首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
From 378 Hubble Space Telescope WFPC2 images obtained between 1996-2004, we have measured the detailed nature of azimuthal brightness variations in Saturn's rings. The extensive geometric coverage, high spatial resolution (), and photometric precision of the UBVRI images have enabled us to determine the dependence of the asymmetry amplitude and longitude of minimum brightness on orbital radius, ring elevation, wavelength, solar phase angle, and solar longitude. We explore a suite of dynamical models of self-gravity wakes for two particle size distributions: a single size and a power law distribution spanning a decade in particle radius. From these N-body simulations, we calculate the resultant wake-driven brightness asymmetry for any given illumination and viewing geometry. The models reproduce many of the observed properties of the asymmetry, including the shape and location of the brightness minimum and the trends with ring elevation and solar longitude. They also account for the “tilt effect” in the A and B rings: the change in mean ring brightness with effective ring opening angle, |Beff|. The predicted asymmetry depends sensitively on dynamical ring particle properties such as the coefficient of restitution and internal mass density, and relatively weakly on photometric parameters such as albedo and scattering phase function. The asymmetry is strongest in the A ring, reaching a maximum amplitude A∼25% near a=128,000 km. Here, the observations are well-matched by an internal particle density near 450 kg m−3 and a narrow particle size distribution. The B ring shows significant asymmetry (∼5%) in regions of relatively low optical depth (τ∼0.7). In the middle and outer B ring, where τ?1, the asymmetry is much weaker (∼1%), and in the C ring, A<0.5%. The asymmetry diminishes near opposition and at shorter wavelengths, where the albedo of the ring particles is lower and multiple-scattering effects are diminished. The asymmetry amplitude varies strongly with ring elevation angle, reaching a peak near |Beff|=10° in the A ring and at |Beff|=15-20° in the B ring. These trends provide an estimate of the thickness of the self-gravity wakes responsible for the asymmetry. Local radial variations in the amplitude of the asymmetry within both the A and B rings are probably caused by regional differences in the particle size distribution.  相似文献   

2.
As part of a long-term study of Saturn's rings, we have used the Hubble Space Telescope's (HST) Wide Field and Planetary Camera (WFPC2) to obtain several hundred high resolution images from 1996 to 2004, spanning the full range of ring tilt and solar phase angles accessible from the Earth. Using these multiwavelength observations and HST archival data, we have measured the photometric properties of spokes in the B ring, visible in a substantial number of images. We determined the spoke particle size distribution by fitting the wavelength-dependent extinction efficiency of a prominent, isolated spoke, using a Mie scattering model. Following Doyle and Grün (1990, Icarus 85, 168-190), we assumed that the spoke particles were sub-micron size spheres of pure water ice, with a Hansen-Hovenier size distribution (Hansen and Hovenier, 1974, J. Atmos. Sci. 31, 1137-1160). The WFPC2 wavelength coverage is broader than that of the Voyager data, resulting in tighter constraints on the nature of spoke particles. The effective particle size was reff=0.57±0.05 μm, and the size distribution was quite narrow with a variance of b=0.09±0.03, very similar to the results of Doyle and Grün (1990, Icarus 85, 168-190), and consistent with predictions of plasma cloud models for spoke production from meteoritic impacts (Goertz and Morfill, 1983, Icarus 53, 219-229; Goertz, 1984, Adv. Space Res. 4, 137-141). In all, we identified 36 spokes or spoke complexes, predominantly on the morning (east) ansa. The photometric contrast of the spokes is strongly dependent on effective ring opening angle, Beff. Spokes were clearly visible on the north face of the rings in 1994, just prior to the most recent ring plane crossing (RPX) epoch, and on the south face shortly after RPX. However, spokes were both less abundant and fainter as the rings opened up, and no spokes were detected after 18 October 1998 (Beff=−15.43°), when a single faint spoke was seen on the morning ansa. The high resolution and photometric quality of the WFPC2 images enabled us to set a detection limit of ?1% in fractional brightness contrast for spokes for the post-1998 observations. We compare the observed trend of spoke contrast with Beff to radiative transfer calculations based on three models of the distribution of spoke material. In the first, the spoke “haze” is uniformly mixed with macroscopic B ring particles. No variation in spoke contrast is predicted for single-scattering, in this case, and only a modest decrease in contrast with Beff is predicted when multiple scattering is taken into account. In the second model, the spoke dust occupies an extended layer that is thicker than the B ring, which gives virtually identical results to a third case, when the haze layer lies exclusively above the ring. Multiple-scattering Monte Carlo calculations for these two extended haze models match the trend of spoke contrast exceptionally well. We compute the predicted spoke contrast for a wide variety of viewing geometries, including forward- and backscattering. Based on these results, spokes should be easily detectable during the Cassini mission when the rings are viewed at relatively small (|B|?10°) ring opening angles.  相似文献   

3.
We present near-infrared (1.24-2.26 μm) images of Saturn's E and G rings which were taken with the W.M. Keck telescope in 1995 August 9-11, during the period that Earth crossed Saturn's ring plane. Our data confirm that the E ring is very blue. Its radial and vertical structure are found to be remarkably similar to that apparent in the HST ringplane crossing data at visible wavelengths, reinforcing models of the ring's peculiar narrow or very steep particle size distribution. Our data show unambiguously that the satellite Tethys is a secondary source of material for the E ring. The G ring is found to be distinctly red, similar in color to Jupiter's main ring, indicative of a (more typical) broad particle size distribution.  相似文献   

4.
Saturn's C ring thermal emission has been observed in mid-infrared wavelengths, at three different epochs and solar phase angles, using ground based instruments (CFHT in 1999 and VLT/ESO in 2005) and the Infrared Radiometer Instrument Spectrometer (IRIS) onboard the Voyager 1 spacecraft in 1980. Azimuthal variations of temperature in the C ring's inner region, observed at several phase angles, have been analyzed using our new standard thermal model [Ferrari, C., Leyrat, C., 2006. Astron. Astrophys. 447, 745-760]. This model provides predicted ring temperatures for a monolayer ring composed of spinning icy spherical particles. We confirm the very low thermal inertia (on the order of 10 ) found previously by Ferrari et al. [Ferrari, C., Galdemard, P., Lagage, P.O., Pantin E., Quoirin, C., 2005. Astron. Astrophys. 441, 379-389] that reveals the very porous regolith at the surface of ring particles. We are able to explain both azimuthal variations of temperature and the strong asymmetry of the emission function between low and high phase angles. We show that large particles spinning almost synchronously might be present in the C ring to explain differences of temperature observed between low and high phase angle. Their cross section might represent about 45% of the total cross section. However, their numerical fraction is estimated to only ∼0.1% of all particles. Thermal behavior of other particles can be modeled as isothermal behavior. This work provides an indirect estimation of the particle's rotation rate in Saturn's rings from observations.  相似文献   

5.
We present a new Very Large Array (VLA) image of Saturn, made from data taken in October 1998 at a wavelength of λ3.6 cm. The moderate ring opening angle (B≈15°) allows us to explore direct transmission of microwave photons through the A and C rings. We find a strong asymmetry of photons transmitted through the A ring, but not in the C ring, a new diagnostic of wake structure in the ring particles. We also find a weak asymmetry between east and west for the far side of the ansae. To facilitate quantitative comparison between dynamic models of the A ring and radio observations, we extend our Monte Carlo radiative transfer code (described in Dunn et al., 2002, Icarus 160, 132-160) to include idealized wakes. We show the idealized model can reproduce the properties of dynamic simulations in directly transmitted light. We examine the model behavior in directly transmitted and scattered light over a range of physical and geometric wake parameters. Finally, we present a wake model with a plausible set of physical parameters that quantitatively reproduces the observed intensity and asymmetry of the A ring both across the planet and in the ansae.  相似文献   

6.
Ryuji Morishima  Heikki Salo 《Icarus》2009,201(2):634-654
We present our new model for the thermal infrared emission of Saturn's rings based on a multilayer approximation. In our model, (1) the equation of classical radiative transfer is solved directly for both visible and infrared light, (2) the vertical heterogeneity of spin frequencies of ring particles is taken into account, and (3) the heat transport due to particles motion in the vertical and azimuthal directions is taken into account. We adopt a bimodal size distribution, in which rapidly spinning small particles (whose spin periods are shorter than the thermal relaxation time) with large orbital inclinations have spherically symmetric temperatures, whereas non-spinning large particles (conventionally called slow rotators) with small orbital inclinations are heated up only on their illuminated sides. The most important physical parameters, which control ring temperatures, are the albedo in visible light, the fraction of fast rotators (ffast) in the optical depth, and the thermal inertia. In the present paper, we apply the model to Earth-based observations. Our model can well reproduce the observed temperature for all the main rings (A, B, and C rings), although we cannot determine exact values of the physical parameters due to degeneracy among them. Nevertheless, the range of the estimated albedo is limited to 0-0.52±0.05, 0.55±0.07-0.74±0.03, and 0.51±0.07-0.74±0.06 for the C, B, and A rings, respectively. These lower and upper limits are obtained assuming all ring particles to be either fast and slow rotators, respectively. For the C ring, at least some fraction of slow rotators is necessary (ffast?0.9) in order for the fitted albedo to be positive. For the A and B rings, non-zero fraction of fast rotators (ffast?0.1-0.2) is favorable, since the increase of the brightness temperature with increasing solar elevation angle is enhanced with some fraction of fast rotators.  相似文献   

7.
In a small hypervelocity impact, superheated gas and particles glow brightly with thermal emission for a brief time interval at short wavelengths; this phenomenon is referred to as an impact flash. Over the past decade, impact flashes have been observed on the Moon and in the laboratory in both the IR and visible portions of the spectrum. These phenomena have been used to constrain impactor parameters, such as impact size, velocity and composition. With the arrival of the Cassini spacecraft at Saturn, we embarked on a study of impact flashes in Saturn's rings. We present results on the feasibility of observing impact flashes and therefore estimating the flux of meteoroids impacting Saturn's rings using Cassini's Ultraviolet Imaging Spectrograph (UVIS). Our modeling effort is two-fold. We start by simulating impacts using the CTH hydrodynamical code. Impacts involve an icy ring particle and a serpentine meteoroid, modeled with the ANEOS equation of state. The objects are centimeters to meters in diameter and collide at 30 to 50 km s−1. We then use the resulting temperatures and densities of the impact plumes in a radiative transfer calculation. We calculate bound-free, free-free, electron scattering and negative ion opacities along a line-of-sight through the center of each impact plume. Our model has shown that impact flashes will not be seen with the UVIS because (1) the plumes are optically thick when their central temperatures are high, with photosphere temperatures too cool to emit observable UV flux and (2) when the plumes become optically thin, even the hottest region of the plume is too cool to observe in the UV. This corroborates the lack of UVIS impact flash detections to date. Impact flashes are not likely to be seen by other Cassini instruments because of the short lifetimes of the plumes.  相似文献   

8.
The two major factors contributing to the opposition brightening of Saturn’s rings are (i) the intrinsic brightening of particles due to coherent backscattering and/or shadow hiding on their surfaces, and (ii) the reduced interparticle shadowing when the solar phase angle α → 0°. We utilize the extensive set of Hubble Space Telescope observations (Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 199–223) for different elevation angles B and wavelengths λ to disentangle these contributions. We assume that the intrinsic contribution is independent of B, so that any B dependence of the phase curves is due to interparticle shadowing, which must also act similarly for all λ’s. Our study complements that of Poulet et al. (Poulet, F., Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 224), who used a subset of data for a single B ∼ 10°, and the French et al. (French, R.G., Verbiscer, A., Salo, H., McGhee, C.A., Dones, L. [2007b] PASP 119, 623–642) study for the B ∼ 23° data set that included exact opposition. We construct a grid of dynamical/photometric simulation models, with the method of Salo and Karjalainen (Salo and Karjalainen [2003]. Icarus 164, 428–460), and use these simulations to fit the elevation-dependent part of opposition brightening. Eliminating the modeled interparticle component yields the intrinsic contribution to the opposition effect: for the B and A rings it is almost entirely due to coherent backscattering; for the C ring, an intraparticle shadow hiding contribution may also be present.Based on our simulations, the width of the interparticle shadowing effect is roughly proportional to B. This follows from the observation that as B decreases, the scattering is primarily from the rarefied low filling factor upper ring layers, whereas at larger B’s the dense inner parts are visible. Vertical segregation of particle sizes further enhances this effect. The elevation angle dependence of interparticle shadowing also explains most of the B ring tilt effect (the increase of brightness with elevation). From comparison of the magnitude of the tilt effect at different filters, we show that multiple scattering can account for at most a 10% brightness increase as B → 26°, whereas the remaining 20% brightening is due to a variable degree of interparticle shadowing. The negative tilt effect of the middle A ring is well explained by the the same self-gravity wake models that account for the observed A ring azimuthal brightness asymmetry (Salo, H., Karjalainen, R., French, R.G. [2004]. Icarus 170, 70–90; French, R.G., Salo, H., McGhee, C.A., Dones, L. [2007]. Icarus 189, 493–522).  相似文献   

9.
We present results of near-infrared (2.26 μm) observations of Saturn's main rings taken with the W.M. Keck telescope during August 8-11, 1995, surrounding the time that Earth crossed Saturn's ring plane. These observations provide a unique opportunity to study the evolution of the ring brightness in detail, and by combining our data with Hubble Space Telescope (HST) results (Nicholson et al., 1996, Science 272, 453-616), we extend the 12-hour HST time span to several days around the time of ring plane crossing (RPX). In this paper, we focus on the temporal evolution of the brightness in Saturn's main rings. We examine both edge-on ring profiles and radial profiles obtained by “onion-peeling” the edge-on data. Before RPX, when the dark (unlit) face of the rings was observed, the inner C ring (including the Colombo gap), the Maxwell gap, Cassini Division and F ring region were very bright in transmitted light. After RPX, the main rings brighten rapidly, as expected. The profiles show east-west asymmetries both before and after RPX. Prior to RPX, the evolution in ring brightness of the Keck and HST data match one another quite well. The west side of the rings showed a nonlinear variation in brightness during the last hours before ring plane crossing, suggestive of clumping and longitudinal asymmetries in the F ring. Immediately after RPX, the east side of the rings brightened more rapidly than the west. A quantitative comparison of the Keck and HST data reveals that the rings were redder before RPX than after; we ascribe this difference to the enhanced multiple scattering of photons passing through to the unlit side of the rings.  相似文献   

10.
We present observations of the uranian ring system at a wavelength of 2.2 μm, taken between 2003 and 2008 with NIRC2 on the W.M. Keck telescope in Hawaii, and on 15–17 August 2007 with NaCo on the Very Large Telescope (VLT) in Chile. Of particular interest are the data taken around the time of the uranian ring plane crossing with Earth on 16 August 2007, and with the Sun (equinox) on 7 December 2007. We model the data at the different viewing aspects with a Monte Carlo model to determine: (1) the normal optical depth τ0, the location, and the radial extent of the main rings, and (2) the parameter 0 (A is the particle geometric albedo), the location, and the radial plus vertical extent of the dusty rings. Our main conclusions are: (i) The brightness of the ? ring is significantly enhanced at small phase and ring inclination angles; we suggest this extreme opposition effect to probably be dominated by a reduction in interparticle shadowing. (ii) A broad sheet of dust particles extends inwards from the λ ring almost to the planet itself. This dust sheet has a vertical extent of ∼140 km, and 0 = 2.2 × 10−6. (iii) The dusty rings between ring 4 and the α ring and between the α and β rings are vertically extended with a thickness of ∼300 km. (iv) The ζ ring extends from ∼41,350 km almost all the way inwards to the planet. The main ζ ring, centered at ∼39,500 km from the planet, is characterized by 0 = 3.7 × 10−6; this parameter decreases closer to the planet. The ζ ring has a full vertical extent of order 800–900 km, with a pronounced density enhancement in the mid-plane. (v) The ηc ring is optically thin and less than several tens of km in the vertical direction. This ring may be composed of macroscopic material, surrounded by clumps of dust.  相似文献   

11.
We analyze stellar occultations by Saturn's rings observed with the Cassini Ultraviolet Imaging Spectrograph and find large variations in the apparent normal optical depth of the B ring with viewing angle. The line-of-sight optical depth is roughly independent of the viewing angle out of the ring plane so that optical depth is independent of the path length of the line-of-sight. This suggests the ring is composed of virtually opaque clumps separated by nearly transparent gaps, with the relative abundance of clumps and gaps controlling the observed optical depth. The observations can be explained with a model of self-gravity wakes like those observed in the A ring. These trailing spiral density enhancements are due to the competing processes of self-gravitational accretion of ring particles and Kepler shear. The B ring wakes are flatter and more closely packed than their neighbors in the A ring, with height-to-width ratios <0.1 for most of the ring. The self-gravity wakes are seen in all regions of the B ring that are not opaque. The observed variation in total B ring optical depth is explained by the amount of relatively empty space between the self-gravity wakes. Wakes are more tightly packed in regions where the apparent normal optical depth is high, and the wakes are more widely spaced in lower optical depth regions. The normal optical depth of the gaps between the wakes is typically less than 0.5 and shows no correlation with position or overall optical depth in the ring. The wake height-to-width ratio varies with the overall optical depth, with flatter, more tightly packed wakes as the overall optical depth increases. The highly flattened profile of the wakes suggests that the self-gravity wakes in Saturn's B ring correspond to a monolayer of the largest particles in the ring. The wakes are canted to the orbital direction in the trailing sense, with a trend of decreasing cant angle with increasing orbital radius in the B ring. We present self-gravity wake properties across the B ring that can be used in radiative transfer modeling of the ring. A high radial resolution (∼10 m) scan of one part of the B ring during a grazing occultation shows a dominant wavelength of 160 m due to structures that have zero cant angle. These structures are seen at the same radial wavelength on both ingress and egress, but the individual peaks and troughs in optical depth do not match between ingress and egress. The structures are therefore not continuous ringlets and may be a manifestation of viscous overstability.  相似文献   

12.
H. Salo  R. Karjalainen 《Icarus》2004,170(1):70-90
Dynamical N-body simulations (Salo, 992, Nature 359, 619) suggest the formation of trailing density enhancements in the outer portions of Saturn's rings, due to local gravitational instabilities. These Julian-Toomre type wakes, having a pitch angle of about 20°-25° with respect to the local tangential direction, seem to provide a plausible explanation for the observed quadrupole brightness variation in Saturn's A ring (Salo and Karjalainen, 1999, Bull. Am. Astron. Soc. 31, 1160; French et al., 2000, Bull. Am. Astron. Soc. 32, 806; Porco et al., 2001, Bull. Am. Astron. Soc. 33, 1091). We have carried out systematic photometric modeling of gravitational wake structures seen in dynamical simulations, performed for the parameter values of the A ring, using the Monte Carlo radiative transfer code described in Salo and Karjalainen (2003, Icarus 164, 428). Comparisons to the observed asymmetry in various cases are presented (asymmetry in reflected and transmitted light, ring longitude and opening angle dependence), in all cases confirming the applicability of the wake model. Typically, minimum brightness corresponds to viewing/illumination along the long axis of wakes; however, the sense of modeled asymmetry reverses at small tilt angles in diffuse transmission. Implications of wakes on the occultation optical depth profiles and the A ring overall brightness behavior are also discussed: it is shown that the wake structure needs to be taken into account when the Cassini occultation profiles for the A ring are interpreted in terms of variations in surface density. Also, the presence of wakes offers a plausible explanation for the inverse tilt effect seen in the mid A-ring.  相似文献   

13.
C. Ferrari  S. Brooks  C. Leyrat  L. Spilker 《Icarus》2009,199(1):145-153
The CIRS infrared spectrometer onboard the Cassini spacecraft has scanned Saturn's A ring azimuthally from several viewing angles since its orbit insertion in 2004. A quadrupolar asymmetry has been detected in this ring at spacecraft elevations ranging between 16° to 37°. Its fractional amplitude decreases from 22% to 8% from 20° to 37° elevations. The patterns observed in two almost complete azimuthal scans at elevations 20° and 36° strongly favor the self-gravity wakes as the origin of the asymmetry. The elliptical, infinite cylinder model of Hedman et al. [Hedman, M.M., Nicholson, P.D., Salo, H., Wallis, B.D., Buratti, B.J., Baines, K.H., Brown, R.H., Clark, R.N., 2007. Astron. J. 133, 2624-2629] can reproduce the CIRS observations well. Such wakes are found to have an average height-to-spacing ratio H/λ=0.1607±0.0002, a width-over-spacing W/λ=0.3833±0.0008. Gaps between wakes, which are filled with particles, have an optical depth τG=0.1231±0.0005. The wakes mean pitch angle ΦW is 70.70°±0.07°, relative to the radial direction. The comparison of ground-based visible data with CIRS observations constrains the A ring to be a monolayer. For a surface mass density of 40 g cm−2 [Tiscarino, M.S., Burns, J.A., Nicholson, P.D., Hedman, M.M., Porco, C.C., 2007. Icarus 189, 14-34], the expected spacing of wakes is λ≈60 m. Their height and width would then be H≈10 m and W≈24 m, values that match the maximum size of particles in this ring as determined from ground-based stellar occultations [French, R.G., Nicholson, P.D., 2000. Icarus 145, 502-523].  相似文献   

14.
This paper reviews our current knowledge of Saturn's rings’ physical properties as derived from thermal infrared observations. Ring particle composition, surface structure and spin as well as the vertical structure of the main rings can be determined. These properties are the key to understand the origin and evolution of Saturn's rings. Ring composition is mainly constrained by observations in the near-infrared but the signature of some probable contaminants present in water ice may also be found at mid-infrared wavelengths. The absence of the silicate signature limits nowadays their mass fraction to 10−7±1. Recent measurements on the thermal inertia of the ring particle surface show it is very low, of the order of 5±2 Jm−2 K−1 s−1/2. New models and observations of the complete crossing of the planetary shadow are needed to attribute this low value either to compact regoliths covered by cracks due to collisions and thermal stresses or to large fluffy and irregular surfaces. Studies of the energy balance of ring particles show a preference for slowly spinning particles in the main rings. Supplementary observations at different phase angles, showing the temperature contrast between night and day sides of particles, and new models including finite spin and thermal inertia, are needed to constrain the actual spin distribution of ring particles. These results can then be compared to numerical simulations of ring dynamics. Many thermal models have been proposed to reproduce observations of the main rings, including alternative mono- or many-particles-thick layers or vertical heterogeneity, with no definitive answer. Observations on the lit and dark faces of rings as a function of longitude, at many incidence and emission angles, would provide prime information on the vertical thermal gradient due to interparticle shadowing from which constraints on the local vertical structure and dynamics can be produced. Future missions such as Cassini will provide new information to further constrain the ring thermal models.  相似文献   

15.
We present a photometric model of the rings of Saturn which includes the main rings and an F ring, inclined to the main rings, with a Gaussian vertical profile of optical depth. This model reproduces the asymmetry in brightness between the east and west ansae of the rings of Saturn that was observed by the Hubble Space Telescope (HST) within a few hours after the Earth ring-plane crossing (RPX) of 10 August 1995. The model shows that during this observation the inclined F ring unevenly blocked the east and west ansae of the main rings. The brightness asymmetry produced by the model is highly sensitive to the vertical thickness and radial optical depth of the F ring. The F-ring model that best matches the observations has a vertical full width at half maximum of 13 ± 7 km and an equivalent depth of 10 ± 4 km. The model also reproduces the shape of the HST profiles of ring brightness vs. distance from Saturn, both before and after the time of ring-plane crossing. Smaller asymmetries observed before the RPX, when the Earth was on the dark side of the rings, cannot be explained by blocking of the main rings by the F ring or vice versa and are probably instead due to the intrinsic longitudinal variation exhibited by the F ring.  相似文献   

16.
P.D. Nicholson  M.M. Hedman 《Icarus》2010,206(2):410-423
An increasing body of evidence shows that, at the sub-km level, Saturn’s main A and B rings are dominated by an ever-changing pattern of elongated, canted structures known as self-gravity wakes. Best known for causing azimuthal variations in the rings’ reflectivity, these structures also have a profound influence on how the transmission of the rings varies with both longitude and opening angle, B (Colwell et al. [2006] Geophys. Res. Lett. 33, 7201; Colwell et al. [2007] Icarus 190, 127-144; Hedman et al. [2007] Astron. J. 133, 2624-2629). We use data from three stellar occultations observed by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) to measure the transmission of the rings as a function of B, when viewed parallel to the wakes. These data are used to constrain properties of the self-gravity wakes as a function of radius across the A and B rings: specifically the fractional width of the gaps between the wakes, G/λ, and the average normal optical depth in the gaps, τG. We find that the overall normal optical depth of the rings, τn is primarily controlled by G/λ, which varies between <0.05 and ∼0.70 in the A and B rings. The gaps, however, are not completely empty, being filled by material — possibly cm-sized ring particles — with an average normal optical depth which varies from 0.12 to ∼0.4. In addition to regional variations, local variations in τG are seen in the regular structure which dominates the inner B ring, and in the environs of strong density waves in the A ring. The same model applied to the lower optical depth Cassini Division reveals very little evidence of self-gravity wakes, except where τn exceeds ∼0.25.  相似文献   

17.
Cassini UVIS star occultations by the F ring detect 13 events ranging from 27 m to 9 km in width. We interpret these structures as likely temporary aggregations of multiple smaller objects, which result from the balance between fragmentation and accretion processes. One of these features was simultaneously observed by VIMS. There is evidence that this feature is elongated in azimuth. Some features show sharp edges. At least one F ring object is opaque and may be a “moonlet.” This possible moonlet provides evidence for larger objects embedded in Saturn's F ring, which were predicted as the sources of the F ring material by Cuzzi and Burns [Cuzzi, J.N., Burns, J.A., 1988. Icarus 74, 284-324], and as an outcome of tidally modified accretion by Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171]. We see too few events to confirm the bi-modal distribution which Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171] predict. These F ring structures and other youthful features detected by Cassini may result from ongoing destruction of small parent bodies in the rings and subsequent aggregation of the fragments. If so, the temporary aggregates are 10 times more abundant than the solid objects. If recycling by re-accretion is significant, the rings could be quite ancient, and likely to persist far into the future.  相似文献   

18.
David Parry Rubincam 《Icarus》2006,184(2):532-542
Saturn's icy ring particles, with their low thermal conductivity, are almost ideal for the operation of the Yarkovsky effects (photon thrust due to temperature gradients across the ring particles). An extremely simple case of the Yarkovsky effects is examined here, in which orbital evolution is computed as though each particle travels around Saturn alone in a circular orbit, so that there are no collisions, shadowing, or irradiance from other particles; nor are resonances, tumbling, or micrometeoroid erosion considered. The orbital evolution for random spin orientations appears to be a competition between two effects: the seasonal Yarkovsky effect, which makes orbits contract, and the Yarkovsky-Schach effect, which makes orbits expand. There are values of the far infrared and visible particle albedos for which (working radially out from the planet) the along-track particle acceleration S is negative, then positive, and then negative again; the region for which S>0 is interpreted as a region where stable rings are possible. Typical timescales for centimeter-sized particles to travel half a Saturn radius are 107-108 yr. Collisions, shadowing, and resonances may lengthen the timescales, perhaps considerably. It is speculated here that the C ring may be depleted of particles because of the seasonal Yarkovsky effect, and small particles that are present in the C ring ultimately fall on Saturn, possibly creating a “Ring of Fire” as they enter the planet's atmosphere.  相似文献   

19.
Nicole Albers  Frank Spahn 《Icarus》2006,181(1):292-301
In planetary rings, binary collisions and mutual gravity are the predominant particle interactions. Based on a viscoelastic contact model we implement the concept of static adhesion. We discuss the collision dynamics and obtain a threshold velocity for restitution or agglomeration to occur. The latter takes place within a range of a few cm s−1 for icy grains at low temperatures. The stability of such two-body agglomerates bound by adhesion and gravity in a tidal environment is discussed and applied to the saturnian system. A maximal agglomerate size for a given orbit location is obtained. In this way we are able to resolve the borderline of the zone where agglomerates can exist as a function of the agglomerate size and thus gain an alternative to the classical Roche limit. An increasing ring grain size with distance to Saturn as observed by the VIMS-experiment on board the Cassini spacecraft can be found by our estimates and implications for the saturnian system will be addressed.  相似文献   

20.
Despite several spacecraft encounters and numerous groundbased investigations, we still do not know much about Jupiter's deep atmosphere; in fact, the Galileo probe results were so different than anyone had anticipated, that we understand even less about this planet's atmosphere now than before the Galileo mission. We formulate four basic questions in Section 1.3, which, if solved, would help to better understand the chemistry and dynamics in Jupiter's atmosphere. We believe that three out of the four questions (explanation of NH3 altitude profile, characterization of hot spots, altitude below which the atmosphere is uniformly mixed) may be solved from passive sounding of Jupiter's deep (∼ tens of bars) atmosphere via a radio telescope orbiting the planet. Question nr. 4 (the water abundance in Jupiter's deep atmosphere) has been singled out by the Solar System Exploration Decadal Survey as a key question, since the water abundance in Jupiter's deep atmosphere is tied in with planet formation models. In this paper we investigate the sensitivity of microwave retrievals to the composition of Jupiter's deep atmosphere, in particular the water abundance. Based upon present uncertainties in the ammonia abundance and other known and unknown absorbers, including uncertainties in clouds (density and index of refraction), and uncertainties in the thermal structure and lineshape profiles, we conclude that the retrieval of water at depth from microwave spectra (disk-averaged and locally) will be highly uncertain. We show that, if the H2O lineshape profile would be accurately known (laboratory data are needed!), an atmosphere with a near-solar H2O abundance can likely be distinguished from one with an abundance of 10-20×solar O based upon the difference in their microwave spectra at wavelengths ?50 cm. This would be sufficient to distinguish between some proposed scenarios by which Jupiter acquired its inventory of volatile elements heavier than helium. If, in addition, limb-darkening measurements are obtained (again, the H2O lineshape profile should be known), tighter constraints on the H2O abundance can be obtained (see also Janssen et al., 2004, this issue).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号