首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We show that, over the next two decades, the current radar and optical astrometric technology is adequate to allow detection of the Yarkovsky effect acting on at least two dozen NEAs from a variety of orbital regimes and with effective diameters ranging from about ten meters up to several kilometers. The Yarkovsky effect will likely be detected for objects of rarer spectral types X, C, and E, as well as the more common S and Q. The next predicted detection of the Yarkovsky effect is for 4179 Toutatis in October 2004, which would be also the first multi-kilometer case. The Asteroid 25143 Itokawa, with a likely detection at the end of 2005, could offer an important test due to the independent “ground-truth” measurements of the asteroid mass and surface thermal inertia expected from the Hayabusa spacecraft. Earth co-orbital asteroids (e.g., 2000 PH5 or 2003 YN107) are the best placed for rapid determination of the Yarkovsky effect, and the timespan between discovery of the object and detection of the Yarkovsky effect may be as short as 3 years. By 2012, the motion of potential Earth impactor (29075) 1950 DA will likely reveal the magnitude of the Yarkovsky effect, which in turn will identify which of two possible pole orientations is correct. Vis-a-vis the 2880 impact, this new information will allow a substantial improvement in the quality of long term predictions.  相似文献   

2.
We observed the near-Earth ASTEROID 2008 EV5 with the Arecibo and Goldstone planetary radars and the Very Long Baseline Array during December 2008. EV5 rotates retrograde and its overall shape is a 400 ± 50 m oblate spheroid. The most prominent surface feature is a ridge parallel to the asteroid’s equator that is broken by a concavity about 150 m in diameter. Otherwise the asteroid’s surface is notably smooth on decameter scales. EV5’s radar and optical albedos are consistent with either rocky or stony-iron composition. The equatorial ridge is similar to structure seen on the rubble-pile near-Earth asteroid (66391) 1999 KW4 and is consistent with YORP spin-up reconfiguring the asteroid in the past. We interpret the concavity as an impact crater. Shaking during the impact and later regolith redistribution may have erased smaller features, explaining the general lack of decameter-scale surface structure.  相似文献   

3.
David Parry Rubincam   《Icarus》2007,192(2):460-468
Photon thrust from shape alone can produce quasi-secular changes in an asteroid's orbital elements. An asteroid in an elliptical orbit with a north–south shape asymmetry can steadily alter its elements over timescales longer than one orbital trip about the Sun. This thrust, called here orbital YORP (YORP = Yarkovsky–O'Keefe–Radzievskii–Paddack), operates even in the absence of thermal inertia, which the Yarkovsky effects require. However, unlike the Yarkovsky effects, which produce secular orbital changes over millions or billions of years, the change in an asteroid's orbital elements from orbital YORP operates only over the precession timescale of the orbit or of the asteroid's spin axis; this is generally only thousands or tens of thousands of years. Thus while the orbital YORP timescale is too short for an asteroid to secularly journey very far, it is long enough to warrant investigation with respect to 99942 Apophis, which might conceivably impact the Earth in 2036. A near-maximal orbital YORP effect is found by assuming Apophis is without thermal inertia and is shaped like a hemisphere, with its spin axis lying in the orbital plane. With these assumptions orbital YORP can change its along-track position by up to ±245 km, which is comparable to Yarkovsky effects. Though Apophis' shape, thermal properties, and spin axis orientation are currently unknown, the practical upper and lower limits are liable to be much less than the ±245 km extremes. Even so, the uncertainty in position is still likely to be much larger than the 0.5 km “keyhole” Apophis must pass through during its close approach in 2029 in order to strike the Earth in 2036.  相似文献   

4.
We have made near-IR spectral observations of the very young (5.75 Myr) S-type asteroid 832 Karin, well sampled in rotational phase over its 18.35-h period. We find no significant variations in its reflectance spectrum. Karin, the brightest member of the Karin cluster (a sub-family of the larger, older Koronis dynamical family), was shown to be exceptionally young by Nesvorný et al. [Nesvorný, D., Bottke, W.F., Dones, L., Levison, H., 2002. Nature 417, 720-722], using backward numerical integration of orbital elements of cluster members. Their precise dating of the collisional breakup gives us an opportunity, for the first time and without age-dating of physical samples, to monitor time-evolution of processes, like space weathering, that operate on timescales of ∼1-10 Myr. Sasaki et al. [Sasaki, T., Sasaki, S., Watanabe, J., Sekiguchi, T., Yoshida, F., Kawakita, H., Fuse, T., Takato, N., Dermawan, B., Ito, T., 2004. Astrophys. J. 615, L161-L164; Sasaki, T., Sasaki, S., Watanabe, J., Sekiguchi, T., Yoshida, F., Ito., T., Kawakita, H., Fuse, T., Takato, N., Dermawan, B., 2005. Lunar Planet. Sci. XXXVI. Abstract #1590] had made similar measurements of Karin, although more sparsely sampled than ours, and claimed dramatically different colors as a function of rotational phase. Sasaki et al. interpreted their data to be showing the reddish, space-weathered exterior surface of the precursor asteroid, as well as an interior face, which had not had time to become space-weathered. On five nights over 2006 January 7-14 UT, we observed Karin with the SpeX (0.8-2.5 μm) spectrometer of the IRTF. We analyze data in 30° intervals of rotational longitude, some of which we sampled on two different nights. The spectra are consistent with little or no spectral variation as the asteroid rotates; certainly there are no changes as large as previously reported. The previous observations were probably spurious. Our average spectrum resembles the “blue” spectrum of Sasaki et al., which they interpreted to be the “fresh” surface. Karin is not quite as red as typical S-types, yet has rather shallow absorption bands. We surmise that the space-weathering process affecting Karin has had time to reduce spectral contrast, but has not operated long enough to redden its spectrum—an intermediate case of space weathering, which has gone to completion for most main-belt asteroids. This work sets an important constraint on the timescale for the ubiquitous space-weathering process affecting S-types, namely that its effects are evident, but not yet complete, at ∼6 Myr.  相似文献   

5.
During its close Earth approach in 2001, the E-class near-Earth Asteroid (33342) 1998 WT24 was the focus of extensive radar, optical, and thermal infrared observations. We present a physical model of this object, estimated from Arecibo and Goldstone radar images that cover multiple rotations and span over 100° of sky motion. The asteroid has an equivalent diameter of 415±40 m and a diffuse radar scattering law that is identical in both senses of circular polarization, implying a surface that is extremely rough on centimeter-to-decimeter scales. The shape is dominated by three large basins, which may be impact craters or a relic of past dynamical disruption of the object. Analysis of YORP perturbations on WT24's spin state predicts that the asteroid's spin rate is decreasing at a rate of . Simply extrapolating this rate suggests that the asteroid will despin over the next 150 kyr and was spinning at its surface disruption rate 75 kyr ago, but the rotational evolution of WT24 depends on the surface's thermal properties and probably is more complex than a simple spin-down.  相似文献   

6.
Knowing the shapes and spin states of near-Earth asteroids is essential to understanding their dynamical evolution because of the Yarkovsky and YORP effects. Delay-Doppler radar imaging is the most powerful ground-based technique for imaging near-Earth asteroids and can obtain spatial resolution of <10 m, but frequently produces ambiguous pole direction solutions. A radar echo from an asteroid consists of a pattern of speckles caused by the interference of reflections from different parts of the surface. It is possible to determine an asteroid’s pole direction by tracking the motion of the radar speckle pattern. Speckle tracking can potentially measure the poles of at least several radar targets each year, rapidly increasing the available sample of NEA pole directions. We observed the near-Earth asteroid 2008 EV5 with the Arecibo planetary radar and the Very Long Baseline Array in December 2008. By tracking the speckles moving from the Pie Town to Los Alamos VLBA stations, we have shown that EV5 rotates retrograde. This is the first speckle detection of a near-Earth asteroid.  相似文献   

7.
Our understanding of planet formation depends in fundamental ways on what we learn by analyzing the composition, mineralogy, and petrology of meteorites. Yet, it is difficult to deduce the compositional and thermal gradients that existed in the solar nebula from the meteoritic record because, in most cases, we do not know where meteorites with different chemical and isotopic signatures originated. Here we developed a model that tracks the orbits of meteoroid-sized objects as they evolve from the ν6 secular resonance to Earth-crossing orbits. We apply this model to determining the number of meteorites accreted on the Earth immediately after a collisional disruption of a D∼200-km-diameter inner-main-belt asteroid in the Flora family region. We show that this event could produce fossil chondrite meteorites found in an ≈470 Myr old marine limestone quarry in southern Sweden, the L-chondrite meteorites with shock ages ≈470 Myr falling on the Earth today, as well as asteroid-sized fragments in the Flora family. To explain the measured short cosmic-ray exposure ages of fossil meteorites our model requires that the meteoroid-sized fragments were launched at speeds >500 m s−1 and/or the collisional lifetimes of these objects were much shorter immediately after the breakup event than they are today.  相似文献   

8.
Processes such as the solar wind sputtering and micrometeorite impacts can modify optical properties of surfaces of airless bodies. This explains why spectra of the main belt asteroids, exposed to these ‘space weathering’ processes over eons, do not match the laboratory spectra of ordinary chondrite (OC) meteorites. In contrast, an important fraction of Near Earth Asteroids (NEAs), defined as Q-types in the asteroid taxonomy, display spectral attributes that are a good match to OCs. Here we study the possibility that the Q-type NEAs underwent recent encounters with the terrestrial planets and that the tidal gravity (or other effects) during these encounters exposed fresh OC material on the surface (thus giving it the Q-type spectral properties). We used numerical integrations to determine the statistics of encounters of NEAs to planets. The results were used to calculate the fraction and orbital distribution of Q-type asteroids expected in the model as a function of the space weathering timescale, tsw (see main text for definition), and maximum distance, r, at which planetary encounters can reset the surface. We found that tsw ∼ 106 yr (at 1 AU) and r ∼ 5Rpl, where Rpl is the planetary radius, best fit the data. Values tsw < 105 yr would require that r > 20Rpl, which is probably implausible because these very distant encounters should be irrelevant. Also, the fraction of Q-type NEAs would be probably much larger than the one observed if tsw > 107 yr. We found that tsw ∝ q2, where q is the perihelion distance, expected if the solar wind sputtering controls tsw, provides a better match to the orbital distribution of Q-type NEAs than models with fixed tsw. We also discuss how the Earth magnetosphere and radiation effects such as YORP can influence the spectral properties of NEAs.  相似文献   

9.
We observed near-Earth Asteroid (NEA) 2002 CE26 in August and September 2004 using the Arecibo S-band (2380-MHz, 12.6-cm) radar and NASA's Infrared Telescope Facility (IRTF). Shape models obtained based on inversion of our delay-Doppler images show the asteroid to be 3.5±0.4 km in diameter and spheroidal; our corresponding nominal estimates of its visual and radar albedos are 0.07 and 0.24, respectively. Our IRTF spectrum shows the asteroid to be C-class with no evidence of hydration. Thermal models from the IRTF data provide a size and visual albedo consistent with the radar-derived estimate. We estimate the spin-pole to be within a few tens of degrees of λ=317°, β=−20°. Our radar observations reveal a secondary approximately 0.3 km in diameter, giving this binary one of the largest size differentials of any known NEA. The secondary is in a near-circular orbit with period 15.6±0.1 h and a semi-major axis of 4.7±0.2 km. Estimates of the binary orbital pole and secondary rotation rate are consistent with the secondary being in a spin-locked equatorial orbit. The orbit corresponds to a primary mass of M=1.95±0.25×1013 kg, leading to a primary bulk density of , one of the lowest values yet measured for a main-belt or near-Earth asteroid.  相似文献   

10.
Isotopic and chemical compositions of meteorites, coupled with dynamical simulations, suggest that the main belt of asteroids between Mars and Jupiter contains objects formed in situ as well as a population of interlopers. These interlopers are predicted to include the building blocks of the terrestrial planets as well as objects that formed beyond Neptune ( [Bottke et al., 2006] , [Levison et al., 2009] and [Walsh et al., 2011] ). Here we report that the main belt asteroid (21) Lutetia – encountered by the Rosetta spacecraft in July 2010 – has spectral (from 0.3 to 25 μm) and physical (albedo, density) properties quantitatively similar to the class of meteorites known as enstatite chondrites. The chemical and isotopic compositions of these chondrites indicate that they were an important component of the formation of Earth and other terrestrial planets. This meteoritic association implies that Lutetia is a member of a small population of planetesimals that formed in the terrestrial planet region and that has been scattered in the main belt by emerging protoplanets (Bottke et al. 2006) and/or by the migration of Jupiter (Walsh et al. 2011) early in its history. Lutetia, along with a few other main-belt asteroids, may contains part of the long-sought precursor material (or closely related materials) from which the terrestrial planets accreted.  相似文献   

11.
The main belt is believed to have originally contained an Earth mass or more of material, enough to allow the asteroids to accrete on relatively short timescales. The present-day main belt, however, only contains ∼5×10−4 Earth masses. Numerical simulations suggest that this mass loss can be explained by the dynamical depletion of main belt material via gravitational perturbations from planetary embryos and a newly-formed Jupiter. To explore this scenario, we combined dynamical results from Petit et al. [Petit, J. Morbidelli, A., Chambers, J., 2001. The primordial excitation and clearing of the asteroid belt. Icarus 153, 338-347] with a collisional evolution code capable of tracking how the main belt undergoes comminution and dynamical depletion over 4.6 Gyr [Bottke, W.F., Durda, D., Nesvorny, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H., 2005. The fossilized size distribution of the main asteroid belt. Icarus 175, 111-140]. Our results were constrained by the main belt's size-frequency distribution, the number of asteroid families produced by disruption events from diameter D>100 km parent bodies over the last 3-4 Gyr, the presence of a single large impact crater on Vesta's intact basaltic crust, and the relatively constant lunar and terrestrial impactor flux over the last 3 Gyr. We used our model to set limits on the initial size of the main belt as well as Jupiter's formation time. We find the most likely formation time for Jupiter was 3.3±2.6 Myr after the onset of fragmentation in the main belt. These results are consistent with the estimated mean disk lifetime of 3 Myr predicted by Haisch et al. [Haisch, K.E., Lada, E.A., Lada, C.J., 2001. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153-L156]. The post-accretion main belt population, in the form of diameter D?1000 km planetesimals, was likely to have been 160±40 times the current main belt's mass. This corresponds to 0.06-0.1 Earth masses, only a small fraction of the total mass thought to have existed in the main belt zone during planet formation. The remaining mass was most likely taken up by planetary embryos formed in the same region. Our results suggest that numerous D>200 km planetesimals disrupted early in Solar System history, but only a small fraction of their fragments survived the dynamical depletion event described above. We believe this may explain the limited presence of iron-rich M-type, olivine-rich A-type, and non-Vesta V-type asteroids in the main belt today. The collisional lifetimes determined for main belt asteroids agree with the cosmic ray exposure ages of stony meteorites and are consistent with the limited collisional evolution detected among large Koronis family members. Using the same model, we investigated the near-Earth object (NEO) population. We show the shape of the NEO size distribution is a reflection of the main belt population, with main belt asteroids driven to resonances by Yarkovsky thermal forces. We used our model of the NEO population over the last 3 Gyr, which is consistent with the current population determined by telescopic and satellite data, to explore whether the majority of small craters (D<0.1-1 km) formed on Mercury, the Moon, and Mars were produced by primary impacts or by secondary impacts generated by ejecta from large craters. Our results suggest that most small craters formed on these worlds were a by-product of secondary rather than primary impacts.  相似文献   

12.
By studying orbits of asteroids potentially in 3:2 exterior mean motion resonance with Earth, Venus, and Mars, we have found plutino analogs. We identify at least 27 objects in the inner Solar System dynamically protected from encounter through this resonance. These are four objects associated with Venus, six with Earth, and seventeen with Mars. Bodies in the 3:2 exterior resonance (including those in the plutino resonance associated with Neptune) orbit the Sun twice for every three orbits of the associated planet, in such a way that with sufficiently low libration amplitude close approaches to the planet are impossible. As many as 15% of Kuiper Belt objects share the 3:2 resonance, but are poorly observed. One of several resonance sweeping mechanisms during planetary migration is likely needed to explain the origin and properties of 3:2 resonant Kuiper Belt objects. Such a mechanism likely did not operate in the inner Solar System. We suggest that scattering by the next planet out allows entry to, and exit from, 3:2 resonance for objects associated with Venus or Earth. 3:2 resonators of Mars, on the other hand, do not cross the paths of other planets, and have a long lifetime. There may exist some objects trapped in the 3:2 Mars resonance which are primordial, with our tests on the most promising objects known to date indicating lifetimes of at least tens of millions of years. Identifying 3:2 resonant systems in the inner Solar System permits this resonance to be studied on shorter timescales and with better determined orbits than has been possible to date, and introduces new mechanisms for entry into the resonant configuration.  相似文献   

13.
P. Pravec  D. Vokrouhlický 《Icarus》2009,204(2):580-588
We have studied statistical significance of asteroid pairs residing on similar heliocentric orbits with distances (approximately the current relative encounter velocity between orbits) up to in the five-dimensional space of osculating elements. We found candidate pairs from the Hungaria zone through the entire main belt as well as outside the main belt, one among Hildas and one in the Cybele zone. We first determined probability that the candidate pairs are just coincidental couples from the background asteroid population. Those with estimated probability <0.3 were further investigated. In particular we computed synthetic proper elements for the relevant asteroids and used them to determine the three-dimensional distance of the members in candidate pairs. We consider small separation in the proper-element space as a signature of a real asteroid pair; conversely, cases with large separation in the proper-element space were rejected as spurious. Finally, we provide a list of candidate pairs that appear real, genetically related, to facilitate targeted studies, such as photometric and spectroscopic observations. As a by-product, we discovered six new compact clusters of three or more asteroids. Initial backward orbit integrations suggest that they are young families with ages <2 Myr.  相似文献   

14.
We have used an improved model of the orbit and absolute magnitude distribution of Near Earth Objects (NEOs) to simulate the performance of asteroid surveys. Our results support general conclusions of previous studies using preliminary Near Earth Asteroid (NEA) orbit and magnitude distributions and suggest that meeting the Spaceguard Goal of 90% completion for Near Earth Objects (NEOs) greater than 1 km diameter by 2008 is impossible given contemporary surveying capabilities.The NEO model was derived from NEO detections by the Spacewatch Project. For this paper we developed a simulator for the Catalina Sky Survey (CSS) for which we had a complete pointing history and NEO detection efficiency. The good match between the output of the simulator and the actual CSS performance gives confidence that both the NEO model and simulator are correct. Then, in order to determine if existing surveys can meet the Spaceguard Goal, we developed a simulator to mimic the LINEAR survey, for which detailed performance characteristics were unavailable. This simulator serendipitously provided an estimate for the currently undiscovered population of NEOs upon which we base all our estimates of time to 90% completion. We also developed a set of idealized NEO surveys in order to constrain the best possible survey performance in contrast to more realistic systems.A 100% efficient, all-sky, every night survey, subject only to the constraints of detection above a specified air mass and when the Sun is 18° below the horizon provides a benchmark from which to examine the effect of imposing more restrictions and the efficacy of some simple survey strategies. Such a survey must have a limiting V-magnitude of 20.1 ± 0.2 to meet the Spaceguard Goal.More realistic surveys, limited by latitude, the galaxy, minimum rates of NEO motion, etc., require fainter limiting magnitudes to reach the same completion. Our most realistic simulations, which have been normalized to the performance of the LINEAR detector system’s operation in the period 1999-2000, indicate that it would take them another 33 ± 5 years to reach 90% completeness for the larger asteroids (?1 km diameter). They would need to immediately increase the limiting magnitude to about 24 in order to meet the Spaceguard Goal.The simulations suggest that there may be little need for distributing survey telescopes in longitude and latitude as long as there is sufficient sky coverage from a telescope or network of telescopes which may be geographically close. An idealized space-based survey, especially from a satellite orbit much interior to Earth, would offer an advantage over their terrestrial counterparts. We do not consider a cost-benefit analysis for any of the simulations but suspect that a local-area network of telescopes capable of covering much of the sky in a month to V ∼ 21.5 may be administratively, financially, and scientifically the best compromise for reaching 90% completion of NEOs larger than 1 km diameter.  相似文献   

15.
Thomas S. Statler 《Icarus》2009,202(2):502-513
Radiation recoil (YORP) torques are shown to be extremely sensitive to small-scale surface topography, using numerical simulations. Starting from a set of “base objects” representative of the near-Earth object population, random realizations of three types of small-scale topography are added: Gaussian surface fluctuations, craters, and boulders. For each, the expected relative errors in the spin and obliquity components of the YORP torque caused by the observationally unresolved small-scale topography are computed. Gaussian power, at angular scales below an observational limit, produces expected errors of order 100% if observations constrain the surface to a spherical harmonic order l?10. For errors under 10%, the surface must be constrained to at least l=20. A single crater with diameter roughly half the object's mean radius, placed at random locations, results in expected errors of several tens of percent. The errors scale with crater diameter D as D2 for D>0.3 and as D3 for D<0.3 mean radii. Objects that are identical except for the location of a single large crater can differ by factors of several in YORP torque, while being photometrically indistinguishable at the level of hundredths of a magnitude. Boulders placed randomly on identical base objects create torque errors roughly 3 times larger than do craters of the same diameter, with errors scaling as the square of the boulder diameter. A single boulder comparable to Yoshinodai on 25143 Itokawa, moved by as little as twice its own diameter, can alter the magnitude of the torque by factors of several, and change the sign of its spin component at all obliquities. Most of the total torque error produced by multiple unresolved craters is contributed by the handful of largest craters; but both large and small boulders contribute comparably to the total boulder-induced error. A YORP torque prediction derived from groundbased data can be expected to be in error by of order 100% due to unresolved topography. Small surface changes caused by slow spin-up or spin-down may have significant stochastic effects on the spin evolution of small bodies. For rotation periods between roughly 2 and 10 h, these unpredictable changes may reverse the sign of the YORP torque. Objects in this spin regime may random-walk up and down in spin rate before the rubble-pile limit is exceeded and fissioning or loss of surface objects occurs. Similar behavior may be expected at rotation rates approaching the limiting values for tensile-strength dominated objects.  相似文献   

16.
In this paper we present the observational campaign carried out at ESO NTT and VLT in April and May 2006 to investigate the nature and the structure of the near-Earth object (144898) 2004 VD17. In spite of a great quantity of dynamical information, according to which it will have a close approach with the Earth in the next century, the physical properties of this asteroid are largely unknown. We performed visible and near-infrared photometry and spectroscopy, as well as polarimetric observations. Polarimetric and spectroscopic data allowed us to classify 2004 VD17 as an E-type asteroid. A good agreement was also found with the spectrum of the aubrite meteorite Mayo Belwa. On the basis of the polarimetric albedo (pv=0.45) and of photometric data, we estimated a diameter of about 320 m and a rotational period of about 2 h. The analysis of the results obtained by our complete survey have shown that (144898) 2004 VD17 is a peculiar NEO, since it is close to the breakup limits for fast rotator asteroids, as defined by Pravec and Harris [Pravec, P., Harris, A.W., 2000. Icarus 148, 12-20]. These results suggest that a more robust structure must be expected, as a fractured monolith or a rubble pile in a “strength regime” [Holsapple, K.A., 2002. Speed limits of rubble pile asteroids: Even fast rotators can be rubble piles. In: Workshop on Scientific Requirements for Mitigation of Hazardous Comets and Asteroids, Washington, September, 2002].  相似文献   

17.
M. Lazzarin  S. Marchi  M. Di Martino 《Icarus》2004,169(2):373-384
Near-Earth objects (NEOs) represent one of the most intriguing populations of Solar System bodies. These objects appear heterogeneous in all aspects of their physical properties, like shapes, sizes, spin rates, compositions etc. Moreover, as these objects represent also a real threat to the Earth, a good knowledge of their properties and composition is the necessary first step to evaluate mitigation techniques and to understand their origin and evolution. In the last few years we have started a long-term spectroscopic investigation in the visible and near-infrared (NIR) region of near-Earth objects. The observations have been performed with the 3.5 m NTT of the European Southern Observatory of La Silla (Chile). The data presented here are a set of 24 spectra, 14 of which are both visible and NIR. We discuss the taxonomic classification of the observed NEOs, resulting in 13 S-type objects, 1 Q-type, 2 K-types, 3 C-types, 5 Xe-types (two of these, (3103) Eger and (4660) Nereus, are already known as E-types). Moreover, we discuss their links with meteorites and the possible influences of space weathering.  相似文献   

18.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

19.
The Japanese spacecraft Hayabusa is planed to reach the Asteroid Itokawa in September 2005, and to bring back some samples of its surface to Earth in 2007. We have studied the future possible evolution of this asteroid by integrating numerically over 100 Myr a set of 39 initially indistinguishable orbits (clones), obtained either by small variations of the nominal initial conditions, or by using different computers (introducing different round-off errors). The results indicate that an Earth impact of this 500-m-size asteroid is likely within a million years, which is only a factor of four larger than the average impact frequency of asteroids of this size. The mission Hayabusa may thus sample a good candidate for being among the next 500-m-size Earth impactors.  相似文献   

20.
D. Vokrouhlický  W.F. Bottke 《Icarus》2005,175(2):419-434
In this paper, we show that Asteroid (433) Eros is currently residing in a spin-orbit resonance, with its spin axis undergoing a small-amplitude libration about the Cassini state 2 of the proper mode in the nonsingular orbital element sinI/2exp(?Ω), where I the orbital inclination and Ω the longitude of the node. The period of this libration is ?53.4 kyr. By excluding these libration wiggles, we find that Eros' pole precesses with the proper orbital plane in inertial space with a period of ?61.4 kyr. Eros' resonant state forces its obliquity to oscillate with a period of ?53.4 kyr between ?76° and ?89.5°. The observed value of ?89° places it near the latter extreme of this cycle. We have used these results to probe Eros' past orbit and spin evolution. Our computations suggest that Eros is unlikely to have achieved its current spin state by solar and planetary gravitational perturbations alone. We hypothesize that some dissipative process such as thermal torques (e.g., the so-called YORP effect) may be needed in our model to obtain a more satisfactory match with data. A detailed study of this problem is left for future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号