首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of Saturn's intense equatorial jet from latitudes 8° N to 20° S is revealed from detailed measurements of the motions and spectral reflectivity of clouds at visible wavelengths on high resolution images obtained by the Cassini Imaging Science Subsystem (ISS) in 2004 and early 2005. Cloud speeds at two altitude levels are measured in the near infrared filters CB2 and CB3 matching the continuum (effective wavelengths 750 and 939 nm) and in the MT2 and MT3 filters matching two methane absorption bands (effective wavelengths 727 and 889 nm). Radiative transfer models in selective filters covering an ample spectral range (250-950 nm) require the existence of two detached aerosol layers in the equator: an uppermost thin stratospheric haze extending between the pressure levels ∼20 and 40 mbar (tropopause level) and below it, a dense tropospheric haze-cloud layer extending between 50 mbar and the base of the ammonia cloud (between ∼1 and 1.4 bar). Individual cloud elements are detected and tracked in the tropospheric dense haze at 50 and 700 mbar (altitude levels separated by 142 km). Between latitudes 5° N and 12° S the winds increase their velocity with depth from 265 m s−1 at the 50 mbar pressure level to 365 m s−1 at 700 mbar. These values are below the high wind speeds of 475 m s−1 measured at these latitudes during the Voyager era in 1980-1981, indicating that the equatorial jet has suffered a significant intensity change between that period and 1996-2005 or that the tracers of the flow used in the Voyager images were rooted at deeper levels than those in Cassini images.  相似文献   

2.
Moist convective storms constitute a key aspect in the global energy budget of the atmospheres of the giant planets. Among them, Saturn is known to develop the largest scale convective storms in the Solar System, the Great White Spots (GWS) which occur rarely and have been detected once every 30 years approximately. On the average, Saturn seems to show much less convective storms than Jupiter with smaller size and reduced frequency and intensity. Here we present detailed simulations of the onset and development of storms at the Equator and mid-latitudes of Saturn. These are the regions where most of the recent convective activity of the planet has been observed. We use a 3D anelastic model with parameterized microphysics (Hueso and Sánchez-Lavega, 2001, Icarus 151, 257) studying the onset and evolution of water and ammonia moist convective storms up to sizes of a few hundred km. Water storms, while more difficult to initiate than in Jupiter, can be very energetic, arriving to the 150 mbar level and developing vertical velocities on the order of 150 m s−1. Ammonia storms develop easier but with a much smaller intensity unless very large abundances of ammonia (10 times solar) are present in Saturn's atmosphere. The Coriolis forces play a major role in the morphology and properties of water based storms.  相似文献   

3.
Observations made by the Imaging Science Subsystem (ISS), Visible and Infrared Mapping Spectrometer (VIMS) and the long-wavelength Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft reveal that the large, long-lived cyclonic vortex at Saturn's south pole has a 4200-km-diameter cloud-free nearly circular region. This region has a 4 K warm core extending from the troposphere into the stratosphere, concentric cloud walls extending 20-70 km above the internal clouds, and numerous external clouds whose anticyclonic vorticity suggests a convective origin. The rotation speeds of the vortex reach . The Saturn polar vortex has features in common with terrestrial hurricanes and with the Venus polar vortex. Neptune and other giant planets may also have strong polar vortices.  相似文献   

4.
New measurements of the dynamical properties of the long-lived Saturn's anticyclonic vortex known as “Brown Spot” (BS), discovered during the Voyager 1 and 2 flybys in 1980-1981 at latitude 43.1° N, and model simulations using the EPIC code, have allowed us to constrain the vertical wind shear and static stability in Saturn's atmosphere (vertically from pressure levels from 10 mbar to 10 bars) at this latitude. BS dynamical parameters from Voyager images include its size as derived from cloud albedo gradient (6100 km East-West times 4300 km North-South), mean tangential velocity ( at 2400 km from center) and mean vorticity (4.0±1.5×10−5 s−1), lifetime >1 year, drift velocity relative to Voyager's System III rotation rate, mean meridional atmospheric wind profile at cloud level at its latitude and interactions with nearby vortices (pair orbiting and merging). An extensive set of numerical experiments have been performed to try to reproduce this single vortex properties and its observed mergers with smaller anticyclones by varying the vertical structure of the zonal wind and adjusting the static stability of the lower stratosphere and upper troposphere. Within the context of the EPIC model atmosphere, our simulations indicate that BS's drift velocity, longevity and merging behavior are very sensitive to these two atmospheric properties. The best results at the BS latitude occur for static stability conditions that use a Brunt-Väisäla frequency constant in the upper troposphere (from 0.5 to 10 bar) above 3.2×10−3 s−1 and suggest that the wind speed slightly decays below the visible cloud deck from ∼0.5 to 10 bar at a rate per scale height. Changing the vortex latitude within the band domain introduces latitude oscillations in the vortex but not a significant meridional migration. Simulated mergers always showed orbiting movements with a typical merging time of about three days, very close to the time-span observed in the interaction of real vortices. Although these results are not unique in view of the unknowns of Saturn's deep atmosphere, they serve to constrain realistically its structure for ongoing Cassini observations.  相似文献   

5.
A series of narrow-band images of Saturn was acquired on 7-11 February 2002 with an acousto-optic imaging spectrometer (AImS) at about 160 wavelengths between 500 and 950 nm. Our unique data set with high spectral agility and wide spectral coverage enabled us to extensively study the cloud structure and aerosol properties of Saturn's equatorial region at −10° latitude. Theoretical center-limb profiles based on twelve cloud models were fit to the observations at 23 wavelengths across the 619-, 727-, and 890-nm methane bands. A simultaneous multiwavelength multivariable fitting algorithm was adopted in varying up to 9 free parameters to efficiently explore the vast multidimensional parameter space, and a total of ∼12,000 initial conditions were tested. From the acceptable ranges of the model parameters, we obtained the following major conclusions: (1) the brightening of Saturn's equatorial region observed near 890 nm in February 2002 (I/F∼0.25 at the central meridian) results from high altitudes of a stratospheric haze layer (τ?∼0.05 above ∼0.04-bar level) and an upper tropospheric cloud (τ∼6 above ∼0.25-bar level), (2) if the upper tropospheric cloud is composed of ammonia ice particles and the Mie theory is applied, the mean particle size is larger than about 0.5 μm, (3) an optically thick cloud layer exists at a level of 0.5-2.2 bar below the upper cloud deck in Saturn's equatorial region. The ongoing observations by the Cassini spacecraft over wider spectral range and from various phase angles will further constrain Saturn's cloud structure and aerosol properties.  相似文献   

6.
Saturn's southern pole was observed at high resolution by the Cassini Imaging Science Subsystem (ISS) during the spacecraft insertion orbit in July 2004. Cloud tracking of individual features on images taken at a wavelength of 938 nm reveal the existence of a strong polar vortex enclosed by a jet with maximum speed of relative to System III rotation frame, and peak at 87 °S planetographic latitude. Radiative transfer models of the reflected light, based on the Cassini images complemented by Hubble Space Telescope images from March 2004, indicate that the aerosol particles in the vortex are structured vertically in three detached layers. We find two hazes and one dense cloud distributed in altitude between ∼500 mbar (top of the dense cloud) and few mbar (top of the stratospheric haze), spanning a vertical altitude range of ∼200 km. The vortex area coincides with a thermal hot spot recently reported, indicating that winds decrease with altitude above polar clouds.  相似文献   

7.
Jupiter's eastward jet at 24° N, which formerly had the fastest winds on the planet, has maintained a less extreme speed of ∼135 m/s since 1991, carrying a series of long-lived vortices at 125 m/s. In 2002-2003, as the albedo of the adjacent North Temperate Belt increased, the tracks of the vortices accelerated slightly, and they had disappeared by 2005. In 2005, small tracers had a mean speed of 146.4 (±0.9) m/s, significantly faster than the previous mean speed of the jet, suggesting that the jet peak itself has accelerated at cloud-top level, and that the jet is beginning to return to the super-fast state. These changes may resemble the even greater transformations occurring in the equatorial jet of Saturn.  相似文献   

8.
We present profiles of the line-of-sight (l.o.s.) ionospheric wind velocities in the southern auroral/polar region of Saturn. Our velocities are derived from the measurement of Doppler shifting of the H3+ν2Q(1,0) line at 3.953 microns. The data for this study were obtained using the facility high-resolution spectrometer CSHELL on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, during the night of February 6, 2003 (UT). The l.o.s. velocity profiles finally derived are consistent with an extended region of the upper atmosphere sub-corotating with the planet: the ion velocities in the inertial reference are only 1/3 of those expected for full planetary corotation. We discuss the results in the light of recent proposals for the kronian magnetosphere, and suggest that, in this region, Saturn's ion winds may be under solar wind control.  相似文献   

9.
We report on Cassini Imaging Science Subsystem (ISS) data correlated with Radio and Plasma Wave Science (RPWS) observations, which indicate lightning on Saturn. A rare bright cloud erupt at ∼35° South planetocentric latitude when radio emissions (Saturn Electrostatic Discharges, or SEDs) occur. The cloud consisting of few consecutive eruptions typically lasts for several weeks, and then both the cloud and the SEDs disappear. They may reappear again after several months or may stay inactive for a year. Possibly, all the clouds are produced by the same atmospheric disturbance which drifts West at 0.45 °/day. As of March 2007, four such correlated visible and radio storms have been observed since Cassini Saturn Orbit Insertion (July 2004). In all four cases the SEDs are periodic with roughly Saturn's rotation rate (h10m39), and show correlated phase relative to the times when the clouds are seen on the spacecraft-facing side of the planet, as had been shown for the 2004 storms in [Porco, C.C., and 34 colleagues, 2005. Science 307, 1243-1247]. The 2000-km-scale storm clouds erupt to unusually high altitudes and then slowly fade at high altitudes and spread at low altitudes. The onset time of individual eruptions is less than a day during which time the SEDs reach their maximum rates. This suggests vigorous atmospheric updrafts accompanied by strong precipitation and lightning. Unlike lightning on Earth and Jupiter, where considerable lightning activity is known to exist, only one latitude on Saturn has produced lightning strong enough to be detected during the two and a half years of Cassini observations. This may partly be a detection issue.  相似文献   

10.
We apply an automated cloud feature tracking algorithm to estimate eddy momentum fluxes in Saturn's southern hemisphere from Cassini Imaging Science Subsystem near-infrared continuum image sequences. Voyager Saturn manually tracked images had suggested no conversion of eddy to mean flow kinetic energy, but this was based on a small sample of <1000 wind vectors. The automated procedure we use for the Cassini data produces an order of magnitude more usable wind vectors with relatively unbiased sampling. Automated tracking is successful in and around the westward jet latitudes on Saturn but not in the vicinity of most eastward jets, where the linearity and non-discrete nature of cloud features produces ambiguous results. For the regions we are able to track, we find peak eddy fluxes and a clear positive correlation between eddy momentum fluxes and meridional shear of the mean zonal wind, implying that eddies supply momentum to eastward jets and remove momentum from westward jets at a rate . The behavior we observe is similar to that seen on Jupiter, though with smaller eddy-mean kinetic energy conversion rates per unit mass of atmosphere (). We also use the appearance and rapid evolution of small bright features at continuum wavelengths, in combination with evidence from weak methane band images where possible, to diagnose the occurrence of moist convective storms on Saturn. Areal expansion rates imply updraft speeds of over the convective anvil cloud area. As on Jupiter, convection preferentially occurs in cyclonic shear regions on Saturn, but unlike Jupiter, convection is also observed in eastward jet regions. With one possible exception, the large eddy fluxes seen in the cyclonic shear latitudes do not seem to be associated with convective events.  相似文献   

11.
Hydrocarbons in the upper atmosphere of Saturn are known, from Voyager, ground-based, and early Cassini results, to vary in emission intensity with latitude. Of particular interest is the marked increase in hydrocarbon line intensity near the south pole during southern summer, as the increased line intensity cannot be simply explained by the increased temperatures observed in that region since the variations between C2H2 and C2H6 emission in the south pole region are different. In order to measure the latitudinal variations of hydrocarbons in Saturn's southern hemisphere we have used 3 cm−1 resolution Cassini CIRS data from 2006 and combined this with measurements from the ground in October 2006 at NASA's IRTF using Celeste, an infrared high-resolution cryogenic grating spectrometer. These two data sets have been used to infer the molecular abundances of C2H2 and C2H6 across the southern hemisphere in the 1-10 mbar altitude region. We find that the latitudinal acetylene profile follows the yearly average mean daily insolation except at the southern pole where it peaks in abundance. Near the equator (5° S) the C2H2 abundance at the 1.2 mbar level is (1.6±0.19)×10−7 and it decreases by a factor of 2.7 from the equator toward the pole. However, at the pole (∼87° S) the C2H2 abundance jumps to (1.8±0.3)×10−7, approximately the equatorial value. The C2H6 abundance near the equator at the 2 mbar level is (0.7±0.1)×10−5 and stays approximately constant until mid-latitudes where it increases gradually toward the pole, attaining a value of (1.4±0.4)×10−5 there. The increase in ethane toward the pole with the corresponding decrease in acetylene is consistent with southern hemisphere meridional winds [Greathouse, T.K., Lacy, J.H., Bézard, B., Moses, J.I., Griffith, C.A., Richter, M.J., 2005. Icarus 177, 18-31]. The localized increase in acetylene at the pole provides evidence that there is dynamical transport of hydrocarbons from the equator to the southern pole.  相似文献   

12.
In this work we analyze and compare the vertical cloud structure of Saturn's Equatorial Zone in two different epochs: the first one close to the Voyagers flybys (1979-1981) and the second one in 2004, when the Cassini spacecraft entered its orbit around the planet. Our goal is to retrieve the altitude of cloud features used as zonal wind tracers in both epochs. We reanalyze three different sets of photometrically calibrated published data: ground-based in 1979, Voyager 2 PPS and ISS observations in 1981, and we analyze a new set of Hubble Space Telescope images for 2004. For all situations we reproduced the observed reflectivity by means of a similar vertical model with three layers. The results indicate the presence of a changing tropospheric haze in 1979-1981 (Ptop∼100 mbar, τ∼10) and in 2004 (Ptop∼50 mbar, τ∼15) where the tracers are embedded. According to this model the Voyager 2 ISS images locate cloud tracers moving with zonal velocities of 455 to 465 (±2) m/s at a pressure level of 360 ± 140 mbar. For HST observations, our previous works had showed cloud tracers moving with zonal wind speeds of 280±10 m/s at a pressure level of about 50±10 mbar. All these values are calculated in the same region (3°±2° N). This speed difference, if interpreted as a vertical wind shear, requires a change of per scale height, two times greater than that estimated from temperature observations. We also perform an initial guess on Cassini ISS vertical sounding levels, retrieving values compatible with HST ones and Cassini CIRS derived vertical wind shear, but not with Voyager wind measurements. We conclude that the wind speed velocity differences measured between 1979-1981 and 2004 cannot be explained as a wind shear effect alone and demand dynamical processes.  相似文献   

13.
14.
In this work, we describe an analysis of the internal solar radiation fields in Saturn's atmosphere. The aim of this paper is to study how the solar radiation flux in optical wavelengths (0.25-1.0 μm) is attenuated, primarily by the effect of the aerosols located close to the tropopause level, retrieving also the corresponding solar heating rates. We use a doubling-adding method and previous results on the vertical cloud and haze structure of Saturn's atmosphere. Our study shows that the maximum penetration level (∼250 mbar) for these wavelengths is substantially higher than previously expected because of the huge optical thickness of the tropospheric haze described in all vertical cloud structure models. We compare our results with previous estimates and parameterizations for seasonal climate models and propose a new approach for future models, with an intense and concentrated heating rate close to the top level of the tropospheric haze. Given that our spectral range accounts for about the 70% of the total solar flux, and using previous estimates for the penetration levels of infrared radiation in Saturn's atmosphere, we conclude solar radiation effect is negligible at levels below 600 mbar. This result is fundamental for understanding the role of solar radiation in the general atmospheric circulation of Saturn.  相似文献   

15.
Winter polar warmings in the middle atmosphere of Mars occur due to the adiabatic heating associated with the downward branch of the cross-equatorial meridional circulation. Thus, they are the manifestation of the global meridional transport rather than of local radiative effects. We report on a series of numerical experiments with a recently developed general circulation model of the martian atmosphere to examine the relative roles of the mechanical and thermal forcing in the meridional transport. The experiments were focused on answering the question of whether the martian circulation is consistent with the thermally driven nearly inviscid Hadley cell, as was pointed out by some previous studies, or it is forced mainly by zonally asymmetric eddies. It is demonstrated that, under realistic conditions in the middle atmosphere, the meridional transport is maintained primarily by dissipating large-scale planetary waves and solar tides. This mechanism is similar to the “extratropical pump” in the middle atmosphere on Earth. Only in the run with artificially weak zonal disturbances, was the circulation reminiscent of thermally induced Hadley cells. In the experiment with an imposed dust storm, the modified atmospheric refraction changes the vertical propagation of the eddies. As the result, the Eliassen-Palm fluxes convergence increases in high winter latitudes of the middle atmosphere, the meridional transport gets stronger, and the polar temperature rises. Additional numerical experiments demonstrated that insufficient model resolution, increased numerical dissipation, and, especially, neglect of non-LTE effects for the 15 μm CO2 band could weaken the meridional transport and the magnitude of polar warmings in GCMs.  相似文献   

16.
We are using observations obtained with Mars Express to explore the structure and dynamics of the martian lower atmosphere. We consider a series of radio occultation experiments conducted in May-August 2004, when the season on Mars was midspring of the northern hemisphere. The measurements are widely distributed in latitude and longitude, but the local time remained within a narrow range, 17.0-17.2 h. Most of the atmospheric profiles retrieved from these data contain a distinct, well-mixed convective boundary layer (CBL). We have accurately determined the depth of the CBL and its spatial variations at fixed local time through analysis of these profiles. The CBL extends to a height of 3-10 km above the surface at the season and locations of these measurements. Its depth at fixed local time is clearly correlated with variations in surface elevation on planetary scales, with a weaker dependence on spatial variations in surface temperature. In general, the CBL is deep (8-10 km) where the surface elevation is high, as in Tharsis Montes and Syrtis Major, and shallow (4-6 km) where the surface elevation is low, as in Amazonis and Utopia. This variability results from the combined effects of conditions near the surface and in the atmosphere above the CBL. Convection arises from solar heating of the ground, and the impact of this heat source on thermal structure is largest where the surface pressure and atmospheric density are smallest, at high surface elevations. The vertical extent of the CBL is in turn constrained by the static stability of the overlying atmosphere. These results greatly reduce the long-standing uncertainty concerning the depth of the CBL.  相似文献   

17.
18.
Thermal infrared spectra of Saturn from 10-1400 cm−1 at 15 cm−1 spectral resolution and a spatial resolution of 1°-2° latitude have been obtained by the Cassini Composite Infrared Spectrometer [Flasar, F.M., and 44 colleagues, 2004. Space Sci. Rev. 115, 169-297]. Many thousands of spectra, acquired over eighteen-months of observations, are analysed using an optimal estimation retrieval code [Irwin, P.G.J., Parrish, P., Fouchet, T., Calcutt, S.B., Taylor, F.W., Simon-Miller, A.A., Nixon, C.A., 2004. Icarus 172, 37-49] to retrieve the temperature structure and para-hydrogen distribution over Saturn's northern (winter) and southern (summer) hemispheres. The vertical temperature structure is analysed in detail to study seasonal asymmetries in the tropopause height (65-90 mbar), the location of the radiative-convective boundary (350-500 mbar), and the variation with latitude of a temperature knee (between 150 and 300 mbar) which was first observed in inversions of Voyager/IRIS spectra [Hanel, R., and 15 colleagues, 1981. Science 212, 192-200; Hanel, R., Conrath, B., Flasar, F.M., Kunde, V., Maguire, W., Pearl, J.C., Pirraglia, J., Samuelson, R., Cruikshank, D.P., Gautier, D., Gierasch, P.J., Horn, L., Ponnamperuma, C., 1982. Science 215, 544-548]. Uncertainties due to both the modelling of spectral absorptions (collision-induced absorption coefficients, tropospheric hazes, helium abundance) and the nature of our retrieval algorithm are quantified.Temperatures in the stratosphere near 1 mbar show a 25-30 K temperature difference between the north pole and south pole. This asymmetry becomes less pronounced with depth as the radiative time constant for the atmospheric response increases at deeper pressure levels. Hemispherically-symmetric small-scale temperature structures associated with zonal winds are superimposed onto the temperature asymmetry for pressures greater than 100 mbar. The para-hydrogen fraction in the 100-400 mbar range is greater than equilibrium predictions for the southern hemisphere and parts of the northern hemisphere, and less than equilibrium predictions polewards of 40° N.The temperature knee between 150-300 mbar is larger in the summer hemisphere than in the winter, smaller and higher at the equator, deeper and larger in the equatorial belts and small at the poles. Solar heating on tropospheric haze is proposed as a possible mechanism for this effect; the increased efficiency of ortho- to para-hydrogen conversion in the southern hemisphere is consistent with the presence of larger aerosols in the summer hemisphere, which we demonstrate to be qualitatively consistent with previous studies of Saturn's tropospheric aerosol distribution.  相似文献   

19.
We present a study of the vertical structure of clouds and hazes in the upper atmosphere of Saturn's Southern Hemisphere during 1994-2003, about one third of a Saturn year, based on Hubble Space Telescope images. The photometrically calibrated WFPC2 images cover the spectral region between the near-UV (218-255 nm) and the near-IR (953-1042 nm), including the 890 nm methane band. Using a radiative transfer code, we have reproduced the observed center-to-limb variations in absolute reflectivity at selected latitudes which allowed us to characterize the vertical structure of the entire hemisphere during this period. A model atmosphere with two haze layers has been used to study the variation of hazes with latitude and to characterize their temporal changes. Both hazes are located above a thick cloud, putatively composed of ammonia ice. An upper thin haze in the stratosphere (between 1 and 10 mbar) is found to be persistent and formed by small particles (radii ∼0.2 μm). The lower thicker haze close to the tropopause level shows a strong latitudinal dependence in its optical thickness (typically τ∼20-40 at the equator but τ∼5 at the pole, at 814 nm). This tropospheric haze is blue-absorbent and extends from 50 to 100 mbar to about ∼400 mbar. Both hazes show temporal variability, but at different time-scales. First, there is a tendency for the optical thickness of the stratospheric haze to increase at all latitudes as insolation increases. Second, the tropospheric haze shows mid-term changes (over time scales from months to 1-2 years) in its optical thickness (typically by a factor of 2). Such changes always occur within a rather narrow latitude band (width ∼5-10°), affecting almost all latitudes but at different times. Third, we detected a long-term (∼10 year) decrease in the blue single-scattering albedo of the tropospheric haze particles, most intense in the equatorial and polar areas. Long-term changes follow seasonal insolation variations smoothly without any apparent delay, suggesting photochemical processes that affect the particles optical properties as well as their size. In contrast, mid-term changes are sudden and show various time-scales, pointing to a dynamical origin.  相似文献   

20.
Observations suggest that moist convection plays an important role in the large-scale dynamics of Jupiter's and Saturn's atmospheres. Here we use a reduced-gravity quasigeostrophic model, with a parameterization of moist convection that is based on observations, to study the interaction between moist convection and zonal jets on Jupiter and Saturn. Stable jets with approximately the same width and strength as observations are generated in the model. The observed zonal jets violate the barotropic stability criterion but the modeled jets do so only if the flow in the deep underlying layer is westward. The model results suggest that a length scale and a velocity scale associated with moist convection control the width and strength of the jets. The length scale and velocity scale offer a possible explanation of why the jets of Saturn are stronger and wider than those of Jupiter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号