首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Both Uranus and Neptune are thought to have strong zonal winds with velocities of several 100 m s−1. These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets’ radio signals and of fits to the planets’ magnetic fields; 17.24 h and 16.11 h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet’s deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of ∼16.58 h for Uranus and ∼17.46 h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds.  相似文献   

2.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

3.
This paper is concerned with the interior structure of Uranus and Neptune. Our approach is three-fold. First, a set of three-layer models for both Uranus and Neptune are constructed using a method similar to that used in the study of the terrestrial planets. The variations of the mass density (s) and flattening e(s) with fractional mean radius s for two representative models of Uranus and Neptune are calculated. The results are tabulated. A comparison of these models shows that these two planets are probably very similar to each other in their basic dynamical features. Such similarity is very seldom seen in our solar system. Secondly, we check the conformance between the theoretical results and observational data for the two planets. And thirdly, the 6th degree Stokes zonal parameters for Uranus and for Neptune are predicted, based on the interior models put forward in this paper.  相似文献   

4.
The non-axisymmetric, non-dipolar magnetic fields of Uranus and Neptune are markedly different from the axially-dipolar dominated fields of the other planets in our Solar System with active dynamos. Stanley and Bloxham [Stanley, S., Bloxham, J., 2004. Nature 428, 151-153] used numerical modeling to demonstrate that Uranus' and Neptune's unusual fields could be the result of a different convective region geometry in these planets. They found that a numerical dynamo operating in a thin shell surrounding a stably-stratified fluid interior produces magnetic field morphologies similar to those of Uranus and Neptune. This geometry for the convective region was initially proposed by Hubbard et al. [Hubbard, W.B., Podolak, M., Stevenson, D.J., 1995. In: Cruickshank, D. (Ed.), Neptune and Triton. Univ. of Arizona Press, Tucson, pp. 109-138] to explain both the magnetic field morphology as well as the low intrinsic heat flows from these planets. Here we examine the influence of varying the stable layer radius in numerical models and compare the results to thin shell models surrounding solid inner cores. We find that a limited range of stable-layer shell thicknesses exist in which Uranus/Neptune-like field morphologies result. This allows us to put constraints on the size of the convective layers in Uranus and Neptune.  相似文献   

5.
Previous studies have used models of three-dimensional (3D) Boussinesq convection in a rotating spherical shell to explain the zonal flows on the gas giants, Jupiter and Saturn. In this paper we demonstrate that this approach can also generate flow patterns similar to those observed on the ice giants, Uranus and Neptune. The equatorial jets of Uranus and Neptune are often assumed to result from baroclinic cloud layer processes and have been simulated with shallow layer models. Here we show that vigorous, 3D convection in a spherical shell can produce the retrograde (westward) equatorial flows that occur on the ice giants as well as the prograde (eastward) equatorial flows of the gas giants. In our models, the direction of the equatorial jet depends on the ratio of buoyancy to Coriolis forces in the system. In cases where Coriolis forces dominate buoyancy, cylindrical Reynolds stresses drive prograde equatorial jets. However, as buoyancy forces approach and exceed Coriolis forces, the cylindrical nature of the flow is lost and 3D mixing homogenizes the fluid's angular momentum; the equatorial jet reverses direction, while strong prograde jets form in the polar regions. Although the results suggest that conditions involving strong atmospheric mixing are responsible for generating the zonal flows on the ice giants, our present models require roughly 100 and 10 times the internal heat fluxes observed on Uranus and Neptune, respectively.  相似文献   

6.
Massimiliano Guzzo 《Icarus》2006,181(2):475-485
The motion of the giant planets from Jupiter to Neptune is chaotic with Lyapunov time of approximately 10 Myr. A recent theory explains the presence of this chaos with three-planet mean-motion resonances, i.e. resonances among the orbital periods of at least three planets. We find that the distribution of these resonances with respect to the semi-major axes of all the planets is compatible with orbital instability. In particular, they overlap in a region of 10−3 AU with respect to the variation of the semi-major axes of Uranus and Neptune. Fictitious planetary systems with initial conditions in this region can undergo systematic variations of semi-major axes. The true Solar System is marginally in this region, and Uranus and Neptune undergo very slow systematic variations of semi-major axes with speed of order 10−4 AU/Gyr.  相似文献   

7.
Photoelectric intermediate-band b and y photometry of Uranus and Neptune obtained at each apparition since 1972, combined with broadband B and V photometry from 1950 to 1966, provide a record of planetary variability covering 2/3 of Uranus' 84-year orbital period and 1/3 of Neptune's 165-year orbital period. Almost all of the data were obtained with a dedicated 21-inch photometric telescope at Lowell Observatory. The data are quite homogeneous, with yearly uncertainties typically smaller than 0.01 mag (1%). The lightcurve of Uranus is sinusoidal with peaks at the solstices. The b amplitude slightly exceeds the expected 0.025 mag purely geometrical variation caused by oblateness as the planetary aspect changes, seen from Earth. The y amplitude is several times larger, indicating a strong equator-to-pole albedo gradient. The lightcurve is asymmetrical with respect to southern solstice, evidence of a temporal albedo variation. Neptune's post-1972 lightcurve exhibits a generally rising trend since 1972 interpreted by Sromovsky et al. [Sromovsky, L.A., Fry, P.M., Limaye, S.S., Baines, K.H., 2003. Icarus 163, 256-261] as a lagged sinusoidal seasonal variation. However, the 1950-1966 lightcurve segments are much fainter than expected, missing the proposed seasonal sinusoid by 0.1-0.2 mag. A major unknown component is therefore needed to explain Neptune's long-term variation. The apparent relationship between Neptune's brightness variation and the 11-year solar cycle seen in cycles 21-22 (1972-1996) has apparently now faded away. Further interpretation of the data in this paper will be found in a companion paper by Hammel and Lockwood [Hammel, H.B., Lockwood, G.W., 2005. Icarus. Submitted for publication].  相似文献   

8.
M.J. Klein 《Icarus》2006,184(1):170-180
We present a self-consistent, 36-year record of the disk-averaged radio brightness of Uranus at wavelengths near 3.5 cm. It covers nearly half a uranian year, and includes both equatorial and polar viewing geometries (corresponding to equinox and solstice, respectively). We find large (greater than 30 K) changes over this time span. In agreement with analyses made of more limited microwave data sets, our observations suggest the changes are not caused by geometric effects alone, and that temporal variations may exist in the deep uranian troposphere down to pressures of tens of bars. Our data also support an earlier suggestion that a rapid, planetary-scale change may have occurred in late 1993 and early 1994. The seasonal record presented here will be useful for constraining dynamical models of the deep atmosphere, and for interpreting observations made during Uranus' 2007 equinox passage. As part of a multi-wavelength observing campaign for this event, the Goldstone-Apple Valley Radio Telescope (GAVRT) project will continue to make frequent, single-dish observations near 3.5 cm.  相似文献   

9.
The interior of giant planets can give valuable information on formation and evolution processes of planetary systems. However, the interior and evolution of Uranus and Neptune is still largely unknown. In this paper, we compare water-rich three-layer structure models of these planets with predictions of shell structures derived from magnetic field models. Uranus and Neptune have unusual non-dipolar magnetic fields contrary to that of the Earth. Extensive three-dimensional simulations of Stanley and Bloxham (Stanley, S., Bloxham, J. [2004]. Nature 428, 151-153) have indicated that such a magnetic field is generated in a rather thin shell of at most 0.3 planetary radii located below the H/He rich outer envelope and a conducting core that is fluid but stably stratified. Interior models rely on equation of state data for the planetary materials which have usually considerable uncertainties in the high-pressure domain. We present interior models for Uranus and Neptune that are based on ab initio equation of state data for hydrogen, helium, and water as the representative of all heavier elements or ices. Based on a detailed high-pressure phase diagram of water we can specify the region where superionic water should occur in the inner envelope. This superionic region correlates well with the location of the stably-stratified region as found in the dynamo models. Hence we suggest a significant impact of the phase diagram of water on the generation of the magnetic fields in Uranus and Neptune.  相似文献   

10.
Stephen R. Kane 《Icarus》2011,214(1):327-333
With more than 15 years since the first radial velocity discovery of a planet orbiting a Sun-like star, the time baseline for radial velocity surveys is now extending out beyond the orbit of Jupiter analogs. The sensitivity to exoplanet orbital periods beyond that of Saturn orbital radii however is still beyond our reach such that very few clues regarding the prevalence of ice giants orbiting solar analogs are available to us. Here we simulate the radial velocity, transit, and photometric phase amplitude signatures of the Solar System giant planets, in particular Uranus and Neptune, and assess their detectability. We scale these results for application to monitoring low-mass stars and compare the relative detection prospects with other potential methods, such as astrometry and imaging. These results quantitatively show how many of the existing techniques are suitable for the detection of ice giants beyond the snow line for late-type stars and the challenges that lie ahead for the detection true Uranus/Neptune analogs around solar-type stars.  相似文献   

11.
L.A. Sromovsky  P.G.J. Irwin 《Icarus》2006,182(2):577-593
Near-IR absorption of methane in the 2000-9500 cm−1 spectral region plays a major role in outer planet atmospheres. However, the theoretical basis for modeling the observations of reflectivity and emission in these regions has had serious uncertainties at temperatures needed for interpreting observations of the colder outer planets. A lack of line parameter information, including ground-state energies and the absence of weak lines, limit the applicability of line-by-line calculations at low temperatures and for long path lengths, requiring the use of band models. However, prior band models have parameterized the temperature dependence in a way that cannot be accurately extrapolated to low temperatures. Here we use simulations to show how a new parameterization of temperature dependence can greatly improve band model accuracy and allow extension of band models to the much lower temperatures that are needed to interpret observations of Uranus, Neptune, Titan, and Saturn. Use of this new parameterization by Irwin et al. [Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Bowles, N., Calcutt, S.B., 2005b. Icarus. In press] has verified improved fits to laboratory observations of Strong et al. [Strong, K., Taylor, F.W., Calcutt, S.B., Remedios, J.J., Ballard, J., 1993. J. Quant. Spectrosc. Radiat. Trans. 50, 363-429] and Sihra [1998. Ph.D. Thesis, Univ. of Oxford], which cover the temperature range from 100 to 340 K. Here we compare model predictions to 77 K laboratory observations and to Uranus spectra, which show much improved agreement between observed and modeled spectral features, allowing tighter constraints on pressure levels of Uranus cloud particles, implying that most scattering contributions arise from pressures near 2 bars and 6 bars rather than expected pressures near 1.25 and 3.1 bars. Between visible and near-IR wavelengths, both cloud layers exhibit strong decreases in reflectivity that are indicative of low opacity and submicron particle sizes.  相似文献   

12.
K.A. Rages  H.B. Hammel 《Icarus》2004,172(2):548-554
Analysis of Hubble Space Telescope images of Uranus taken between 1994 and 2002 shows evidence for temporal changes in zonal brightness patterns in the south polar region. Between 1994 and 2002, a relatively bright ring developed near 70° S. The pole itself, which was the brightest area of the southern hemisphere in 1994, has become relatively dark. The polar collar at 45° S has also become brighter relative to the rest of the southern polar region. Comparison of images through different filters suggests that the change is occurring at pressures of 2-4 bars in the atmosphere. A change at this depth is consistent with radio measurements which indicate seasonal variability in Uranus' deep atmosphere. Disk-integrated photometry at visible wavelengths also exhibits variability on seasonal (∼?decades) timescales. The observed changes are not predicted by existing dynamical models of Uranus' atmosphere.  相似文献   

13.
P.G.J. Irwin  N.A. Teanby 《Icarus》2010,208(2):913-926
Long-slit spectroscopy observations of Uranus by the United Kingdom InfraRed Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s Northern Spring Equinox in December 2007.These spectra were analysed and presented by Irwin et al. (Irwin, P.G.J., Teanby, N.A., Davis, G.R. [2009]. Icarus 203, 287-302), but since publication, a new set of methane absorption data has become available (Karkoschka, E., Tomasko, M. [2010]. Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data. Icarus 205, 674-694.), which appears to be more reliable at the cold temperatures and high pressures of Uranus’ deep atmosphere. We have fitted k-coefficients to these new methane absorption data and we find that although the latitudinal variation and inter-annual changes reported by Irwin et al. (2009) stand, the new k-data place the main cloud deck at lower pressures (2-3 bars) than derived previously in the H-band of ∼3-4 bars and ∼3 bars compared with ∼6 bars in the J-band. Indeed, we find that using the new k-data it is possible to reproduce satisfactorily the entire observed centre-of-disc Uranus spectrum from 1 to 1.75 μm with a single cloud at 2-3 bars provided that we make the particles more back-scattering at wavelengths less than 1.2 μm by, for example, increasing the assumed single-scattering albedo from 0.75 (assumed in the J and H-bands) to near 1.0. In addition, we find that using a deep methane mole fraction of 4% in combination with the associated warm ‘F’ temperature profile of Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001), the retrieved cloud deck using the new (Karkoschka and Tomasko, 2010) methane absorption data moves to between 1 and 2 bars.The same methane absorption data and retrieval algorithm were applied to observations of Neptune made during the same programme and we find that we can again fit the entire 1-1.75 μm centre-of-disc spectrum with a single cloud model, providing that we make the stratospheric haze particles (of much greater opacity than for Uranus) conservatively scattering (i.e. ω = 1) and we also make the deeper cloud particles, again at around the 2 bar level more reflective for wavelengths less than 1.2 μm. Hence, apart from the increased opacity of stratospheric hazes in Neptune’s atmosphere, the deeper cloud structure and cloud composition of Uranus and Neptune would appear to be very similar.  相似文献   

14.
A revised ab initio calculation of the H2-H2 collision-induced absorption results in significant differences compared with the work of J. Borysow et al. [Borysow, J., Trafton, L., Frommhold, L., Birnbaum, G., 1985. Astrophys. J. 296, 644-654] for wavenumbers greater than 600 cm−1 and temperatures below 120 K. The revision has significant influence on the spectra of Uranus and Neptune, and essentially removes the need for models with “super-solar” helium abundances or stratospheric hazes to explain the spectrum of Uranus.  相似文献   

15.
L.A. Sromovsky 《Icarus》2005,173(1):284-294
Solar radiation reflected by the atmospheres of Neptune and Uranus is dominated by Rayleigh scattering at visible wavelengths, and thus subject to the effects of polarization. Ignoring these effects can lead to errors in reflected intensity of more than 9% in a clear atmosphere. But solving the full vector equation of transfer is computationally very costly, forcing approximations with limitations that are not well understood and not generally applicable to spatially resolved observations and complex atmospheric structures. Using accurate vector radiation transfer calculations, it is here shown that differences between vector and scalar results near zero phase angle have systematic dependencies on optical depth, single scattering albedo, and angle, that provide a basis for accurate approximation of the reflected intensities. With little computational cost, it is possible to calculate corrected spatially resolved scalar intensities that closely match vector intensities, with individual errors rarely exceeding 1%, and mean and RMS errors generally within a few tenths of 1%. The correction method accounts for the attenuating effects of clouds and molecular absorption.  相似文献   

16.
L.A. Sromovsky  P.M. Fry 《Icarus》2005,179(2):459-484
Near-infrared adaptive optics imaging of Uranus by the Keck 2 telescope during 2003 and 2004 has revealed numerous discrete cloud features, 70 of which were used to extend the zonal wind profile of Uranus up to 60° N. We confirmed the presence of a north-south asymmetry in the circulation [Karkoschka, E., 1998. Science 280, 570-572], and improved its characterization. We found no clear indication of long term change in wind speed between 1986 and 2004, although results of Hammel et al. [Hammel, H.B., Rages, K., Lockwood, G.W., Karkoschka, E., de Pater, I., 2001. Icarus 153, 229-235] based on 2001 HST and Keck observations average ∼10 m/s less westward than earlier and later results, and 2003 observations by Hammel et al. [Hammel, H.B., de Pater, I., Gibbard, S., Lockwood, G.W., Rages, K., 2005. Icarus 175, 534-545] show increased wind speeds near 45° N, which we do not see in our 2003-2004 observations. We observed a wide range of lifetimes for discrete cloud features: some features evolve within ∼1 h, many have persisted at least one month, and one feature near 34° S (termed S34) seems to have persisted for nearly two decades, a conclusion derived with the help of Voyager 2 and HST observations. S34 oscillates in latitude between 32° S and 36.5° S, with a period of ∼1000 days, which may be a result of a non-barotropic Rossby wave. It also varied its longitudinal drift rate between −20°/day and −31°/day in approximate accord with the latitudinal gradient in the zonal wind profile, exhibiting behavior similar to that of the DS2 feature observed on Neptune [Sromovsky, L.A., Limaye, S.S., Fry, P.M., 1993. Icarus 105, 110-141]. S34 also exhibits a superimposed rapid oscillation with an amplitude of 0.57° in latitude and period of 0.7 days, which is approximately consistent with an inertial oscillation.  相似文献   

17.
Imaging of Uranus in 2003 with the Keck 10-m telescope reveals banded zonal structure and dozens of discrete cloud features at J and H bands; several features in the northern hemisphere are also detectable at K′. By tracking features over four days, we extend the zonal wind profile well into the northern hemisphere. We report the first measurements of wind velocities at latitudes −13°, +19°, and northward of +43°, the first direct wind measurements near the equator, and the highest wind velocity seen yet on Uranus (+218 m/s). At northern mid-latitudes (+20° to +40°), the winds appear to have accelerated when compared to earlier HST and Keck observations; southern wind speeds (−20° to −43°) have not changed since Voyager measurements in 1986. The equator of Uranus exhibits a subtle wave structure, indicated by diffuse patches roughly every 30° in longitude. The largest discrete cloud features on Uranus show complex structure extending over tens of degrees, reminiscent of activity seen around Neptune's Great Dark Spot during the Voyager encounter with that planet. There is no sign of a northern “polar collar” as is seen in the south, but a number of discrete features seen at the “expected” latitudes may signal the early stages of development of a northern collar.  相似文献   

18.
As the 7 December 2007 equinox of Uranus approached, collaboration between ring and atmosphere observers in the summer and fall of 2007 produced a substantial collection of ground-based observations using the 10-m Keck telescope with adaptive optics and space-based observations with the Hubble Space Telescope. Both near-infrared and visible-wavelength imaging and spatially resolved near-infrared spectroscopic observations were obtained. We used observations spanning the period from 7 June 2007 through 9 September 2007 to identify and track cloud features, determine atmospheric motions, characterize cloud morphology and dynamics, and define changes in atmospheric band structure. Atmospheric motions were obtained over a wider range of latitudes than previously was possible, extending to 73°N, and for 28 cloud features we obtained extremely high wind-speed accuracy through extended tracking times. We confirmed the existence of the suspected northern hemisphere prograde jet, locating its peak near 58°N. The new results confirm a small N-S asymmetry in the zonal wind profile, and the lack of any change in the southern hemisphere between 1986 (near solstice) and 2007 (near equinox) suggests that the asymmetry may be permanent rather than seasonally reversing. In the 2007 images, we found two prominent groups of discrete cloud features with very long lifetimes. The one near 30°S has departed from its previous oscillatory motion and started a significant northward drift, accompanied by substantial morphological changes. The complex of features near 30°N remained at a nearly fixed latitude, while exhibiting some characteristics of a dark spot accompanied by bright companion features. Smaller and less stable features were used to track cloud motions at other latitudes, some of which lasted over many planet rotations, though many could not be tracked beyond a single transit. A bright band has developed near 45°N, while the bright band near 45°S has begun to decline, both events in agreement with the idea that the asymmetric band structure of Uranus is a delayed response to solar forcing, but with a surprisingly short delay of only a few years.  相似文献   

19.
The giant planets of our solar system possess envelopes consisting mainly of hydrogen and helium but are also significantly enriched in heavier elements relatively to our Sun. In order to better constrain how these heavy elements have been delivered, we quantify the amount accreted during the so-called “late heavy bombardment”, at a time when planets were fully formed and planetesimals could not sink deep into the planets. On the basis of the “Nice model”, we obtain accreted masses (in terrestrial units) equal to for Jupiter, and for Saturn. For the two other giant planets, the results are found to depend mostly on whether they switched position during the instability phase. For Uranus, the accreted mass is with an inversion and without an inversion. Neptune accretes in models in which it is initially closer to the Sun than Uranus, and otherwise. With well-mixed envelopes, this corresponds to an increase in the enrichment over the solar value of 0.033±0.001 and 0.074±0.007 for Jupiter and Saturn, respectively. For the two other planets, we find the enrichments to be 2.1±1.4 (w/ inversion) or 1.2±0.7 (w/o inversion) for Uranus, and 2.0±1.2 (w/ inversion) or 2.7±1.6 (w/o inversion) for Neptune. This is clearly insufficient to explain the inferred enrichments of ∼4 for Jupiter, ∼7 for Saturn and ∼45 for Uranus and Neptune.  相似文献   

20.
Nereid is a small irregular moon of Neptune that displays large-, moderate-, and small-amplitude photometric variations on both fast and slow time scales. The central mystery of Nereid is now to explain the physical mechanism of these unique brightness changes and why they change with time. To characterize Nereid's variability, we have been using the SMARTS telescopes on Cerro Tololo for synoptic monitoring from 1999 to 2006. We present a well-sampled photometric time series of 493 magnitudes on 246 nights mostly in the V-band. In combination with our earlier data (for 774 magnitudes over 362 nights), our 20-year data set is the most comprehensive for any small icy body in our Solar System. Our yearly light curves show that Nereid displays various types of behaviors: large amplitude brightenings and fadings (1987 to 1990); moderate-amplitude variation about the average phase curve (1993-1997, 2003, 2005), moderate-amplitude variation and systematically brighter by roughly one-quarter magnitude throughout the entire season (2004); and nearly constant light curves superimposed on a surprisingly large-amplitude opposition surge (1998, 1999, 2000, 2006). Other than in 2004, Nereid's variations were closely centered around a constant phase curve that is well fit with a Hapke model for the coherent backscattering opposition surge mechanism with angular scale of 0.7°±0.1°. In our entire data set from 1987-2006, we find no significant periodicity. We propose that the year-to-year changes in the variability of Nereid are caused by forced precession (caused by tidal forces from Neptune) on the spin axis of a nonspherical Nereid, such that cross-sectional areas and average albedos change as viewed from Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号