首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
袁万春  李院生 《矿物学报》1997,17(4):422-426
滇黔桂地区分布着众多大中型Hg、Sb、Au矿床。通过对碳、氢、氧、硫等同位素的分析表明:大厂锑矿的硫来自地幔,木利、马雄锑矿的硫主要来自海水硫酸盐。各金矿的硫主要来自围岩,但碳大部分来自围岩。氢氧同位素数据表明,本区锑、金、汞等矿床的成矿流体来源相似,其主要来源为与围岩进行了氢氧同位素交换的大气降水。  相似文献   

2.
Although antimony (Sb) and arsenic (As) exhibit similar geochemical behavior and toxicity in the environment, growing evidence suggests that their water–rock interaction behavior in contaminated rivers is quite different. Twenty-nine river water samples were collected between September and November 2018 from contaminated rivers around an antimony mine in Hunan Province, China. The concentrations of As and Sb were inversely proportional to the water flow distance. The rates and magnitudes of Sb decrease were more prominent than those of As. Silicate mineral dissolution from rocks such as silicified limestone increased the As and Sb concentration of in-mine-district (IMD) water. Dissolution of carbonate minerals, ion exchange, and competitive adsorption were the major water–rock interactions, resulting in rapidly decreasing As and Sb concentration in IMD direct impacted water and IMD indirect impacted water. The behaviors of As and Sb during water–rock interaction were dissimilar for areas dominated by carbonate and silicate minerals.  相似文献   

3.
压实度是影响铁盐稳定化砷(As)、锑(Sb)污染土环境岩土工程特性的主要因素之一。通过测定不同压实度铁盐稳定剂(PFSC)稳定化As、Sb污染土无侧限抗压强度(UCS)、As和Sb浸出浓度、渗透系数kw,研究了压实度对PFSC稳定化As、Sb污染土环境岩土工程特性的影响规律。通过工业CT扫描、X射线光电子能谱(XPS)明确了稳定化土微观孔隙特征、元素价态随压实度的变化规律。As的浸出浓度随着压实度的提高先降低后略微上升,压实度为93%时,As的浸出浓度最低;Sb的浸出浓度随着压实度的提高而降低,压实度大于85%后趋于平稳。压实度由75%提高至96%,稳定化土UCS由4.26 kPa增大至43.78 kPa。压实度由80%提高至96%,稳定化土kw由1.33×10–7 m/s降低至2.81×10–9 m/s。工业CT扫描结果表明,随着压实度的提高,土体逐渐紧实,土体孔隙度由7.54%降低至5.30%。As、Sb和Fe的XPS分析结果表明,压实度增高促使As(Ⅴ)、Sb(Ⅴ)和Fe(Ⅲ)分别向As(Ⅲ)、Sb(Ⅲ)和Fe(Ⅱ...  相似文献   

4.
Bioavailability and toxicity of antimony   总被引:1,自引:0,他引:1  
Antimony (Sb) is a toxic trace element widely distributed in the lithosphere and mainly associated with arsenic. Sb compounds are considered to be pollutants of high interest, however, the biogeochemical behaviour of Sb is still largely unknown, especially compared to other well-known toxic elements. In particular, questions remain about the availability of Sb to vascular plants. In this work, we focused on the following problems: (i) Sb uptake by plants; (ii) the availability of Sb to plants and (iii) variations in uptake and distribution of essential plant nutrients and trace elements resulting from bioaccumulation of Sb in Triticum aestivum (wheat) seedlings. The seedlings were either germinated or grown in media enriched with Sb. By the end of germination, concentrations of Sb in the seedlings germinated in Sb-amended media increased significantly. Sb content was highest in the roots and lowest in the leaves of the seedlings. After transfer of the seedlings germinated in an Sb-free medium to Sb-enriched media, Sb concentration in the seedlings increased with time, especially in the roots. Bioaccumulation of Sb influenced concentrations of different macro- and trace elements in all parts of the plants. The least variations were observed in the leaves, probably because the increase of Sb concentration in leaves was not as significant as in the seeds and roots.  相似文献   

5.
粤东北嵩溪银锑矿床地质地球化学初步研究   总被引:5,自引:0,他引:5  
粤东北嵩溪银锑矿床地质地球化学初步研究肖振宇郑庆年(广东有色金属地质勘查院,广州510080)陈繁荣张湖(中国科学院广州地球化学研究所,广州510640)关键词地质地球化学银锑矿床嵩溪嵩溪银锑矿床发现于粤东北地区,有嵩溪、黄沙塘等矿床和梅子坑、仙客社...  相似文献   

6.
黑色页岩与土壤重金属污染   总被引:6,自引:1,他引:5  
本文利用ICP—MS等技术分析了湘中地区黑色页岩及其相应土壤的重金属含量,在对分析结果进行统计分析的基础上,探讨了黑色页岩与土壤重金属污染的关系。研究表明,黑色页岩是富集多种重金属元素的特殊岩石。以黑色页岩岩系为母岩的土壤,不仅明显富集Cu、Cd、Cr、Co、Pb、Zn、Mo、Ni、V、U、Sn、Sb、T1、Th等多种重金属元素,而且受到Mo、Sb、Cd、U、Tl、Cu、V、Sn、Th等重金属的污染,其中以Mo、Cd、Sb、U、Tl等的污染尤为严重。黑色页岩土壤重金属污染在一些地方已产生明显的负面环境效应,值得关注。  相似文献   

7.
沙子江铀矿外围地化特征、元素迁移及铀成矿机理   总被引:3,自引:0,他引:3       下载免费PDF全文
沙子江矿床外围某钻孔不同矿化蚀变位置具有U含量与SiO2、CaO、Fe2O3、LOI、HREE含量正相关、Na均消失殆 尽、稀土和微量元素配分型式相似、LREE呈较富集的右倾特征。与新鲜围岩相比,蚀变围岩Sb、U明显增高,Ni、W略有 增加;与新鲜围岩和蚀变围岩二者相比,碎裂花岗岩(矿石) 中Cd、Sb明显增高,W、Ni、Pb略有增加,Be、Bi明显减 少;相对于新鲜围岩,碎裂花岗岩(矿石) 和蚀变围岩分别表现出Sb、U和Sb、Cd、U明显增高,共同表现出W、Ni略有 增加的特征。矿化蚀变带元素迁移研究表明,矿化蚀变带样品Sb、LOI、CaO、Ni、Cu、In、Sr均迁入,Na2O、FeO、Be、 Cs、Th、Nb均迁出,迁入率最大的组分均为Sb,迁出率最大的组分均为Na2O。地球化学特征及元素迁移规律指示花岗质 围岩是重要的U源及组分来源,成矿流体呈碱性,氧逸度较高。  相似文献   

8.
Waters from abandoned Sb-Au mining areas have higher Sb (up to 2138 μg L−1), As (up to 1252 μg L−1) and lower Al, Zn, Li, Ni and Co concentrations than those of waters from the As-Au mining area of Banjas, which only contain up to 64 μg L−1 As. In general, Sb occurs mainly as SbO3 and As H2AsO4. In general, waters from old Sb-Au mining areas are contaminated in Sb, As, Al, Fe, Cd, Mn, Ni and NO2, whereas those from the abandoned As-Au mining area are contaminated in Al, Fe, Mn, Ni, Cd and rarely in NO2. Waters from the latter area, immediately downstream of mine dumps are also contaminated in As. In stream sediments from Sb-Au and As-Au mining areas, Sb (up to 5488 mg kg−1) and As (up to 235 mg kg−1) show a similar behaviour and are mainly associated with the residual fraction. In most stream sediments, the As and Sb are not associated with the oxidizable fraction, while Fe is associated with organic matter, indicating that sulphides (mainly arsenopyrite and pyrite) and sulphosalts containing those metalloids and metal are weathered. Arsenic and Sb are mainly associated with clay minerals (chlorite and mica; vermiculite in stream sediments from old Sb-Au mining areas) and probably also with insoluble Sb phases of stream sediments. In the most contaminated stream sediments, metalloids are also associated with Fe phases (hematite and goethite, and also lepidocrocite in stream sediments from Banjas). Moreover, the most contaminated stream sediments correspond to the most contaminated waters, reflecting the limited capacity of stream sediments to retain metals and metalloids.  相似文献   

9.
甘肃省的汞锑矿分布规律及找矿   总被引:1,自引:0,他引:1       下载免费PDF全文
本文介绍了世界和我国汞锑矿的成矿带的划分和基本分布情况,在此基础上对甘肃省的汞锑矿成矿带进行了划分,并说明其分布特点和产地。进一步对甘肃汞锑矿的产出地层时代、围岩特征进行了统计分析,对构造、围岩蚀变和地球化学特征进行了初步总结。回顾了甘肃的汞锑矿勘查简况,提出了对甘肃的汞锑矿找矿的建议。  相似文献   

10.
吉林省某锑矿分离砷的研究   总被引:1,自引:0,他引:1  
采用以水玻璃、硫酸为主的组合抑制剂,浮砷抑锑。较好地解决了砷锑分离的难题,使锑的精矿含砷降到符合国家质量标准。  相似文献   

11.
Antimony (Sb) is strongly concentrated into hydrothermal mineral deposits, commonly with gold, in metasedimentary sequences around the Pacific Rim. These deposits represent potential point sources for Sb in the downstream environment, particularly when mines are developed. This study documents the magnitude and scale of Sb mobility near some mineral deposits in Australia and New Zealand. Two examples of New Zealand historic mining areas demonstrate that natural groundwater dissolution of Sb from mineral deposits dominates the Sb load in drainage waters, with Sb concentrations between 3 and 24 μg/L in major streams. Mine-related discharges can exceed 200 μg/L Sb, but volumes are small. Sb flux in principal stream waters is ca 1–14 mg/s, compared to mine tunnel fluxes of ca 0.001 mg/s. Dissolved Sb is strongly attenuated near some mine tunnels by adsorption on to iron oxyhydroxide precipitates. Similar Sb mobilisation and attenuation processes are occurring downstream of the historic/active Hillgrove antimony–gold mine of New South Wales, Australia, but historic discharges of Sb-bearing debris has resulted in elevated Sb levels in stream sediments (ca 10–100+ mg/kg) and riparian plants (up to 100 mg/kg) for ca 300 km downstream. Dissolution of Sb from these sediments ensures that river waters have elevated Sb (ca 10–1,000 μg/L) over that distance. Total Sb flux reaching the Pacific Ocean from the Hillgrove area is ca 8 tonnes/year, of which 7 tonnes/year is particulate and 1 tonne/year is dissolved.  相似文献   

12.
Antimony in the environment: Lessons from geochemical mapping   总被引:2,自引:0,他引:2  
The distribution of Sb in a variety of sample materials, including soils, plants and surface water, was studied at different scales, from continental to local, combining published data sets with the aim of delineating the impact and relative importance of geogenic vs. anthropogenic Sb sources. Geochemical mapping demonstrates that variation is high at all scales – from the detailed scale with sample densities of many sites per km2 to the continental-scale with densities of 1 site per 5000 km2. Different processes govern the Sb distribution at different scales. A high sample density of several samples per km2 is needed to reliably detect mineralisation or contamination in soil samples. Median concentrations are so low for Sb in most sample materials (below 1 mg/kg in rocks and soils, below 0.1 mg/kg in plants, below 0.1 μg/L in surface water) that contamination is easier to detect than for many other elements. Distribution patterns on the sub-continental to continental-scale are, however, still dominated by natural variation. Given that the geochemical background is characterised by a high variation at all scales, it appears impossible to establish a reliable single value for “good soil quality” or a “natural background concentration” for Sb for any sizeable area, e.g., for Europe. For such a differentiation, geochemical maps at a variety of scales are needed.  相似文献   

13.
Arsenic and Sb are common mine-water pollutants and their toxicity and fate are strongly influenced by redox processes. In this study, simultaneous Fe(II), As(III) and Sb(III) oxidation experiments were conducted to obtain rates under laboratory conditions similar to those found in the field for mine waters of both low and circumneutral pH. Additional experiments were performed under abiotic sterile conditions to determine the biotic and abiotic contributions to the oxidation processes. The results showed that under abiotic conditions in aerated Fe(III)–H2SO4 solutions, Sb(III) oxidizes slightly faster than As(III). The oxidation rates of both elements were accelerated by increasing As(III), Sb(III), Fe(III), and Cl concentrations in the presence of light. For unfiltered circumneutral water from the Giant Mine (Yellowknife, NWT, Canada), As(III) oxidized at 15–78 μmol/L/h whereas Sb(III) oxidized at 0.03–0.05 μmol/L/h during microbial exponential growth. In contrast, As(III) and Sb(III) oxidation rates of 0.01–0.03 and 0.01–0.02 μmol/L/h, respectively, were obtained in experiments performed with acid unfiltered mine waters from the Iberian Pyritic Belt (SW Spain). These results suggest that the Fe(III) formed from microbial oxidation abiotically oxidized As(III) and Sb(III). After sterile filtration of both mine water samples, neither As(III), Sb(III), nor Fe(II) oxidation was observed. Hence, under the experimental conditions, bacteria were catalyzing As and Sb oxidation in the Giant Mine waters and Fe oxidation in the acid waters of the Iberian Pyrite Belt.  相似文献   

14.
Antimony (Sb) emissions to the environment are increasing, and there is a dearth of knowledge regarding Sb fate and behavior in natural systems. In natural systems, the presence of competitive anions may compete with Sb for adsorption sites on mineral surfaces, hence increasing its potential bioavailability. Accordingly, the adsorption of Sb(III) on kaolinite was investigated in the presence of competitive anions. Kinetic studies suggest that adsorption reaction of Sb(III) on kaolinite is rapid initially and becoming slow after 12 h both in binary Sb(III)–kaolinite system and in ternary Sb(III)-competitive anion–kaolinite system. The presence of PO4 3? has a much stronger and more obvious promotive effect on the adsorption of Sb(III) on kaolinite compared with the other two anions. The adsorption data of Sb(III) on kaolinite in the absence and presence of competitive anions at three temperatures were successfully modeled using Langmuir (r 2 > 0.95) and Freundlich (r 2 > 0.95) isotherms. Accompanied the adsorption of Sb(III) on kaolinite, significant oxidation of Sb(III) to Sb(V) had occurred under the experimental conditions used in this study. The presence of kaolinite which has a larger specific surface area could increase the contact area between the adsorbed Sb(III) and oxygen in the bulk solution, which promoted the oxidation rate of Sb(III) to Sb(V).  相似文献   

15.
The Sb speciation in soil samples from Swiss shooting ranges was determined using Sb K-edge X-ray absorption spectroscopy (XAS) and advanced statistical data analysis methods (iterative transformation factor analysis, ITFA). The XAS analysis was supported by a spectral data set of 13 Sb minerals and 4 sorption complexes. In spite of a high variability in geology, soil pH (3.1-7.5), Sb concentrations (1000-17,000 mg/kg) and shooting-range history, only two Sb species were identified. In the first species, Sb is surrounded solely by other Sb atoms at radial distances of 2.90, 3.35, 4.30 and 4.51 Å, indicative of metallic Sb(0). While part of this Sb(0) may be hosted by unweathered bullet fragments consisting of PbSb alloy, Pb LIII-edge XAS of the soil with the highest fraction (0.75) of Sb(0) showed no metallic Pb, but only Pb2+ bound to soil organic matter. This suggests a preferential oxidation of Pb in the alloy, driven by the higher standard reduction potential of Sb. In the second species, Sb is coordinated to 6 O-atoms at a distance of 1.98 Å, indicative of Sb(V). This oxidation state is further supported by an edge energy of 30,496-30,497 eV for the soil samples with <10% Sb(0). Iron atoms at radial distances of 3.10 and 3.56 Å from Sb atoms are in line with edge-sharing and bidentate corner-sharing linkages between Sb(O,OH)6 and Fe(O,OH)6 octahedra. While similar structural units exist in tripuhyite, the absence of Sb neighbors contradicts formation of this Fe antimonate. Hence the second species most likely consists of inner-sphere sorption complexes on Fe oxides, with edge and corner-sharing configuration occurring simultaneously. This pentavalent Sb species was present in all samples, suggesting that it is the prevailing species after weathering of metallic Sb(0) in oxic soils. No indication of Sb(III) was found.  相似文献   

16.
Arsenic and Antimony in Groundwater Flow Systems: A Comparative Study   总被引:3,自引:0,他引:3  
Arsenic (As) and antimony (Sb) concentrations and speciation were determined along flow paths in three groundwater flow systems, the Carrizo Sand aquifer in southeastern Texas, the Upper Floridan aquifer in south-central Florida, and the Aquia aquifer of coastal Maryland, and subsequently compared and contrasted. Previously reported hydrogeochemical parameters for all three aquifer were used to demonstrate how changes in oxidation–reduction conditions and solution chemistry along the flow paths in each of the aquifers affected the concentrations of As and Sb. Total Sb concentrations (SbT) of groundwaters from the Carrizo Sand aquifer range from 16 to 198 pmol kg−1; in the Upper Floridan aquifer, SbT concentrations range from 8.1 to 1,462 pmol kg−1; and for the Aquia aquifer, SbT concentrations range between 23 and 512 pmol kg−1. In each aquifer, As and Sb (except for the Carrizo Sand aquifer) concentrations are highest in the regions where Fe(III) reduction predominates and lower where SO4 reduction buffers redox conditions. Groundwater data and sequential analysis of the aquifer sediments indicate that reductive dissolution of Fe(III) oxides/oxyhydroxides and subsequent release of sorbed As and Sb are the principal mechanism by which these metalloids are mobilized. Increases in pH along the flow path in the Carrizo Sand and Aquia aquifer also likely promote desorption of As and Sb from mineral surfaces, whereas pyrite oxidation mobilizes As and Sb within oxic groundwaters from the recharge zone of the Upper Floridan aquifer. Both metalloids are subsequently removed from solution by readsorption and/or coprecipitation onto Fe(III) oxides/oxyhydroxides and mixed Fe(II)/Fe(III) oxides, clay minerals, and pyrite. Speciation modeling using measured and computed Eh values predicts that Sb(III) predominate in Carrizo Sand and Upper Floridan aquifer groundwaters, occurring as the Sb(OH)30 species in solution. In oxic groundwaters from the recharge zones of these aquifers, the speciation model suggests that Sb(V) occurs as the negatively charged Sb(OH)6 species, whereas in sufidic groundwaters from both aquifers, the thioantimonite species, HSb2S4 and Sb2S4 2−, are predicted to be important dissolved forms of Sb. The measured As and Sb speciation in the Aquia aquifer indicates that As(III) and Sb(III) predominate. Comparison of the speciation model results based on measured Eh values, and those computed with the Fe(II)/Fe(III), S(-II)/SO4, As(III)/As(V), and Sb(III)/Sb(V) couples, to the analytically determined As and Sb speciation suggests that the Fe(II)/Fe(III), S(-II)/SO4 couples exert more control on the in situ redox condition of these groundwaters than either metalloid redox couple.  相似文献   

17.
The potential applications of As, Sb and Bi as pathfinder elements in geochemical exploration have been researched using a new, rapid technique for the simultaneous determination of the three elements. Following a warm hydrochloric acid sample leach, the volatile hydrides of the elements are generated and flushed into an inductively-coupled plasma linked to an emission spectrometer. The technique offers a combination of good analytical precision and detection limits of 100 ppb for each of the elements.The principal sulphide ore minerals commonly contain traces of As, Sb and Bi, and concentrations of more than 1% of any one of these have been found in some sulphide specimens. During sub-aerial oxidation of sulphides, any As, Sb and Bi present is released and forms dispersion patterns in the surficial environment. Geochemical surveys of localities in the United Kingdom have demonstrated that anomalous dispersion trains of these elements can be detected in the sediments of streams draining the mineralized localities. In a geochemical mapping programme covering 16,000 km2 of central Nepal, over 3500 stream sediment samples were analyzed for As, Sb and Bi, and many known occurrences of Cu, Pb and Zn mineralization are reflected by As, Sb and Bi anomalies. However, bedrock lithology appears to be an important factor influencing Sb and Bi dispersion patterns.In the areas studied, some or all of the elements As, Sb and Bi produce stream sediment anomalies that compare favourably in terms of contrast and extent with the heavy metal expressions, even though none of the three elements have been reported as important constituents of the mineralization with which they occur.  相似文献   

18.
Environmental contamination with As and Sb caused by past mining activities at Sb mines is a significant problem in Slovakia. This study is focused on the environmental effects of the 5 abandoned Sb mines on water, stream sediment and soil since the mines are situated in the close vicinity of residential areas. Samples of mine wastes, various types of waters, stream sediments, soils, and leachates of the mine wastes, stream sediments and selected soils were analyzed for As and Sb to evaluate their geochemical dispersion from the mines. Mine wastes collected at the mine sites contained up to 5166 mg/kg As and 9861 mg/kg Sb. Arsenic in mine wastes was associated mostly with Fe oxides, whereas Sb was present frequently in the form of individual Sb, Sb(Fe) and Fe(Sb) oxides. Waters of different types such as groundwater, surface waters and mine waters, all contained elevated concentrations of As and Sb, reaching up to 2150 μg/L As and 9300 μg/L Sb, and had circum-neutral pH values because of the buffering capacity of abundant Ca- and Mg-carbonates. The concentrations of Sb in several household wells are a cause for concern, exceeding the Sb drinking water limit of 5 μg/L by as much as 25 times. Some attenuation of the As and Sb concentrations in mine and impoundment waters was expected because of the deposition of metalloids onto hydrous ferric oxides built up below adit entrances and impoundment discharges. These HFOs contained >20 wt.% As and 1.5 wt.% Sb. Stream sediments and soils have also been contaminated by As and Sb with the peak concentrations generally found near open adits and mine wastes. In addition to the discharged waters from open adits, the significant source of As and Sb contamination are waste-rock dumps and tailings impoundments. Leachates from mine wastes contained as much as 8400 μg/L As and 4060 μg/L Sb, suggesting that the mine wastes would have a great potential to contaminate the downstream environment. Moreover, the results of water leaching tests showed that Sb was released from the solids more efficiently than As under oxidizing conditions. This might partly explain the predominance of Sb over As in most water samples.  相似文献   

19.
锑的地球化学行为以及锑同位素研究进展   总被引:4,自引:3,他引:1  
火山和成矿地质现象表明硼可以在含水流体和气体中运移,本文应用离子选择电极法测定水热气体中硼的溶解度,以揭示硼的气态迁移能力。使用氟硼酸盐选择电极,测定了经氟硼酸化的硼酸标准溶液和含硼气体凝结水的电位,当硼含量处于地质流体的主要范围内(0.52~524.50 mg/L)时,电极电位与硼浓度的对数呈现出灵敏度很高的能斯特线性关系,标准曲线具有很好的稳定性和重现性。本方法测定硼的检出限为0.13 mg/L,低于饮用水标准规定的硼含量限值,适用于测定水热气体中的硼含量。硼酸挥发实验显示,硼在150℃、0.37 MPa水蒸气中的含量可达0.65%~0.72%,与富硼火山喷气的硼含量相符,显示硼在高温水热条件下可在气相中显著迁移,且H3BO3气态分子是硼的主要迁移形式之一。矿床地质特征和实验表明,硼的气态迁移和电气石化与稀有金属型伟晶岩的形成和矿化以及某些热液-气成型Sn-W、Mo矿床和斑岩型Cu、Au矿床的形成密切相关。  相似文献   

20.
Mining residues from the Sb mine of Bournac in the upper Orb River valley (Southern France), constitute an important source of As and Sb pollution. Arsenic concentrations are as high as 78 μg/L and Sb reaches 32 μg/L in the small creek draining the tailings impoundment. Although both metalloids occur mainly in oxidized form in the creek water, their behaviour differs significantly. Iron oxides are the main carrier phases for both elements in the suspended particulate matter. In oxic conditions the two elements are mainly present in water in oxidised form As(V) and Sb(V) and both field studies and laboratory experiments indicate a higher affinity of As(V) than Sb(V) for the solid phase. In the pool, which receives the water from Bournac Creek, the reductive dissolution of Fe-oxides is linked to the oxidation of small pyrite grains transported from the tailings dump. In oxic conditions Sb is released to solution more efficiently than As. Conversely, in anoxic conditions, mobilisation of As is greater than that of Sb. This is attributed to the reduction of As, which favours its mobility. Whatever the conditions, the activity of bacteria naturally present in the sediments enhances the remobilization of Sb in oxidizing conditions and that of As in reducing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号