides have 206 Pb/204 Pb ranging from 17.9480 to 17.9782, 207 Pb/204 Pb ranging from 15.611 to 15.622, and 208 Pb/204 Pb ranging from 38.1368 to 38.1691 in the three ore-forming stages. The narrow and symmetric distributions of the lead isotope values reflect homogenization of granite and mantle sources before the Pb-Zn mineralization. The δ13 CPDB and δ18 OSMOW values of stage I range from-0.1 to 2.4‰ and from 18.8 to 21.7‰. The values and inclusion data indicate that the source of fluids in stage I was the dissolution of marine carbonate. The δ13 CPDB and δ18 OSMOW values of stage II range from-4 to 1‰ and from 12.3 to 20.3‰, suggesting multiple C-O reservoirs in the Changba deposit and the addition of mantle-source fluid to the system. The values in stage III are-3.1‰ and 19.7‰, respectively. We infer that the process of mineralization involved evaporitic salt and sedimentary organic-bearing units interacting through thermochemical sulfate reduction through the isotopic, mineralogy and inclusion evidences. Subsequently, the geology feature, mineral assemblages, EPMA data and isotopic values support the conclusion that the ore-forming hydrothermal fluids were mixed with magmatic hydrothermal fluids and forming the massive dark sphalerite, then yielding the calcite-quartz-sulfide vein ore type at the last stage. The genesis of this ore deposit was epigenetic rather than the previously-proposed sedimentary-exhalative(SEDEX) type.  相似文献   

8.
The 13.1-Moz high-sulfidation epithermal gold deposit of Lagunas Norte, Alto Chicama District, northern Peru, is hosted in weakly metamorphosed quartzites of the Upper Jurassic to Lower Cretaceous Chimú Formation and in overlying Miocene volcanic rocks of dacitic to rhyolitic composition. The Dafne and Josefa diatremes crosscut the quartzites and are interpreted to be sources of the pyroclastic volcanic rocks. Hydrothermal activity was centered on the diatremes and four hydrothermal stages have been defined, three of which introduced Au ± Ag mineralization. The first hydrothermal stage is restricted to the quartzites of the Chimú Formation and is characterized by silice parda, a tan-colored aggregate of quartz-auriferous pyrite–rutile ± digenite infilling fractures and faults, partially replacing silty beds and forming cement of small hydraulic breccia bodies. The δ34S values for pyrite (1.7–2.2?‰) and digenite (2.1?‰) indicate a magmatic source for the sulfur. The second hydrothermal stage resulted in the emplacement of diatremes and the related volcanic rocks. The Dafne diatreme features a relatively impermeable core dominated by milled slate from the Chicama Formation, whereas the Josefa diatreme only contains Chimú Formation quartzite clasts. The third hydrothermal stage introduced the bulk of the mineralization and affected the volcanic rocks, the diatremes, and the Chimú Formation. In the volcanic rocks, classic high-sulfidation epithermal alteration zonation exhibiting vuggy quartz surrounded by a quartz–alunite and a quartz–alunite–kaolinite zone is observed. Company data suggest that gold is present in solid solution or micro inclusions in pyrite. In the quartzite, the alteration is subtle and is manifested by the presence of pyrophyllite or kaolinite in the silty beds, the former resulting from relatively high silica activities in the fluid. In the quartzite, gold mineralization is hosted in a fracture network filled with coarse alunite, auriferous pyrite, and enargite. Alteration and mineralization in the breccias were controlled by permeability, which depends on the type and composition of the matrix, cement, and clast abundance. Coarse alunite from the main mineralization stage in textural equilibrium with pyrite and enargite has δ34S values of 24.8–29.4?‰ and $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ values of 6.8–13.9?‰, consistent with H2S as the dominant sulfur species in the mostly magmatic fluid and constraining the fluid composition to low pH (0–2) and logfO2 of ?28 to ?30. Alunite–pyrite sulfur isotope thermometry records temperatures of 190–260 °C; the highest temperatures corresponding to samples from near the diatremes. Alunite of the third hydrothermal stage has been dated by 40Ar/39Ar at 17.0?±?0.22 Ma. The fourth hydrothermal stage introduced only modest amounts of gold and is characterized by the presence of massive alunite–pyrite in fractures, whereas barite, drusy quartz, and native sulfur were deposited in the volcanic rocks. The $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ values of stage IV alunite vary between 11.5 and 11.7?‰ and indicate that the fluid was magmatic, an interpretation also supported by the isotopic composition of barite (δ34S?=?27.1 to 33.8?‰ and $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ ?=?8.1 to 12.7?‰). The Δ34Spy–alu isotope thermometry records temperatures of 210 to 280 °C with the highest values concentrated around the Josefa diatreme. The Lagunas Norte deposit was oxidized to a depth of about 80 m below the current surface making exploitation by heap leach methods viable.  相似文献   

9.
A lithogeochemical, mineral chemical, isotopic, and fluid inclusion study of barren, low-, and high-grade Au-mineralized samples from the shear zone-hosted Amantaytau gold deposit, Uzbekistan, shows that the local host rocks, Late Ordovician–Earlz Silurian carbonacous shales, are likely to have been an important source of Au, As, Ni, and S in the formation of the deposit. Syn-depositional pyrite in these shales contains on average 0.23 ppm Au, 1,083 ppm As, and 861 ppm Ni. The distribution of rare earth elements (REE) indicates a homogeneous source of light REE, whereas the heavy REE distribution reflects most likely primary variations in the sediments. The mineralized zone is marked by a positive Eu anomaly, which supports reducing conditions during the mineralization. A hydrothermal overprint by an aqueous–carbonic fluid is reflected in a high-grade Au-mineralized sample by δ13C values of ?13.0?‰ (V-PDB). The δ 34S values in pyrite (?0.13 to +7.30?‰ CDT) from barren and mineralized samples are consistent with marine sulfate being the principal source of the ore sulfur. Assuming a formation temperature of between 300 and 400 °C for the main stage of mineralization, as indicated by the alteration mineral assemblage, the calculated δ 18Ofluid is between 9.5 and 13.4?‰ V-SMOW, which points at a metamorphic origin of the ore fluid.  相似文献   

10.
A number of studies revealed that the Gangdese magmatic belt of southern Tibet was closely related to the northward subduction of the Neo-Tethys oceanic lithosphere and Indo-Asian collision.However,pre-Cretaceous magmatism is still poorly constrained in the Gangdese magmatic belt,southern Tibet.Here,we conducted systematically geochronology and geochemistry studies on a newly-identified granitic pluton in the middle Gangdese magmatic belt(Namling area),southern Tibet.Zircon SHRIMPⅡU-Pb dating for one representative sample gives a weighted age of 184.2±1.8 Ma(MSWD=±1.11),corresponding to emplacement and crystallization age of the granitic pluton in the Early Jurassic(Pliensbachian).High SiO2(68.9-72.1 wt.%)contents and intermediate Mg#values(35-38)together suggest that the newly-identified granitic pluton was probably formed by partial melting of crustal material with minor injection of mantle-derived magma,precluding an origin from melting of metasedimentary rocks that are characterized by low Mg#and high zirconδ^18O values(>8‰).Geochemically,the newly-identified granitic pluton belongs to typical I-type granitic affinity,whereas this is inconsistent with aluminium saturation index(ASI=A/CNK ratios)and geochemical signatures.This suggests that zircon oxygen isotopes(4.30‰-5.28‰)and mineral features(lacking Al-rich minerals)are reliable indicators for discriminating granitic origin.Significantly depleted whole-rock Sr-Nd-Hf isotopic compositions and zirconεHf(t)values indicate that the granitic pluton was derived from partial melting of depleted arc-type lavas.In addition,the granitic pluton shows zirconδ^18O values ranging from 4.30‰to 5.28‰(with a mean value of 4.77‰)that are consistent with mantle-derived zircon values(5.3‰±0.6‰)within the uncertainties,indicating that the granitic pluton might have experienced weak short-living high-temperature hydrous fluid-rock interaction.Combined with the Sr-Nd-Hf-O isotopes and geochemical signatures,we propose that the newly-identified granitic pluton was originated from partial melting of depleted mafic lower crust,and experienced only negligible wall-rock contamination during ascent.Integrated with published data,we also propose that the initial subduction of the Neo-Tethys oceanic lithosphere occurred no later than the Pliensbachian of the Early Jurassic.  相似文献   

11.
The carbonate-hosted Pb–Zn deposits in the Sanjiang metallogenic belt on the Tibetan Plateau are typical of MVT Pb–Zn deposits that form in thrust-fold belts. The Jiamoshan Pb–Zn deposit is located in the Changdu area in the middle part of the Sanjiang belt, and it represents a new style of MVT deposit that was controlled by karst structures in a thrust–fold system. Such a karst-controlled MVT Pb–Zn deposit in thrust settings has not previously been described in detail, and we therefore mapped the geology of the deposit and undertook a detailed study of its genesis. The karst structures that host the Jiamoshan deposit were formed in Triassic limestones along secondary reverse faults, and the orebodies have irregular tubular shapes. The main sulfide minerals are galena, sphalerite, and pyrite that occur in massive and lamellar form. The ore-forming fluids belonged to a Mg2+–Na+–K+–SO2-4–Cl-–F-–NO-3–H2 O system at low temperatures(120–130°C) but with high salinities(19–22% NaCl eq.). We have recognized basinal brine as the source of the ore-forming fluids on the basis of their H–O isotopic compositions(-145‰ to-93‰ for δDV-SMOW and-2.22‰ to 13.00‰ for δ18 Ofluid), the ratios of Cl/Br(14–1196) and Na/Br(16–586) in the hydrothermal fluids, and the C–O isotopic compositions of calcite(-5.0‰ to 3.7‰ for δ13 CV-PDB and 15.1‰ to 22.3‰ for δ18 OV-SMOW). These fluids may have been derived from evaporated seawater trapped in marine strata at depth or from Paleogene–Neogene basins on the surface. The δ34 S values are low in the galena(-3.2‰ to 0.6‰) but high in the barite(27.1‰), indicating that the reduced sulfur came from gypsum in the regional Cenozoic basins and from sulfates in trapped paleo-seawater by bacterial sulfate reduction. The Pb isotopic compositions of the galena samples(18.3270–18.3482 for 206 Pb/204 Pb, 15.6345–15.6390 for 207 Pb/204 Pb, and 38.5503–38.5582 for 208 Pb/204 Pb) are similar to those of the regional Triassic volcanic-arc rocks that formed during the closure of the Paleo-Tethys, indicating these arc rocks were the source of the metals in the deposit. Taking into account our new observations and data, as well as regional Pb–Zn metallogenic processes, we present here a new model for MVT deposits controlled by karst structures in thrust–fold systems.  相似文献   

12.
Sulfur isotopic disequilibrium is commonly observed between associated pyrite and copper sulfides in NW Queensland. A sulfur isotopic study of copper mineralization in dolomites at Paradise Valley and arenites at Mammoth has allowed the significance of such disequilibrium to be evaluated. Copper mineralization at Paradise Valley is characterized by a greater enrichment in 34S, with δ34S values often greater than +30‰, for both copper sulfides and associated syngenetic/diagneetic pyrite. At Mammoth, copper sulfides have isotopic compositions (δ34S=?15.9 to ?0.3‰) transitional between disseminated syngenetic/diagenetic pyrite (δ34S=?5.7 to ?1.7‰) and epigenetic vein pyrite (δ34S=?17.9 to ?7.1‰) suggesting progressive reaction and replacement of syngenetic/diagenetic pyrite by a copper-bearing mineralizing fluid under oxidizing conditions. The isotopic data, within the constraints imposed by geological and geochemical factors, support a model of reaction between copper-bearing mineralizing fluids and pre-existing syngenetic/diagenetic pyrite for both the carbonate- and arenite-hosted deposits.  相似文献   

13.
Banded iron formations (BIFs) are Precambrian chemical marine sedimentary formations that record major transitions of chemical composition, and oxidation–reduction state of oceans at the time of their deposition. In this paper, we report silicon and oxygen isotope compositions of a variety of BIFs from the North China Craton (NCC) in order to deduce the mechanism of their formation. Quartz in the various types of BIFs from the NCC are generally depleted in 30Si, where δ30SiNBS-28 values range from − 2.0‰ to − 0.3‰ (average, − 0.8‰), similar to δ30SiNBS-28 values measured from modern submarine black chimneys and sinters. The δ18OV-SMOW values of quartz in the BIFs are relatively high (8.1‰–21.5‰; average, 13.1‰), similar to those of siliceous rock formed by hydrothermal activities. The δ30SiNBS-28 values of quartz in magnetite bands are commonly lower than those of quartz in adjacent siliceous bands within the same sample, whereas δ18OV-SMOW values are higher in the magnetite bands. A negative correlation is observed between δ30SiNBS-28 and δ18OV-SMOW values of quartz from siliceous and magnetite bands in BIF from Fuping, Hebei Province. The isotopic compositions of silicon and oxygen of quartz in BIFs provide insights for the formation mechanisms of silicon–iron cyclothems in BIFs. After the silicon- and iron-rich hydrothermal solution was injected onto the seabed, the abrupt temperature drop caused oversaturation of silicic acid, resulting in rapid precipitation of SiO2 and deposition of siliceous layers. Ferric hydroxide was precipitated later than SiO2 because of low free-oxygen concentration in the ocean bottom. Progressive mixing of hydrothermal solution with seawater caused a continuous drop in temperature and an increase in Eh values, resulting in gradual oxidation of hydrothermal Fe2 + and deposition of iron-rich layers. In summary, each silicon–iron cyclothem marks a large-scale submarine hydrothermal exhalation. The periodic nature of these exhalations resulted in the formation of regular silicon–iron cyclothems. The widespread distribution of BIFs indicates that volcanism and submarine hydrothermal exhalation were extensive; the low δ30SiNBS-28 and high δ18O V-SMOW values of the BIFs indicate that the temperature of seawater was relatively high at the time of BIF formation, and that concentrations of Fe2 + and H4SiO4 in seawater were saturated.  相似文献   

14.
The Bairendaba vein-type Ag–Pb–Zn deposit, hosted in a Carboniferous quartz diorite, is one of the largest polymetallic deposits in the southern Great Xing'an Range. Reserves exceeding 8000 tonnes of Ag and 3 million tonnes of Pb?+?Zn with grades of 30 g/t and 4.5% have been estimated. We identify three distinct mineralization stages in this deposit: a barren pre-ore stage (stage 1), a main-ore stage with economic Ag–Pb–Zn mineralization (stage 2), and a post-ore stage with barren mineralization (stage 3). Stage 1 is characterized by abundant arsenopyrite?+?quartz and minor pyrite. Stage 2 is represented by abundant Fe–Zn–Pb–Ag sulphides and is further subdivided into three substages comprising the calcite–polymetallic sulphide stage (substage 1), the fluorite–polymetallic sulphide stage (substage 2), and the quartz–polymetallic sulphide stage (substage 3). Stage 3 involves an assemblage dominated by calcite with variable pyrite, galena, quartz, fluorite, illite, and chlorite. Fluid inclusion analysis and mineral thermometry indicate that the three stages of mineralization were formed at temperatures of 320–350°C, 200–340°C, and 180–240°C, respectively. Stage 1 early mineralization is characterized by low-salinity fluids (5.86–8.81 wt.% NaCl equiv.) with an isotopic signature of magmatic origin (δ18Ofluid = 10.45–10.65‰). The main ore minerals of stage 2 precipitated from aqueous–carbonic fluids (4.34–8.81 wt.% NaCl equiv.). The calculated and measured oxygen and hydrogen isotopic compositions of the ore-forming aqueous fluids (δ18Ofluid = 3.31–8.59‰, δDfluid?=??132.00‰ to??104.00‰) indicate that they were derived from a magmatic source and mixed with meteoric water. Measured and calculated sulphur isotope compositions of hydrothermal fluids (δ34S∑S?=??1.2–3.8‰) indicate that the ore sulphur was derived mainly from a magmatic source. The calculated carbon isotope compositions of hydrothermal fluids (δ13Cfluid?=??26.52‰ to??25.82‰) suggest a possible contribution of carbon sourced from the basement gneisses. The stage 3 late mineralization is dominated (1.40–8.81 wt.% NaCl equiv.) by aqueous fluids. The fluids show lower δ18Ofluid (?16.06‰ to??0.70‰) and higher δDfluid (?90.10‰ to??74.50‰) values, indicating a heated meteoric water signature. The calculated carbon isotope compositions (δ13Cfluid?=??12.82‰ to??6.62‰) of the hydrothermal fluids in stage 3 also suggest a possible contribution of gneiss-sourced carbon. The isotopic compositions and fluid chemistry indicate that the ore mineralization in the Bairendaba deposit was related to Early Cretaceous magmatism.  相似文献   

15.
A calcic skarn deposit occurs along the contact zone between Oligo-Miocene Çatalda? Granitoid and Mesozoic limestones in Susurluk, northwestern Turkey. The skarn zone with little or no retrograde stage is represented by fluid inclusions with high homogenization temperatures (up to >600 °C) and a wide range of salinity (12 to >70 wt.% NaCl). Pluton-derived fluids facilitated occurrence of continuous prograde reactions in the country rocks (particularly in the proximal zone) and oxygen isotopic depletion in calc-silicate and calcite minerals. δ18O of anhydrous minerals within proximal and distal zones indicate that skarn-forming fluids had a magmatic origin. The δ18O values are 5.93–9.08‰ (mean 6.8‰) for garnet, 4.08–9.94‰ (mean 6.4‰) for pyroxene, 4.89–7.92‰ (mean 6.4‰) for wollastonite and 6.65–8.28‰ (mean 7.5‰) for vesuvianite. Temperatures estimated by isotopic compositions of mineral pairs are significantly lower than those measured from the fluid inclusions, indicating that isotopic equilibrium is not preserved between the skarn minerals. δ18O and δ13C values are systematically depleted from marbles to skarn carbonates. Calc-silicate forming reactions and permeability increase triggered by volatilization and consequent strong infiltration of H2O-rich siliceous fluids into the system promoted fluid–rock interaction causing isotopic resetting and isotopic depletion of silicates (e.g. pyroxene and wollastonite) and skarn calcites.  相似文献   

16.
The Southern Great Xing'an Range(S(GXR)which forms part of the eastern segment of the Central Asian Orogenic Belt(CAOB)is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo(Cu),skarn Fe(Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn± Cu± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including(i)the early porphyry mineralization stage,(ii)main porphyry mineralization stage,(iii)transition mineralization stage,(iv)vein-type mineralization stage and(v)late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites:Pyl is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium-to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Pyl to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni(0.03-10.79,average 2.13)and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ~(34)S_(cDT) values of Pyl(0.42‰-1.61‰,average1.16‰),Py2(-1.23‰to 0.82‰,average 0.35‰),Py3(—0.36‰to 2.47‰average 0.97‰).Py4(2.51‰--3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit(-5‰to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian(Jurassic-Cretaceous)magmatic-hydrothermal events.Variations of δ~(34) S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type Pb-Zn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.  相似文献   

17.
The Cipoeiro gold deposit, located in the Gurupi Belt, northern Brazil, is hosted by tonalites of 2148 Ma. The deposit is controlled by splays related to the major strike-slip Tentugal shear zone, and at the deposit scale, the mineralization is confined to ductile–brittle shear zones. Mineralization style comprises thick quartz veins and narrow and discontinuous quartz-carbonate veinlets associated with disseminations in altered host rocks. The postmetamorphic hydrothermal paragenesis is composed of quartz, calcite, chlorite, white mica (phengite), pyrite, and minor albite. Electron microprobe analysis of chlorites reveals a relatively uniform chemical composition at depths of more than 100 m. The chlorites are characterized by (Fe + Mg) ratios between 0.37 and 0.47 and AlIV ranging between 2.22 and 2.59 a.p.f.u. and are classified as Fe-chlinochlore. Temperatures calculated by applying the AlIV contents of chlorites yield a relatively narrow interval of 305 ± 15°C. Stable isotope (O, H, C, S) compositions have been determined in silicate, carbonate, and sulfide minerals. The δ18O and δD values of the mineralizing fluid range from +2.4 to +5.7 and from −43‰ to −20‰, respectively, and are interpreted as having a metamorphic origin. The δ13C values of fluid CO2 are in the range −10.7‰ to −3.9‰, whereas the fluid δ34S is around 0‰. Carbon and sulfur compositions are not diagnostic of their sources, compatible as they are with mantle, magmatic, or average crustal reservoirs. The hydrothermal paragenesis, chlorite–pyrite coexistence, temperature of ore formation, and sulfur isotope evidence indicate relatively reduced fO2 conditions for the mineralizing fluid. Geologic, chemical, and isotopic characteristics of the Cipoeiro deposit are compatible with the class of orogenic gold deposits.  相似文献   

18.
The reported source rocks for the abundant petroleum in the Tarim Basin, China range from Cambrian to Lower Ordovician and/or Upper Ordovician in age. However, the difference between the two groups of source rocks is not well characterized. In this study, pyrite was removed from eleven mature to over mature kerogen samples from source rocks using the method of CrCl2 reduction and grinding. The kerogen and coexisting pyrite samples were then analyzed for δ34S values. Results show that the kerogen samples from the Cambrian have δ34S values between +10.4‰ and +19.4‰. The values are significantly higher than those from the Lower Ordovician kerogen (δ34S of between +6.7‰ and +8.7‰), which in turn are generally higher than from the Upper Ordovician kerogen samples (δ34S of between ?15.3 and +6.8‰). The associated pyrite shows a similar trend but with much lower δ34S values. This stratigraphically controlled sulfur isotope variation parallels the evolving contemporary marine sulfate and dated oil δ34S values from other basins, suggesting that seawater sulfate and source rock age have an important influence on kerogen and pyrite δ34S values. The relatively high δ34S values in the Cambrian to Lower Ordovician source rocks are associated with abundant aryl isoprenoids, gammacerane and C35 homohopanes in the extractable organic matter, indicating that these source rocks were deposited in a bottom water euxinic environment with water stratification. Compared with the Upper Ordovician, the Cambrian to Lower Ordovician source rocks show abundance in C28 20R sterane, C23 tricyclic terpanes, 4,23,24-trimethyl triaromatic dinosteroids and depletion in C24 tetracyclic terpane, C29 hopane. Thus, δ34S values and biomarkers of source rock organic matter can be used for distinguishing the Cambrian and Upper Ordovician source rocks in the Tarim Basin.  相似文献   

19.
Conventional hydrogeochemical data and environmental stable isotopes are used to identify the recharge sources and the water–rock interactions in the groundwater-flowing direction within the multilayer groundwater system of the Sulin coal-mining district in the north Anhui province in China. δD and δ 18O of groundwater in the mining district decrease along the groundwater-flowing direction in the recharge areas, yet in the runoff or discharge areas, they rise and fall along average δ values (δ 18O = ?8.68 ‰, δD = ?67.4 ‰), which are lower than average δ values of local atmospheric precipitation (δ 18O = ?7.80 ‰, δD = ?52.4 ‰). Principal component analysis is used to analyze the conventional hydrogeochemical data (K+ + Na+, Mg2+, Ca2+, Cl?, SO4 2?, HCO3 ?, CO3 2?) in the groundwater. The first and second principal components have large variance contributions, and represent “pyrite oxidation or groundwater hardening” and “desulfurization or cation exchange and adsorption,” respectively. From conventional hydrogeochemical data and environmental stable isotopes, it is demonstrated that groundwater of the Sulin coal-mining district is characterized by a mixing type, which is confirmed by three recharge end-members: fresh groundwater, leaching groundwater, and retained groundwater. By means of a sample dot-encompassed triangle in the scatter diagram of load scores for Component 1–Component 2, whose vertexes stand for the three end-members, a model for calculating groundwater mixing ratio is established and applied successfully to the evaluation and management of groundwater hazards in the coal-mining districts.  相似文献   

20.
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD_(H2O-SMOW) and δ~(18)O_(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H_2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ~(13)C_(PDB) values ranging from-6.2‰ to-4.1‰ and δ~(18)O_(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ~(34)S_(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号