共查询到20条相似文献,搜索用时 15 毫秒
1.
Paul D. Feldman Stephan R. McCandliss Harold A. Weaver Michael J.S. Belton 《Icarus》2007,187(1):113-122
We report on the Hubble Space Telescope program to observe periodic Comet 9P/Tempel 1 in conjunction with NASA's Deep Impact Mission. Our objectives were to study the generation and evolution of the coma resulting from the impact and to obtain wide-band images of the visual outburst generated by the impact. Two observing campaigns utilizing a total of 17 HST orbits were carried out: the first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a new, short-lived fan in the sunward direction on June 14. The principal campaign began two days before impact and was followed by contiguous orbits through impact plus several hours and then snapshots one, seven, and twelve days later. All of the observations were made using the Advanced Camera for Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a spatial resolution of 36 km (16 km pixel−1) at the comet at the time of impact. Baseline images of the comet, made prior to impact, photometrically resolved the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement with the 6.0±0.2 km diameter derived from the spacecraft imagers. Following the impact, the HRC images illustrate the temporal and spatial evolution of the ejecta cloud and allow for a determination of its expansion velocity distribution. One day after impact the ejecta cloud had passed out of the field-of-view of the HRC. 相似文献
2.
High resolution spectropolarimetry of the Deep Impact target, Comet 9P/Tempel 1, was performed during the impact event on July 4th, 2005 with the HiVIS spectropolarimeter and the AEOS 3.67-m telescope on Haleakala, Maui. We observed atypical polarization spectra that changed significantly in the few hours after the impact. The polarization of scattered light as a function of wavelength is very sensitive to the size and composition (complex refractive index) of the scattering particles as well as the scattering geometry. As opposed to most observations of cometary dust, which show an increase in the linear polarization with the wavelength (at least in the visible domain and for phase angles greater than about 30, a red polarization spectrum) observations of 9P/Tempel 1 at a phase angle of 41° beginning 8 min after impact and centered at 6:30 UT showed a polarization of 4% at 650 nm falling to 3% at 950 nm. The next observation, centered an hour later showed a polarization of 7% at 650 nm falling to 2% at 950 nm. This corresponds to a spectropolarimetric gradient, or slope, of −0.9% per 1000 Å 40 min after impact, decreasing to a slope of −2.3% per 1000 Å an hour and a half after impact. This is an atypical blue polarization slope, which became more blue 1 h after impact. The polarization values of 4 and 7% at 650 nm are typical for comets at this scattering angle, whereas the low polarization of 2 and 3% at 950 nm is not. We compare observations of Comet 9P/Tempel 1 to that of a typical comet, C/2004 Machholz, at a phase angle of 30° which showed a typical red slope, rising from 2% at 650 nm to 3% at 950 nm in two different observations (+1.0 and +0.9% per 1000 Å). 相似文献
3.
C.M. Lisse K. Dennerl S.J. Wolk T.H. Zurbuchen R. Hoekstra C.D. Fry T. Mäkinen 《Icarus》2007,190(2):391-405
We present results from the Chandra X-ray Observatory's extensive campaign studying Comet 9P/Tempel 1 (T1) in support of NASA's Deep Impact (DI) mission. T1 was observed for ∼295 ks between 30th June and 24th July 2005, and continuously for ∼64 ks on July 4th during the impact event. X-ray emission qualitatively similar to that observed for the collisionally thin Comet 2P/Encke system [Lisse, C.M., Christian, D.J., Dennerl, K., Wolk, S.J., Bodewits, D., Hoekstra, R., Combi, M.R., Mäkinen, T., Dryer, M., Fry, C.D., Weaver, H., 2005b. Astrophys. J. 635 (2005) 1329-1347] was found, with emission morphology centered on the nucleus and emission lines due to C, N, O, and Ne solar wind minor ions. The comet was relatively faint on July 4th, and the total increase in X-ray flux due to the Deep Impact event was small, ∼20% of the immediate pre-impact value, consistent with estimates that the total coma neutral gas release due to the impact was 5×106 kg (∼10 h of normal emission). No obvious prompt X-ray flash due to the impact was seen. Extension of the emission in the direction of outflow of the ejecta was observed, suggesting the presence of continued outgassing of this material. Variable spectral features due to changing solar wind flux densities and charge states were clearly seen. Two peaks, much stronger than the man-made increase due to Deep Impact, were found in the observed X-rays on June 30th and July 8th, 2005, and are coincident with increases in the solar wind flux arriving at the comet. Modeling of the Chandra data using observed gas production rates and ACE solar wind ion fluxes with a CXE mechanism for the emission is consistent, overall, with the temporal and spectral behavior expected for a slow, hot wind typical of low latitude emission from the solar corona interacting with the comet's neutral coma, with intermittent impulsive events due to solar flares and coronal mass ejections. 相似文献
4.
The target of the Deep Impact space mission (NASA), Comet 9P/Tempel 1, was observed from two nights before impact to eight nights after impact using the FORS spectrographs at the ESO VLT UT1 and UT2 telescopes. Low resolution optical long-slit spectra were obtained to study the evolution of the gas coma around the Deep Impact event. Following first results of this observing campaign on the CN and dust activity [Rauer, H., Weiler, M., Sterken, C., Jehin, E., Knollenberg, J., Hainaut, O., 2006. Astron. Astrophys. 459, 257-263], this work presents a study of the complete dataset on CN, C2, C3, and NH2 activity of Comet 9P/Tempel 1. An extended impact gas cloud was observed moving radially outwards. No compositional differences between this impact cloud and the undisturbed coma were found as far as the observed radicals are concerned. The gas production rates before and well after impact indicate no change in the cometary activity on an intermediate time scale. Over the observing period, the activity of Comet 9P/Tempel 1 was found to be related to the rotation of the cometary nucleus. The rotational lightcurve for different gaseous species provides indications for compositional differences among different parts of the nucleus surface. 相似文献
5.
Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta
Horst Uwe Keller Sonia Fornasier Stubbe F. Hviid Jörg Knollenberg Miriam Rengel Gabriele Cremonese Detlef Koschny Ekkehard Kührt Holger Sierks Cesare Barbieri Hans Rickman Michael F. A'Hearn Maria-Antonella Barucci Vania da Deppo Björn J.R. Davidsson Stefano Debei Fritz Gliem José J. Lopez Moreno Giampiero Naletto Angel Sanz Andrés 《Icarus》2007,187(1):87-103
The OSIRIS cameras on the Rosetta spacecraft observed Comet 9P/Tempel 1 from 5 days before to 10 days after it was hit by the Deep Impact projectile. The Narrow Angle Camera (NAC) monitored the cometary dust in 5 different filters. The Wide Angle Camera (WAC) observed through filters sensitive to emissions from OH, CN, Na, and OI together with the associated continuum. Before and after the impact the comet showed regular variations in intensity. The period of the brightness changes is consistent with the rotation period of Tempel 1. The overall brightness of Tempel 1 decreased by about 10% during the OSIRIS observations. The analysis of the impact ejecta shows that no new permanent coma structures were created by the impact. Most of the material moved with . Much of it left the comet in the form of icy grains which sublimated and fragmented within the first hour after the impact. The light curve of the comet after the impact and the amount of material leaving the comet ( of water ice and a presumably larger amount of dust) suggest that the impact ejecta were quickly accelerated by collisions with gas molecules. Therefore, the motion of the bulk of the ejecta cannot be described by ballistic trajectories, and the validity of determinations of the density and tensile strength of the nucleus of Tempel 1 with models using ballistic ejection of particles is uncertain. 相似文献
6.
On 4 July 2005 at 5:52 UT the Deep Impact mission successfully completed its goal to hit the nucleus of 9P/Tempel 1 with an impactor, forming a crater on the nucleus and ejecting material into the coma of the comet. NASA's Submillimeter Wave Astronomy Satellite (SWAS) observed the 110-101 ortho-water ground-state rotational transition in Comet 9P/Tempel 1 before, during, and after the impact. No excess emission from the impact was detected by SWAS and we derive an upper limit of 1.8×107 kg on the water ice evaporated by the impact. However, the water production rate of the comet showed large natural variations of more than a factor of three during the weeks before and after the impact. Episodes of increased activity with alternated with periods with low outgassing (). We estimate that 9P/Tempel 1 vaporized a total of N∼4.5×1034 water molecules (∼1.3×109 kg) during June-September 2005. Our observations indicate that only a small fraction of the nucleus of Tempel 1 appears to be covered with active areas. Water vapor is expected to emanate predominantly from topographic features periodically facing the Sun as the comet rotates. We calculate that appreciable asymmetries of these features could lead to a spin-down or spin-up of the nucleus at observable rates. 相似文献
7.
Reiko Furusho Yuji Ikeda Wing-Huen Ip Toshihiro Kasuga Yusuke Sato Ming-Shin Chang Jun-ichi Watanabe 《Icarus》2007,190(2):454-458
The NASA's Deep Impact mission was the first impact experiment to a cometary nucleus. The target of the mission was Comet 9P/Tempel, one of the Jupiter family comets. The impact was performed on July 4th, 2005. Imaging polarimetric observations were carried out by Polarimetric Imager for COmets (PICO) mounted on the Lulin One-meter Telescope (LOT) at Lulin Observatory, Taiwan. Intensity and linear polarization degree maps were obtained on July 3-5, 2005. Impact ejecta plume was clearly recognized in the enhanced intensity map. Furthermore, arc-shaped region of high polarization was recognized in the polarization map. Dust grains in this region had larger expansion velocity than the grains which provided the brightest area in the intensity map. comparing our results with the MIR spectroscopy obtained by Subaru Telescope we conclude that very small carbonaceous grains might be responsible for the region of high polarization. 相似文献
8.
James M. Bauer Paul R. Weissman Mitchell Troy Carey M. Lisse Martha S. Hanner 《Icarus》2007,187(1):296-305
We present the first results of the Palomar Adaptive Optics observations taken during the Deep Impact encounter with 9P/Tempel 1 in July 2005. We have combined the Palomar near-IR imaging data with our visual wavelength images obtained simultaneously at JPL's Table Mountain Observatory to cover the total wavelength range from 0.4 to 2.3 μm in the B, V, R, I, J, H, and K filter bands, spanning the dates from 2005 July 03-07. We also include in our overall analysis images taken on the pre-encounter dates of June 1 and June 15, 2005. The broad wavelength range of our observations, along with high temporal resolution, near-IR sensitivity, and spatial resolution of our imaging, have enabled us to place constraints on the temperature of the impact flash and incandescent plume of >700 K, and to provide mean dust velocities of order approximately 1.25 h after impact derived from our 1.64 μm observations. Our ejected dust mass estimates, as derived from our near-IR observations, are an order of magnitude less than those previously reported for visual wavelength observations. 相似文献
9.
T.L. Farnham D.D. Wellnitz J.-Y. Li O. Groussin C.J. Crockett M.J.S. Belton C.M. Lisse 《Icarus》2007,187(1):26-40
We present an overview of the dust coma observations of Comet Tempel 1 that were obtained during the approach and encounter phases of the Deep Impact mission. We use these observations to set constraints on the pre-impact activity of the comet and discuss some preliminary results. The temporal and spatial changes that were observed during approach reveal three distinct jets rotating with a 1.7-day periodicity. The brightest jet produces an arcuate feature that expands outward with a projected velocity of about 12 m s−1, suggesting that the ambient dust coma is dominated by millimeter-sized dust grains. As the spatial resolution improves, more jets and fans are revealed. We use stereo pairs of high-resolution images to put some crude constraints on the source locations of some of the brightest features. We also present a number of interesting coma features that were observed, including surface jets detected at the limb of the nucleus when the exposed ice patches are passing over the horizon, and features that appear to be jets emanating from unilluminated sources near the negative pole. We also provide a list of 10 outbursts of various sizes that were observed in the near-continuous monitoring during the approach phase. 相似文献
10.
Matthew M. Knight Kevin J. Walsh Robert A. Swaters B. Ashley Zauderer Roberto Vázquez 《Icarus》2007,187(1):199-207
We present the results of our visible and near-IR observations of Comet 9P/Tempel 1 during the Deep Impact encounter. The comet was observed before, during, and after impact from Kitt Peak National Observatory (J, H, K) and Observatorio Astronómico Nacional-San Pedro Mártir, Mexico (B, V, R, I). High time-resolution images in R, J, H, and K the night of impact with a 3.″5 radius aperture revealed a rapid brightening which had multiple slopes and lasted for approximately 25 min before leveling off. The brightness decreased on subsequent nights and returned to near pre-impact levels by July 8 UT. The R-J, R-H, R-K, J-H, J-K, and H-K colors became bluer the night of impact. The R-J, R-H, and R-K colors remained blue on the night after impact while the J-H, J-K, and H-K colors returned to baseline levels. The observed color changes suggest the bluening was due to an increase in small grains relative to the ambient coma, an increase in ice relative to refractory dust in the coma, or a combination of the two. The ejecta were initially directed towards the southwest but had been driven southeast by solar radiation pressure by the second night after impact. The mean projected ejecta velocity was estimated at 0.20-0.23 km s−1 over the first 24 h after impact. 相似文献
11.
O. Groussin M.F. A'Hearn P.C. Thomas C.M. Lisse T.L. Farnham W.A. Delamere 《Icarus》2007,187(1):16-25
The Deep Impact (DI) spacecraft encountered Comet 9P/Tempel 1 on July 4th, 2005 and observed it with several instruments. In particular, we obtained infrared spectra of the nucleus with the HRI-IR spectrometer in the wavelength range of 1.0-4.9 μm. The data were taken before impact, with a maximum resolution of ∼120 m per pixel at the time of observation. From these spectra, we derived the first directly observed temperature map of a comet nucleus. The surface temperature varied from 272±7 to 336±7 K on the sunlit hemisphere, matching the surface topography and incidence angle. The derived thermal inertia is low, most probably <50 W K−1 m−2 s1/2. Combined with other arguments, it is consistent with the idea that most of rapidly varying thermal physical processes, in particular the sublimation of volatiles around perihelion, should occur close to the surface. Thermal inertia is sufficient to explain the temperature map of the nucleus of Comet Tempel 1 to first order, but other physical processes like roughness and self-radiation are required to explain the details of the temperature map. Finally, we evaluated that the Standard Thermal Model is a good approximation to derive the effective radius of a cometary nucleus with an uncertainty lower than ∼10% if combined with a thermal infrared light curve. 相似文献
12.
We observed 18-cm OH emission in Comet 9P/Tempel 1 before and after Deep Impact. Observations using the Arecibo Observatory 305 m telescope took place between 8 April and 9 June, 2005, followed by post-impact observations using the National Radio Astronomy Observatory 100 m Green Bank Telescope 4-12 July, 2005. The resulting spectra were analyzed with a kinematic Monte Carlo model which allows estimation of the OH production rate, neutral gas outflow velocity, and distribution of the out-gassing from the nucleus. We detected typically 24% variability from the overall OH production rate trend in the two months leading up to the impact, and no dramatic increase in OH production in the days post-impact. Generally, the coma is well-described, within uncertainties, by a symmetric model with OH production rates from 1.6 to , and mean water outflow velocity of . At these low production rates, collisional quenching is expected to occur only within 20,000 km of the nucleus. However, our best-fit average quenching radius is 64,200 ± 22,000 km in April and May. 相似文献
13.
We have observed the coma of Comet 9P/Tempel 1, the target of the Deep Impact mission, by the polarization imaging technique, before and after the impact event (−32, −7, +43 and +65 h). Our observations were conducted in the red wavelength domain from Haute-Provence Observatory (France), with the 80-cm telescope. The overall polarization of 9P/Tempel 1, as obtained near 41° phase angle, is monitored and compared to data from other (active and less active) comets studied by the same technique. The linear polarization of the dust ejected by the impact is compared to previous observations of dust present in jets, ejected during outbursts or released when comets happen to split. At phase angles of about 41°, the difference in polarization between the comets with a low maximum in polarization and the comets with a high maximum in polarization is about 1%; it may thus be difficult to conclude about the classification. Nevertheless, the overall polarization after the impact rapidly reached a value corresponding to the high polarization class of comets, and later progressively decreased to its initial value. The polarization was measured to be slightly lower (about 1%) before the impact than after it in a 26,000-km aperture. The plume formed from dust ejected by the impact was still present 65 h after it. The variations of the intensity and the polarization in the coma provide some clues to variations of the physical properties of the particles; comparison with other techniques corroborates the presence of large particles and of submicron-sized grains in aggregates. 相似文献
14.
The Deep Impact mission succeeded in excavating inner materials from the nucleus of Comet 9P/Tempel 1 on 2005 July 04 (at 05:52 UT). Comet 9P/Tempel 1 is one of Jupiter family short period comets, which might originate in the Kuiper belt region in the solar nebula. In order to characterize the comet and to support the mission from the ground-based observatory, optical high-dispersion spectroscopic observations were carried out with the echelle spectrograph (UVES) mounted on the 8-m telescope VLT (UT2) before and after the Deep Impact event. Ortho-to-para abundance ratios (OPRs) of cometary ammonia were determined from the NH2 emission spectra. The OPRs of ammonia on July 3.996 UT and 4.997 UT were derived to be 1.28±0.07 (nuclear spin temperature: Tspin=24±2 K) and 1.26±0.08 (Tspin=25±2 K), respectively. There is no significant change between before and after the impact. Actually, most materials ejected from the impact site could have moved away from the nucleus on July 4.997 UT, about 17 h after the impact. However, a small fraction of the ejected materials might remain in the slit of UVES instrument at that time because an excess of about 20% in the NH2 emission flux is observed above the normal activity level was found [Manfroid, J., Hutsemékers, D., Jehin, E., Cochran, A.L., Arpigny, C., Jackson, W.M., Meech, K.J., Schulz, R., Zucconi, J.-M., 2007. Icarus. This issue]. If the excess of NH2 on July 04.997 UT was produced from icy materials excavated by the Deep Impact, then an upper-limit of the ammonia OPR would be 1.75 (Tspin>17 K) for those materials. On the other hand, the OPR of ammonia produced from the quiescent sources was similar to that of the Oort cloud comets observed so far. This fact may imply that physical conditions where cometary ices formed were similar between Comet 9P/Tempel 1 and the Oort cloud comets. 相似文献
15.
Prior to the impact event, Deep Impact monitored the ambient inner coma of Comet 9P/Tempel 1 at high spatial resolution in July 2005. Gaseous H2O and CO2 are unambiguously detected in the infrared spectra collected with the HRI-IR spectrometer aboard Deep Impact. Detailed distribution maps of these volatiles in the inner coma, within 60 km from the nucleus, are produced from the integrated emission bands of H2O (2.66 μm) and CO2 (4.26 μm). Uncorrelated asymmetries are determined in the spatial distribution of both species indicating chemical heterogeneities within the nucleus. Although present at some abundance surrounding the entire nucleus, H2O has a pronounced enhancement in abundance in the sunward direction rotational phases, evidence that the dominant process of subliming water ice from the nucleus is solar heating. In contrast, CO2 is enhanced in the regions near the negative rotational pole of the nucleus, suggesting localized outgassing there. Both species show an increase in radiance above the limb of the nucleus toward Ecliptic North. The distribution maps also suggest that the process of dust removal from the nucleus is strongly connected to the outgassing of volatiles. Detailed study of these coma asymmetries gives insight to the relative abundances of the dominant molecular components of the inner coma, source regions of the native volatiles, anisotropic outgassing of the nucleus, and the formation and evolution of the nucleus. A quiescent water production rate for Tempel 1 on July 4, 2005, is estimated to be . 相似文献
16.
On UT 2005 July 4 we observed Comet 9P/Tempel 1 during its encounter with the Deep Impact flyby spacecraft and impactor. Using the SpeX near-infrared spectrograph mounted on NASA's Infrared Telescope Facility, we obtained 0.8-to-2.5 μm flux-calibrated spectral light curves of the comet for 12 min before and 14 min after impact. Our cadence was just 1.1 s. The light curve shows constant flux before the impact and an overall brightening trend after the impact, but not at a constant rate. Within a 0.8-arcsec-radius circular aperture, the comet rapidly-brightened by 0.63 mag at 1.2 μm in the first minute. Thereafter, brightening was more modest, averaging about 0.091 mag/min at 1.2 μm, although apparently not quite constant. In addition we see a bluing in the spectrum over the post-impact period of about 0.07 mag in J-H and 0.35 mag in J-K. The majority of this bluing happened in the first minute, and the dust only marginally blued after that, in stark contrast to the continued brightening. The photometric behavior in the light curve is due to a combination of crater formation effects, expansion of the ejecta cloud, and evolution of liberated dust grains. The bluing is likely due to an icy component on those grains, and the icy grains would have had to have a devolatilization timescale longer than 14 min (unless they were shielded by the optical depth of the cloud). The bluing could also have been caused by the decrease in the “typical” size of the dust grains after impact. Ejecta dominated by submicron grains, as inferred from other observations, would have stronger scattering at shorter wavelengths than the much larger grains observed before impact. 相似文献
17.
Jian-Yang Li Michael F. A'Hearn Christopher J. Crockett Carey M. Lisse Lucy A. McFadden Jessica M. Sunshine Joe Veverka 《Icarus》2007,187(1):41-55
The photometric properties of the nucleus of Comet 9P/Tempel 1 are studied from the disk-resolved color images obtained by Deep Impact (DI). Comet Tempel 1 has typical photometric properties for comets and dark asteroids. The disk-integrated spectrum of the nucleus of Tempel 1 between 309 and 950 nm is linear without any features at the spectral resolution of the filtered images. At V-band, the red slope of the nucleus is 12.5±1% per 100 nm at 63° phase angle, translating to B-V=0.84±0.01, V-R=0.50±0.01, and R-I=0.49±0.02. No phase reddening is confirmed. The phase function of the nucleus of Tempel 1 is constructed from DI images and earlier ground-based observations found from the literature. The phase coefficient is determined to be β=0.046±0.007 mag/deg between 4° and 117° phase angle. Hapke's theoretical scattering model was used to model the photometric properties of this comet. Assuming a single Henyey-Greenstein function for the single-particle phase function, the asymmetry factor of Tempel 1 was fitted to be g=−0.49±0.02, and the corresponding single-scattering albedo (SSA) was modeled to be 0.039±0.005 at 550 nm wavelength. The SSA spectrum shows a similar linear slope to that of the disk-integrated spectrum. The roughness parameter is found to be 16°±8°, and independent of wavelength. The Minnaert k parameter is modeled to be 0.680±0.014. The photometric variations on Tempel 1 are relatively small compared to other comets and asteroids, with a ∼20% full width at half maximum of albedo variation histogram, and ∼3% for color. Roughness variations are evident in one small area, with a roughness parameter about twice the average and appearing to correlate with the complex morphological texture seen in high-resolution images. 相似文献
18.
David G. Schleicher 《Icarus》2007,190(2):406-422
We present results from multi-apparition narrowband photometry of Deep Impact target Comet 9P/Tempel 1. In support of the mission, we obtained data during monthly observing runs between March and September 2005, and these are combined with and compared to observations obtained during the 1983 and 1994 apparitions. A strong seasonal effect is seen, with peak production rates occurring 4-8 weeks before perihelion, with some variation evident among the different species. There is also evidence of a slight systematic shift towards a later time of peak production in 2005 as compared to 1983. Early in the apparition, the radial profile of the dust was much steeper than the canonical 1/ρ, but the slope became progressively smaller until very little departure from 1/ρ remained by late June, a change possibly associated with the general seasonal effects. Unexpectedly, an unprecedented large overall decrease in production rates has taken place since 1983, with water at only about 42% of the 1983 values, CN at about 53%, and dust, based on the proxy A(θ)fρ, at about 77%. Other gas species exhibited declines intermediate between that of CN and of the dust. The large differences in the amount of secular decline among all of the species implies compositional inhomogeneities among source regions on the surface of the nucleus, with one region progressively becoming less active over only a few orbits. While the simplest explanation would invoke either devolatilization or covering up of the ice, no other comet has shown such a rapid change in outgassing unless accompanied by a significant change in its orbit. We, therefore, hypothesize that a change in available solar radiation due to precession of the pole might instead be causing the progressive drop in cometary activity. Given the small obliquity of the rotation axis derived from the Deep Impact observations, and a presumed small rate of precession, the source region would need to be located near the pole to explain both the large secular and seasonal trends. 相似文献
19.
Nicolas Biver Dominique Bockelée-Morvan Jacques Crovisier Alain Lecacheux Gabriel Paubert Matthew Sumner Åke Hjalmarson Anders Winnberg Aage Sandqvist 《Icarus》2007,187(1):253-271
Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s−1. Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H2O with Odin from June to August 2005. The peak of outgassing was found to be around between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH3OH and H2S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73±0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the “natural” outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH3OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H2O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈5000±2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas. 相似文献
20.
Data on the UT 2005 June 14 mini-outburst of Comet 9P/Tempel 1 taken from different viewpoints have been examined for morphological differences and parallax. The data were taken with the Hubble Space Telescope (HST), from the Deep Impact (DI) spacecraft, and from the Calar Alto Observatory, Spain. The mini-outburst source region was found to be located near 218 ± 6E, 6 ± 5N on the Deep Impact nucleus shape model. The mini-outburst occurred at ∼12 pm local solar time. The distribution of light in the mini-outburst is similar to that expected for an ejecta curtain. The method and software used to determine the surface location was checked using position angles of the impact ejecta plume as seen from DI and HST. The general region of impact was recovered and a downrange tilt of the ejecta curtain axis of 10.2 deg from the surface normal was found. We computed tracks of possible source regions for nine other mini-outbursts seen from DI. Five of these tracks converge on the 2005 June 14 event location. Three of the tracks converge at a second location near (60E, 20S), well separated from the first. Multiple mini-outbursts arise at each location either from a single source or from a few sources in close proximity. The mini-outbursts occur both at night and during the day indicating at most weak, if any, control by direct sunlight. The times of outburst are non-random with a preference for early afternoon, dusk and midnight. None of the mini-outbursts occurred near dawn. They occur at low latitudes (between ±40 deg) near the points where the principal axis of minimum moment of inertia cuts the surface. These regions are furthest from the center of figure and have the lowest effective surface gravity. We use these results to develop a conceptual model of the mini-outburst process and make comparisons with the theoretical calculations. We find that the tensile strength of the sub-surface material must be very low (e.g., ) and, on the basis of features imaged on the western facet of the nucleus, suggest that inflation of the sub-surface may be occurring. Our model makes specific predictions about the kind of surface morphology that should result from mini-outburst activity. We show that one of the isolated rimless depressions and the close-packed depressions found in the Deep Impact images have the properties needed and identify them as possible sites of past and current mini-outburst activity. 相似文献