首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The Deep Impact mission succeeded in excavating inner materials from the nucleus of Comet 9P/Tempel 1 on 2005 July 04 (at 05:52 UT). Comet 9P/Tempel 1 is one of Jupiter family short period comets, which might originate in the Kuiper belt region in the solar nebula. In order to characterize the comet and to support the mission from the ground-based observatory, optical high-dispersion spectroscopic observations were carried out with the echelle spectrograph (UVES) mounted on the 8-m telescope VLT (UT2) before and after the Deep Impact event. Ortho-to-para abundance ratios (OPRs) of cometary ammonia were determined from the NH2 emission spectra. The OPRs of ammonia on July 3.996 UT and 4.997 UT were derived to be 1.28±0.07 (nuclear spin temperature: Tspin=24±2 K) and 1.26±0.08 (Tspin=25±2 K), respectively. There is no significant change between before and after the impact. Actually, most materials ejected from the impact site could have moved away from the nucleus on July 4.997 UT, about 17 h after the impact. However, a small fraction of the ejected materials might remain in the slit of UVES instrument at that time because an excess of about 20% in the NH2 emission flux is observed above the normal activity level was found [Manfroid, J., Hutsemékers, D., Jehin, E., Cochran, A.L., Arpigny, C., Jackson, W.M., Meech, K.J., Schulz, R., Zucconi, J.-M., 2007. Icarus. This issue]. If the excess of NH2 on July 04.997 UT was produced from icy materials excavated by the Deep Impact, then an upper-limit of the ammonia OPR would be 1.75 (Tspin>17 K) for those materials. On the other hand, the OPR of ammonia produced from the quiescent sources was similar to that of the Oort cloud comets observed so far. This fact may imply that physical conditions where cometary ices formed were similar between Comet 9P/Tempel 1 and the Oort cloud comets.  相似文献   

2.
C.M. Lisse  K.E. Kraemer  A. Li 《Icarus》2007,187(1):69-86
Spitzer Infrared Spectrograph observations of the Deep Impact experiment in July 2005 have created a new paradigm for understanding the infrared spectroscopy of primitive solar nebular (PSN) material—the ejecta spectrum is the most detailed ever observed in cometary material. Here we take the composition model for the material excavated from Comet 9P/Tempel 1's interior and successfully apply it to Infrared Space Observatory spectra of material emitted from Comet C/1995 O1 (Hale-Bopp) and the circumstellar material found around the young stellar object HD 100546. Comparison of our results with analyses of the cometary material returned by the Stardust spacecraft from Comet 81P/Wild 2, the in situ Halley flyby measurements, and the Deep Impact data return provides a fundamental cross-check for the spectral decomposition models presented here. We find similar emission signatures due to silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides in the two ISO-observed systems but there are significant differences as well. Compared to Tempel 1, no Fe-rich olivines and few crystalline pyroxenes are found in Hale-Bopp and HD 100546. The YSO also lacks amorphous olivine, while being super-rich in amorphous pyroxene. All three systems show substantial emission due to polycyclic aromatic hydrocarbons. The silicate and PAH material in Hale-Bopp is clearly less processed than in Tempel 1, indicating an earlier age of formation for Hale-Bopp. The observed material around HD 100546 is located ∼13 AU from the central source, and demonstrates an unusual composition due to either a very different, non-solar starting mix of silicates or due to disk material processing during formation of the interior disk cavity and planet(s) in the system.  相似文献   

3.
The Deep Impact (DI) spacecraft encountered Comet 9P/Tempel 1 on July 4th, 2005 and observed it with several instruments. In particular, we obtained infrared spectra of the nucleus with the HRI-IR spectrometer in the wavelength range of 1.0-4.9 μm. The data were taken before impact, with a maximum resolution of ∼120 m per pixel at the time of observation. From these spectra, we derived the first directly observed temperature map of a comet nucleus. The surface temperature varied from 272±7 to 336±7 K on the sunlit hemisphere, matching the surface topography and incidence angle. The derived thermal inertia is low, most probably <50 W K−1 m−2 s1/2. Combined with other arguments, it is consistent with the idea that most of rapidly varying thermal physical processes, in particular the sublimation of volatiles around perihelion, should occur close to the surface. Thermal inertia is sufficient to explain the temperature map of the nucleus of Comet Tempel 1 to first order, but other physical processes like roughness and self-radiation are required to explain the details of the temperature map. Finally, we evaluated that the Standard Thermal Model is a good approximation to derive the effective radius of a cometary nucleus with an uncertainty lower than ∼10% if combined with a thermal infrared light curve.  相似文献   

4.
We present results from the United Kingdom Infrared Telescope observations of the impact of Deep Impact with Comet 9P/Tempel 1, on July 4, 2005 UT. These observations were carried out in conjunction with the worldwide observing campaign co-ordinated by K.J. Meech [Meech, K.J., and 208 colleagues, 2005. Science 310, 265-269]. The UKIRT team was the first to observe and announce the successful impact. At 05:50:52 (±2.5 s) UT the visible camera that is used to guide the telescope on the comet showed the start of a rapid rise in intensity, such that the visible brightness of Tempel 1 approximately doubled in 70 s. After that time there was a steady increase in the visible flux from the comet until it reached a maximum around 35 min post-impact, at which point it was more than ten times its original intensity. From an average of the time to maximum brightness and the time to noticeable intensity decline, we deduce that the material ejected by the impact expanded with a range of velocities between ∼125 and ∼390 m/s. We also observed water emission lines in the spectral region from 2.8945 to 2.8985 μm. We noted several water lines, which are known to be pumped by sunlight. But there was a lower intensity spectral component, which we propose may result from solar heating of icy grains freshly exposed by the impact.  相似文献   

5.
The Plasma Experiment for Planetary Exploration (PEPE) made detailed observations of the plasma environment of Comet 19P/Borrelly during the Deep Space 1 (DS1) flyby on September 22, 2001. Several distinct regions and boundaries have been identified on both inbound and outbound trajectories, including an upstream region of decelerated solar wind plasma and cometary ion pickup, the cometary bow shock, a sheath of heated and mixed solar wind and cometary ions, and a collisional inner coma dominated by cometary ions. All of these features were significantly offset to the north of the nucleus-Sun line, suggesting that the coma itself produces this offset, possibly because of well-collimated large dayside jets directed 8°-10° northward from the nucleus as observed by the DS1 MICAS camera. The maximum observed ion density was 1640 ion/cm3 at a distance of 2650 km from the nucleus while the flow speed dropped from 360 km/s in the solar wind to 8 km/s at closest approach. Preliminary analysis of PEPE mass spectra suggest that the ratio of CO+/H2O+ is lower than that observed with Giotto at 1P/Halley.  相似文献   

6.
We report time-resolved imaging UV photometry of Comet 9P/Tempel 1 during the interval 2005 June 29-2005 July 21, including intensive coverage of the collision with the Deep Impact probe and its immediate aftermath. The nuclear flux of the comet begins to rise within minutes of the collision, and peaks about 3 h after impact. There is no evidence for a prompt flash at the time of impact. The comet exhibits a significant re-brightening about 40 h after the initial outburst, consistent with the rotation period of the comet, with evidence for further periodic re-brightenings on subsequent rotations. Modelling of the brightness profile of the coma as a function of time suggests two distinct velocity systems in the ejecta, at de-projected expansion speeds of 190 and 550 m/s, which we suggest are due to dust and gas, respectively. There is a distinct asymmetry in the slower-moving (dust) component as a function of position angle on the sky. This is confirmed by direct imaging analysis, which reveals an expanding plume of material concentrated in the impact hemisphere. The projected expansion velocity of the leading edge of this plume, measured directly from the imaging data, is 190 m/s, consistent with the velocity of the dust component determined from the photometric analysis. From our data we determine that a total of (1.4±0.2)×1032 water molecules were ejected in the impact, together with a total scattering area of dust at 300 nm of 190±20 km2.  相似文献   

7.
We present observational data for Comet 9P/Tempel 1 taken from 1997 through 2010 in an international collaboration in support of the Deep Impact and Stardust-NExT missions. The data were obtained to characterize the nucleus prior to the Deep Impact 2005 encounter, and to enable us to understand the rotation state in order to make a time of arrival adjustment in February 2010 that would allow us to image at least 25% of the nucleus seen by the Deep Impact spacecraft to better than 80 m/pixel, and to image the crater made during the encounter, if possible. In total, ∼500 whole or partial nights were allocated to this project at 14 observatories worldwide, utilizing 25 telescopes. Seventy percent of these nights yielded useful data. The data were used to determine the linear phase coefficient for the comet in the R-band to be 0.045 ± 0.001 mag deg−1 from 1° to 16°. Cometary activity was observed to begin inbound near r ∼ 4.0 AU and the activity ended near r ∼ 4.6 AU as seen from the heliocentric secular light curves, water-sublimation models and from dust dynamical modeling. The light curve exhibits a significant pre- and post-perihelion brightness and activity asymmetry. There was a secular decrease in activity between the 2000 and 2005 perihelion passages of ∼20%. The post-perihelion light curve cannot be easily explained by a simple decrease in solar insolation or observing geometry. CN emission was detected in the comet at 2.43 AU pre-perihelion, and by r = 2.24 AU emission from C2 and C3 were evident. In December 2004 the production rate of CN increased from 1.8 × 1023 mol s−1 to QCN = 2.75 × 1023 mol s−1 in early January 2005 and 9.3 × 1024 mol s−1 on June 6, 2005 at r = 1.53 AU.  相似文献   

8.
Prior to the impact event, Deep Impact monitored the ambient inner coma of Comet 9P/Tempel 1 at high spatial resolution in July 2005. Gaseous H2O and CO2 are unambiguously detected in the infrared spectra collected with the HRI-IR spectrometer aboard Deep Impact. Detailed distribution maps of these volatiles in the inner coma, within 60 km from the nucleus, are produced from the integrated emission bands of H2O (2.66 μm) and CO2 (4.26 μm). Uncorrelated asymmetries are determined in the spatial distribution of both species indicating chemical heterogeneities within the nucleus. Although present at some abundance surrounding the entire nucleus, H2O has a pronounced enhancement in abundance in the sunward direction rotational phases, evidence that the dominant process of subliming water ice from the nucleus is solar heating. In contrast, CO2 is enhanced in the regions near the negative rotational pole of the nucleus, suggesting localized outgassing there. Both species show an increase in radiance above the limb of the nucleus toward Ecliptic North. The distribution maps also suggest that the process of dust removal from the nucleus is strongly connected to the outgassing of volatiles. Detailed study of these coma asymmetries gives insight to the relative abundances of the dominant molecular components of the inner coma, source regions of the native volatiles, anisotropic outgassing of the nucleus, and the formation and evolution of the nucleus. A quiescent water production rate for Tempel 1 on July 4, 2005, is estimated to be .  相似文献   

9.
We report high-spectral resolution observations of Comet 9P/Tempel 1 before, during and after the impact on 4 July 2005 UT of the Deep Impact spacecraft with the comet. These observations were obtained with the HIRES instrument on Keck 1. We observed brightening of both the dust and gas, but at different rates. We report the behavior of OH, NH, CN, C3, CH, NH2 and C2 gas. From our observations, we determined a CN outflow velocity of at least 0.51 km s−1. The dust color did not change substantially. To date, we see no new species in our spectra, nor do we see any evidence of prompt emission. From our observations, the interior material released by the impact looks the same as the material released from the surface by ambient cometary activity. However, further processing of the data may uncover subtle differences in the material that is released as well as the time evolution of this material.  相似文献   

10.
The NASA's Deep Impact mission was the first impact experiment to a cometary nucleus. The target of the mission was Comet 9P/Tempel, one of the Jupiter family comets. The impact was performed on July 4th, 2005. Imaging polarimetric observations were carried out by Polarimetric Imager for COmets (PICO) mounted on the Lulin One-meter Telescope (LOT) at Lulin Observatory, Taiwan. Intensity and linear polarization degree maps were obtained on July 3-5, 2005. Impact ejecta plume was clearly recognized in the enhanced intensity map. Furthermore, arc-shaped region of high polarization was recognized in the polarization map. Dust grains in this region had larger expansion velocity than the grains which provided the brightest area in the intensity map. comparing our results with the MIR spectroscopy obtained by Subaru Telescope we conclude that very small carbonaceous grains might be responsible for the region of high polarization.  相似文献   

11.
I. Busko  D. Lindler  R.L. White 《Icarus》2007,187(1):56-68
In this work we attempt to obtain direct images of the crater associated with the impact of the Deep Impact impactor spacecraft on the nucleus of Comet 9P/Tempel 1 on July 4, 2005. The impact generated a large and bright ejecta cloud that hampers the clear view of the post-impact nucleus surface. We used image restoration techniques to enhance spatial resolution and contrast on a subset of selected post-impact high resolution images. No unambiguous evidence for the crater can be found; however, indirect evidence is consistent with a crater size in the 150-200 m range.  相似文献   

12.
On 4 July 2005 at 5:52 UT the Deep Impact mission successfully completed its goal to hit the nucleus of 9P/Tempel 1 with an impactor, forming a crater on the nucleus and ejecting material into the coma of the comet. NASA's Submillimeter Wave Astronomy Satellite (SWAS) observed the 110-101 ortho-water ground-state rotational transition in Comet 9P/Tempel 1 before, during, and after the impact. No excess emission from the impact was detected by SWAS and we derive an upper limit of 1.8×107 kg on the water ice evaporated by the impact. However, the water production rate of the comet showed large natural variations of more than a factor of three during the weeks before and after the impact. Episodes of increased activity with alternated with periods with low outgassing (). We estimate that 9P/Tempel 1 vaporized a total of N∼4.5×1034 water molecules (∼1.3×109 kg) during June-September 2005. Our observations indicate that only a small fraction of the nucleus of Tempel 1 appears to be covered with active areas. Water vapor is expected to emanate predominantly from topographic features periodically facing the Sun as the comet rotates. We calculate that appreciable asymmetries of these features could lead to a spin-down or spin-up of the nucleus at observable rates.  相似文献   

13.
Data on the UT 2005 June 14 mini-outburst of Comet 9P/Tempel 1 taken from different viewpoints have been examined for morphological differences and parallax. The data were taken with the Hubble Space Telescope (HST), from the Deep Impact (DI) spacecraft, and from the Calar Alto Observatory, Spain. The mini-outburst source region was found to be located near 218 ± 6E, 6 ± 5N on the Deep Impact nucleus shape model. The mini-outburst occurred at ∼12 pm local solar time. The distribution of light in the mini-outburst is similar to that expected for an ejecta curtain. The method and software used to determine the surface location was checked using position angles of the impact ejecta plume as seen from DI and HST. The general region of impact was recovered and a downrange tilt of the ejecta curtain axis of 10.2 deg from the surface normal was found. We computed tracks of possible source regions for nine other mini-outbursts seen from DI. Five of these tracks converge on the 2005 June 14 event location. Three of the tracks converge at a second location near (60E, 20S), well separated from the first. Multiple mini-outbursts arise at each location either from a single source or from a few sources in close proximity. The mini-outbursts occur both at night and during the day indicating at most weak, if any, control by direct sunlight. The times of outburst are non-random with a preference for early afternoon, dusk and midnight. None of the mini-outbursts occurred near dawn. They occur at low latitudes (between ±40 deg) near the points where the principal axis of minimum moment of inertia cuts the surface. These regions are furthest from the center of figure and have the lowest effective surface gravity. We use these results to develop a conceptual model of the mini-outburst process and make comparisons with the theoretical calculations. We find that the tensile strength of the sub-surface material must be very low (e.g., ) and, on the basis of features imaged on the western facet of the nucleus, suggest that inflation of the sub-surface may be occurring. Our model makes specific predictions about the kind of surface morphology that should result from mini-outburst activity. We show that one of the isolated rimless depressions and the close-packed depressions found in the Deep Impact images have the properties needed and identify them as possible sites of past and current mini-outburst activity.  相似文献   

14.
M. Weiler  H. Rauer  J. Knollenberg 《Icarus》2007,190(2):423-431
The target of the Deep Impact space mission (NASA), Comet 9P/Tempel 1, was observed from two nights before impact to eight nights after impact using the FORS spectrographs at the ESO VLT UT1 and UT2 telescopes. Low resolution optical long-slit spectra were obtained to study the evolution of the gas coma around the Deep Impact event. Following first results of this observing campaign on the CN and dust activity [Rauer, H., Weiler, M., Sterken, C., Jehin, E., Knollenberg, J., Hainaut, O., 2006. Astron. Astrophys. 459, 257-263], this work presents a study of the complete dataset on CN, C2, C3, and NH2 activity of Comet 9P/Tempel 1. An extended impact gas cloud was observed moving radially outwards. No compositional differences between this impact cloud and the undisturbed coma were found as far as the observed radicals are concerned. The gas production rates before and well after impact indicate no change in the cometary activity on an intermediate time scale. Over the observing period, the activity of Comet 9P/Tempel 1 was found to be related to the rotation of the cometary nucleus. The rotational lightcurve for different gaseous species provides indications for compositional differences among different parts of the nucleus surface.  相似文献   

15.
Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s−1. Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H2O with Odin from June to August 2005. The peak of outgassing was found to be around between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH3OH and H2S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73±0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the “natural” outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH3OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H2O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈5000±2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas.  相似文献   

16.
We present spectroscopic and photometric observations, spanning the optical UV to the far red, before, during, and after the NASA Deep Impact event of July 4, 2005. The inner 2000 km of the pre- and post-impact coma was about 0.3 magnitude redder in B-R than in the outer coma. The pre-impact spectrum was a faint reflected solar spectrum dominated by molecular emissions extending >40,000 km from the nucleus. The post-impact light curve in R and I showed a rapid rise consistent with an expanding optically thick cloud during the first 18 min after impact. During the next 8 min the cloud became optically thin. Sixty minutes after impact the impact R-band flux reached a plateau at , the comet brightening by a factor of ∼4.3 above its pre-impact value observed in a 15″ aperture. The mean expansion velocity of the grains during the first 49 min was . The spectrum became dominated by scattered sunlight during the first hour after impact. The volume scattering function (VSF) observed 32 min after impact shows strong reddening. At 49 min, however, the VSF shows an additional twofold increase in the blue but only a 20% increase at 5500 Å. Post-impact spectra and R-I photometry showed rapid reddening. The particle size distribution, dominated by 1-2.5 μm particles shortly after impact, changed dramatically during the first hour due to sublimation of water-ice particles of this size. On the night following impact the comet was still substantially brighter than before impact, but R-I had returned to its pre-impact value. B-R remained significantly redder. The ejecta 25 h after impact was fan-shaped subtending ∼180° roughly symmetrical about position angle 225°. The mean expansion velocity 90° from the direction to the Sun was .  相似文献   

17.
Our work was inspired by the recent brightening of Comet 17P/Holmes. The recently observed increase in brightness of this comet was correlated with emission of dust, probably larger in mass than the dust mantle of the nucleus. We analyzed the hypothesis that the comet can eject a large mass of dust due to non-uniform crystallization of amorphous water ice. For this purpose, we simulated the evolution of a model nucleus on the orbit of Comet 17P/Holmes. The nucleus is composed of water ice and dust and has the shape of an elongated ellipsoid. The simulations include crystallization of amorphous ice in the nucleus, changes in the dust mantle thickness, and changes in the nucleus orientation in space. Our computations indicate that: (i) ejection of the dust cover triggers crystallization of ice independently on the material properties of the nucleus; (ii) moderate changes in the nucleus orientation (∼50°) may result in an acceleration of the crystallization of ice in the northern hemisphere, while a rather large change in the orientation (∼120°) is needed to cause a significant jump of the crystallization front in the southern hemisphere, where the emission of dust during the recent brightening was strongest. We investigated the possible reason for an explosion and we have found that the crystallization of the water ice itself is probably not sufficient.  相似文献   

18.
D.M. Harrington  K. Meech  J.R. Kuhn 《Icarus》2007,187(1):177-184
High resolution spectropolarimetry of the Deep Impact target, Comet 9P/Tempel 1, was performed during the impact event on July 4th, 2005 with the HiVIS spectropolarimeter and the AEOS 3.67-m telescope on Haleakala, Maui. We observed atypical polarization spectra that changed significantly in the few hours after the impact. The polarization of scattered light as a function of wavelength is very sensitive to the size and composition (complex refractive index) of the scattering particles as well as the scattering geometry. As opposed to most observations of cometary dust, which show an increase in the linear polarization with the wavelength (at least in the visible domain and for phase angles greater than about 30, a red polarization spectrum) observations of 9P/Tempel 1 at a phase angle of 41° beginning 8 min after impact and centered at 6:30 UT showed a polarization of 4% at 650 nm falling to 3% at 950 nm. The next observation, centered an hour later showed a polarization of 7% at 650 nm falling to 2% at 950 nm. This corresponds to a spectropolarimetric gradient, or slope, of −0.9% per 1000 Å 40 min after impact, decreasing to a slope of −2.3% per 1000 Å an hour and a half after impact. This is an atypical blue polarization slope, which became more blue 1 h after impact. The polarization values of 4 and 7% at 650 nm are typical for comets at this scattering angle, whereas the low polarization of 2 and 3% at 950 nm is not. We compare observations of Comet 9P/Tempel 1 to that of a typical comet, C/2004 Machholz, at a phase angle of 30° which showed a typical red slope, rising from 2% at 650 nm to 3% at 950 nm in two different observations (+1.0 and +0.9% per 1000 Å).  相似文献   

19.
We present high-speed CCD photometry of Comet 9P/Tempel 1 during the Deep Impact event on 2005 July 4 UT. Approximately 2 h and 50 min of R-band data were acquired at Mount Laguna Observatory with a temporal resolution of 5.5 s. The flux increased by 9% in the first minute after impact. This was followed by a more gradual two-part linear rise, with a change in slope at 9.2 min post-impact, at which time the rate of brightening increased from ∼ to ∼. An analysis of the light curve obtained with the guide camera on the United Kingdom Infrared Telescope and yields very similar results. These findings are mildly in disagreement with the 3-part linear rise found by Fernández et al. (2007) in that we do not find any evidence for a change at 4 min post-impact. We interpret the linear rise phase as due to solar illumination of the edge of an expanding optically thick dust ejecta plume. After approximately 20 min, the light curves begin to flatten out, perhaps coincident with the start of the transition to becoming optically thin. In the large apertures (>10) the light curve continues to gradually rise until the end of the observations. In smaller apertures, the light curves reach a peak at approximately 50 min, then decrease back towards the pre-impact flux level. The drop in flux in the smaller apertures may be caused by the ejecta expanding beyond the edge of the photometric aperture, and if so, we can use this timescale to infer an expansion velocity of ∼, consistent with previous published estimates.  相似文献   

20.
Ignacio Ferrín 《Icarus》2006,185(2):523-543
We present the secular light curve (SLC) of 133P/Elst-Pizarro, and show ample and sufficient evidence to conclude that it is evolving into a dormant phase. The SLC provides a great deal of information to characterize the object, the most important being that it exhibits outburst-like activity without a corresponding detectable coma. 133P will return to perihelion in July of 2007 when some of our findings may be corroborated. The most significant findings of this investigation are: (1) We have compiled from 127 literature references, extensive databases of visual colors (37 comets), rotational periods and peak-to-valley amplitudes (64 comets). 2-Dimensional plots are created from these databases, which show that comets do not lie on a linear trend but in well defined areas of these phase spaces. When 133P is plotted in the above diagrams, its location is entirely compatible with those of comets. (2) A positive correlation is found between cometary rotational periods and diameters. One possible interpretation suggest the existence of rotational evolution predicted by several theoretical models. (3) A plot of the historical evolution of cometary nuclei density estimates shows no trend with time, suggesting that perhaps a consensus is being reached. We also find a mean bulk density for comets of 〈ρ〉=0.52±0.06 g/cm3. This value includes the recently determined spacecraft density of Comet 9P/Tempel 1, derived by the Deep Impact team. (4) We have derived values for over 18 physical parameters, listed in the SLC plots, Figs. 6-9. (5) The secular light curve of 133P/Elst-Pizarro exhibits a single outburst starting at +42±4 d (after perihelion), peaking at LAG=+155±10 d, duration 191±11 d, and amplitude 2.3±0.2 mag. These properties are compatible with those of other low activity comets. (6) To explain the large time delay in maximum brightness, LAG, two hypothesis are advanced: (a) the existence of a deep ice layer that the thermal wave has to reach before sublimation is possible, or (b) the existence of a sharp polar active region pointing to the Sun at time = LAG, that may take the form of a polar ice cap, a polar fissure or even a polar crater. The diameter of this zone is calculated at ∼1.8 km. (7) A new time-age is defined and it its found that T-AGE = 80 cy for 133P, a moderately old comet. (8) We propose that the object has its origin in the main belt of asteroids, thus being an asteroid-comet hybrid transition object, an asteroidal belt comet (ABC), proven by its large density. (9) Concerning the final evolutionary state of this object, to be a truly extinct comet the radius must be less than the thermal wave depth, which at 1 AU is ∼250 m (at the perihelion distance of 133P the thermal wave penetrates only ∼130 m). Comets with radius larger than this value cannot become extinct but dormant. Thus we conclude that 133P cannot evolve into a truly extinct comet because it has too large a diameter. Instead it is shown to be entering a dormant phase. (10) We predict the existence of truly extinct comets in the main belt of asteroids (MBA) beginning at absolute magnitude ∼21.5 (diameter smaller than ∼190 m). (11) The object demonstrates that a comet may have an outburst of ∼2.3 mag, and not show any detectable coma. (12) Departure from a photometric R+2 law is a more sensitive method (by a factor of 10) to detect activity than star profile fitting or spectroscopy. (13) Sufficient evidence is presented to conclude that 133P is the first member of a new class of objects, an old asteroidal belt comet, ABC, entering a dormant phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号