首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphologies of Tycho secondary craters and their ejecta deposits were studied using full-Moon, Lunar-Orbiter, and Apollo panoramic photographs. These data were compared with similar data for the secondary craters and light mantle of the Apollo 17 landing site. The results indicate that (1) the central crater cluster and the light mantle can be attributed to Tycho, (2) the dominant mechanism for emplacement of the light mantle was impact by secondary craters that threw material across the valley floor, and (3) level sheets of material may be emplaced locally by secondary impact. Analysis of returned samples confirms that secondary impacts rework mostly local material.  相似文献   

2.
The current morphology of the martian lithospheric magnetic field results from magnetization and demagnetization processes, both of which shaped the planet. The largest martian impact craters, Hellas, Argyre, Isidis and Utopia, are not associated with intense magnetic fields at spacecraft altitude. This is usually interpreted as locally non- or de-magnetized areas, as large impactors may have reset the magnetization of the pre-impact material. We study the effects of impacts on the magnetic field. First, a careful analysis is performed to compute the impact demagnetization effects. We assume that the pre-impact lithosphere acquired its magnetization while cooling in the presence of a global, centered and mainly dipolar magnetic field, and that the subsequent demagnetization is restricted to the excavation area created by large craters, between 50- and 500-km diameter. Depth-to-diameter ratio of the transient craters is set to 0.1, consistent with observed telluric bodies. Associated magnetic field is computed between 100- and 500-km altitude. For a single-impact event, the maximum magnetic field anomaly associated with a crater located over the magnetic pole is maximum above the crater. A 200-km diameter crater presents a close-to-1-nT magnetic field anomaly at 400-km altitude, while a 100-km diameter crater has a similar signature at 200-km altitude. Second, we statistically study the 400-km altitude Mars Global Surveyor magnetic measurements modelled locally over the visible impact craters. This approach offers a local estimate of the confidence to which the magnetic field can be computed from real measurements. We conclude that currently craters down to a diameter of 200 km can be characterized. There is a slight anti-correlation of −0.23 between magnetic field intensity and impact crater diameters, although we show that this result may be fortuitous. A complete low-altitude magnetic field mapping is needed. New data will allow predicted weak anomalies above craters to be better characterized, and will bring new constraints on the timing of the martian dynamo and on Mars’ evolution.  相似文献   

3.
We compare three previously independently studied crater morphologies - excess ejecta craters, perched craters, and pedestal craters - each of which has been proposed to form from impacts into an ice-rich surface layer. Our analysis identifies the specific similarities and differences between the crater types; the commonalities provide significant evidence for a genetic relationship among the morphologies. We use new surveys of excess ejecta and perched craters in the southern hemisphere in conjunction with prior studies of all of the morphologies to create a comprehensive overview of their geographic distributions and physical characteristics. From these analyses, we conclude that excess ejecta craters and perched craters are likely to have formed from the same mechanism, with excess ejecta craters appearing fresh while perched craters have experienced post-impact modification and infilling. Impacts that led to these two morphologies overwhelmed the ice-rich layer, penetrating into the underlying martian regolith, resulting in the excavation of rock that formed the blocky ejecta necessary to armor the surface and preserve the ice-rich deposits. Pedestal craters, which tend to be smaller in diameter, have the same average deposit thickness as excess ejecta and perched craters, and form in the same geographic regions. They rarely have ejecta around their crater rims, instead exhibiting a smooth pedestal surface. We interpret this to mean that they form from impacts into the same type of ice-rich paleodeposit, but that they do not penetrate through the icy surface layer, and thus do not generate a blocky ejecta covering. Instead, a process related to the impact event appears to produce a thin, indurated surface lag deposit that serves to preserve the ice-rich material. These results provide a new basis to identify the presence of Amazonian non-polar ice-rich deposits, to map their distribution in space and time, and to assess Amazonian climate history. Specifically, the ages, distribution and physical attributes of the crater types suggest that tens to hundreds of meters of ice-rich material has been episodically emplaced at mid latitudes in both hemispheres throughout the Amazonian due to obliquity-driven climate variations. These deposits likely accumulated more frequently in the northern lowlands, resulting in a larger population of all three crater morphologies in the northern hemisphere.  相似文献   

4.
The rayed crater Zunil and interpretations of small impact craters on Mars   总被引:1,自引:0,他引:1  
A 10-km diameter crater named Zunil in the Cerberus Plains of Mars created ∼107 secondary craters 10 to 200 m in diameter. Many of these secondary craters are concentrated in radial streaks that extend up to 1600 km from the primary crater, identical to lunar rays. Most of the larger Zunil secondaries are distinctive in both visible and thermal infrared imaging. MOC images of the secondary craters show sharp rims and bright ejecta and rays, but the craters are shallow and often noncircular, as expected for relatively low-velocity impacts. About 80% of the impact craters superimposed over the youngest surfaces in the Cerberus Plains, such as Athabasca Valles, have the distinctive characteristics of Zunil secondaries. We have not identified any other large (?10 km diameter) impact crater on Mars with such distinctive rays of young secondary craters, so the age of the crater may be less than a few Ma. Zunil formed in the apparently youngest (least cratered) large-scale lava plains on Mars, and may be an excellent example of how spallation of a competent surface layer can produce high-velocity ejecta (Melosh, 1984, Impact ejection, spallation, and the origin of meteorites, Icarus 59, 234-260). It could be the source crater for some of the basaltic shergottites, consistent with their crystallization and ejection ages, composition, and the fact that Zunil produced abundant high-velocity ejecta fragments. A 3D hydrodynamic simulation of the impact event produced 1010 rock fragments ?10 cm diameter, leading to up to 109 secondary craters ?10 m diameter. Nearly all of the simulated secondary craters larger than 50 m are within 800 km of the impact site but the more abundant smaller (10-50 m) craters extend out to 3500 km. If Zunil is representative of large impact events on Mars, then secondaries should be more abundant than primaries at diameters a factor of ∼1000 smaller than that of the largest primary crater that contributed secondaries. As a result, most small craters on Mars could be secondaries. Depth/diameter ratios of 1300 small craters (10-500 m diameter) in Isidis Planitia and Gusev crater have a mean value of 0.08; the freshest of these craters give a ratio of 0.11, identical to that of fresh secondary craters on the Moon (Pike and Wilhelms, 1978, Secondary-impact craters on the Moon: topographic form and geologic process, Lunar Planet. Sci. IX, 907-909) and significantly less than the value of ∼0.2 or more expected for fresh primary craters of this size range. Several observations suggest that the production functions of Hartmann and Neukum (2001, Cratering chronology and the evolution of Mars, Space Sci. Rev. 96, 165-194) predict too many primary craters smaller than a few hundred meters in diameter. Fewer small, high-velocity impacts may explain why there appears to be little impact regolith over Amazonian terrains. Martian terrains dated by small craters could be older than reported in recent publications.  相似文献   

5.
We conducted a systematic, global survey using Thermal Emission Imaging System Infrared (THEMIS IR) coverage (∼100 m/pixel) to search for large alluvial fans in impact craters on Mars. Our survey has focused on large fans (apron areas greater than ∼40 km2, usually located in craters greater than 20 km in diameter) due to the resolution of the THEMIS images and Mars Orbiter Laser Altimeter (MOLA) coverage. We find that the host craters are found to have a distinctive diameter range from 30-150 km. The fans generally cluster in three geographic areas—southern Margaritifer Terra, southwestern Terra Sabaea, and southwestern Tyrrhena Terra, however several outliers do exist. The alluvial fans do not form in a particular orientation along the crater rim nor are they associated with the location of current high rim topography. Fan area magnitude and variability increase with crater diameter while fan concavity magnitude and variability increase with decreasing crater diameter. Smaller fan aprons in general have higher, more variable concavity. The source of the water forming these fans is uncertain given the challenges of accommodating the global distribution pattern and formation patterns within the craters.  相似文献   

6.
The issue of crater retention age estimates on planetary surfaces is discussed with an attempt to quantify the effect of overlapping primary and secondary impact crater populations in restricted crater diameter ranges. The approach to this problem is illustrated with a simple model production function where the secondary crater input is artificially enhanced. Extrapolation of such a secondary crater model distribution to a global record results in extraordinarily high crater frequencies that do not exist on Mars, and implies the need of detailed studies of the size-frequency distribution for remote secondary craters, to date poorly known. A key case, the martian crater Zunil and its secondary crater field, illustrate that reasonable predictions for the secondary crater size-frequency distribution at small (<100 m) crater diameters affected the standard model crater retention age for the Cerberus plains less than the statistical uncertainty. These observations show that age determination based on appropriate crater counting statistics is valid in a wide primary crater diameter range.  相似文献   

7.
Abstract— We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ?29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ?8120 km2 ejecta blanket. Because the pre‐impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre‐impact terrain) is ?380 km3 the volume of materials above the pre‐impact terrain is ?425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ?100 m of additional ejecta thickness being deposited down‐range compared to the up‐range value at the same radial distance from the rim crest. Distal ramparts are 60 to 125 m high, comparable to the heights of ramparts measured at other multi‐layered ejecta craters. Tooting crater serves as a fresh end‐member for the large impact craters on Mars formed in volcanic materials, and as such may be useful for comparison to fresh craters in other target materials.  相似文献   

8.
A survey of craters in the vicinity of Newton Basin, using high-resolution images from Mars Global Surveyor and Mars Odyssey, was conducted to find and analyze examples of gullies and arcuate ridges and assess their implications for impact crater degradation processes. In the Phaethontis Quadrangle (MC-24), we identified 225 craters that contain these features. Of these, 188 had gullies on some portion of their walls, 118 had arcuate ridges at the bases of the crater walls, and 104 contained both features, typically on the same crater wall. A major result is that the pole-facing or equator-facing orientation of these features is latitude dependent. At latitudes >44° S, equator-facing orientations for both ridges and gullies are prevalent, but at latitudes <44° S, pole-facing orientations are prevalent. The gullies and arcuate ridges typically occupy craters between ∼2 and 30 km in diameter, at elevations between −1 and 3 km. Mars Orbiter Laser Altimeter (MOLA) elevation profiles indicate that most craters with pole-facing arcuate ridges have floors sloping downward from the pole-facing wall, and some of these craters show asymmetry in crater rim heights, with lower pole-facing rims. These patterns suggest viscous flow of ice-rich materials preferentially away from gullied crater walls. Clear associations exist between gullies and arcuate ridges, including (a) geometric congruence between alcoves and sinuous arcs of arcuate ridges and (b) backfilling of arcuate ridges by debris aprons associated with gully systems. Chronologic studies suggest that gullied walls and patterned crater floor deposits have ages corresponding to the last few high obliquity cycles. Our data appear consistent with the hypothesis that these features are associated with periods of ice deposition and subsequent erosion associated with obliquity excursions within the last few tens of millions of years. Arcuate ridges may form from cycles of activity that also involve gully formation, and the ridges may be in part due to mass-wasted, ice-rich material transported downslope from the alcoves, which then interacts with previously emplaced floor deposits. Most observed gullies may be late-stage features in a degradational cycle that may have occurred many times on a given crater wall.  相似文献   

9.
At martian mid-to-high latitudes, the surfaces of potentially ice-rich features, including concentric crater fill, lobate debris aprons, and lineated valley fill, typically display a complex texture known as “brain terrain,” due to its resemblance to the complex patterns on brain surfaces. In order to determine the structure and developmental history of concentric crater fill and overlying latitude-dependent mantle (LDM) material, “brain terrain” and polygonally-patterned LDM surfaces are analyzed using HiRISE images from four craters in Utopia Planitia containing concentric crater fill. “Brain terrain” and mantle surface textures are classified based on morphological characteristics: (1) closed-cell “brain terrain,” (2) open-cell “brain terrain,” (3) high-center mantle polygons, and (4) low-center mantle polygons. A combined glacial and thermal-contraction cracking model is proposed for the formation and modification of the “brain terrain” texture of concentric crater fill. A similar model, related to thermal contraction cracking and differential sublimation of underlying ice, is proposed for the formation and development of polygonally patterned mantle material. Both models require atmospheric deposition of ice, likely during periods of high obliquity, but do not require wet active layer processes. Crater dating of “brain terrain” and mantled surfaces suggests a transition at martian mid-latitudes from peak “glacial” conditions occurring within the past ∼10-100 My to a quiescent period followed by a cold-desert “periglacial” period during the past ∼1-2 My.  相似文献   

10.
Mid-latitude pedestal craters on Mars offer crucial insights into the timing and extent of widespread ice-rich deposits during the Amazonian period. Our previous comprehensive analysis of pedestal craters strongly supports a climate-related formation mechanism, whereby pedestals result from impacts into ice-rich material at mid latitudes during periods of higher obliquity. The ice from this target deposit later sublimates due to obliquity changes, but is preserved beneath the protective cover of the armored pedestal. As such, the heights of pedestals act as a proxy for the thicknesses of the paleodeposits. In this analysis, our measurement of 2300 pedestal heights shows that although pedestals can reach up to ∼260 m in height, ∼82% are shorter than 60 m and only ∼2% are taller than 100 m. Mean pedestal heights are 48.0 m in the northern mid latitudes and 40.4 m in the southern mid latitudes, with the tallest pedestals located in Utopia Planitia, Acidalia Planitia and Malea Planum. We use these data in conjunction with prior climate model results to identify both regional and global trends regarding ice accumulation during obliquity excursions. Our data provide evidence for multiple episodes of emplacement and removal of the mid-latitude ice-rich deposit based on stratigraphic relationships between pedestal craters and the close proximity of pedestals with significantly different heights.  相似文献   

11.
S. Bouley  R.A. Craddock 《Icarus》2010,207(2):686-698
Martian valley networks provide the best evidence that the climate on Mars was different in the past. Although these features are located primarily in heavily cratered terrain of Noachian age (>3.7 Ga), the ages of the features and the time when they were active is not well understood. From superposed craters several recent global studies determined that most valley networks formed during the Late Noachian to Early Hesperian; however, there were some disparities between the techniques. In this study, our principal objective was to test the reliability of the different age-dating techniques to better understand their accuracy and limitations. We applied these techniques to Parana Valles using a variety of high-resolution images taken from different instruments that allow us to identify smaller craters (D > 125 m) while providing sufficient coverage to support a statistically reliable sampling of crater populations, which is necessary to reduce the uncertainties in age determination. Our results indicate that Parana Valles formed during the Early Hesperian Period but that the crater density (D > 353 m) is heterogeneous inside the Parana Valles basin. The crater population decreases from the headwaters downstream recording a resurfacing event that is most likely related to the erosion of downstream sub-basins. The terrain near the source area is Late Noachian to Early Hesperian in age while terrains closer to the outlet are Early to Late Hesperian in age. Crater densities (D > 125 m) inside the valley are also heterogeneous and record several resurfacing events on the valley floor. Where the width of the valley network narrows to <2 km we found evidence of an Amazonian age eolian deposit that is a relatively thin layer of only few meters that was probably deposited as a result of topographic influences. Our results validate the reliability of several proposed age-dating techniques, but we also determined the accuracy and applicability of these techniques. Our results also demonstrate that crater populations can be used to not only determine the relative ages of valley networks, but also to map the distribution of sedimentary materials and the extent of resurfacing events that occurred after valley network formation.  相似文献   

12.
Self-organised patterns of stone stripes, polygons, circles and clastic solifluction lobes form by the sorting of clasts from fine-grained sediments in freeze-thaw cycles. We present new High Resolution Imaging Science Experiment (HiRISE) images of Mars which demonstrate that the slopes of high-latitude craters, including Heimdal crater - just 25 km east of the Phoenix Landing Site - are patterned by all of these landforms. The order of magnitude improvement in imaging data resolution afforded by HiRISE over previous datasets allows not only the reliable identification of these periglacial landforms but also shows that high-latitude fluviatile gullies both pre- and post-date periglacial patterned ground in several high-latitude settings on Mars. Because thaw is inherent to the sorting processes that create these periglacial landforms, and from the association of this landform assemblage with fluviatile gullies, we infer the action of liquid water in a fluvio-periglacial context. We conclude that these observations are evidence of the protracted, widespread action of thaw liquids on and within the martian regolith. Moreover, the size frequency statistics of superposed impact craters demonstrate that this freeze-thaw environment is, at least in Heimdal crater, less than a few million years old. Although the current martian climate does not favour prolonged thaw of water ice, observations of possible liquid droplets on the strut of the Phoenix Lander may imply significant freezing point depression of liquids sourced in the regolith, probably driven by the presence of perchlorates in the soil. Because perchlorates have eutectic temperatures below 240 K and can remain liquid at temperatures far below the freezing point of water we speculate that freeze-thaw involving perchlorate brines provides an alternative “low-temperature” hypothesis to the freeze-thaw of more pure water ice and might drive significant geomorphological work in some areas of Mars. Considering the proximity of Heimdal crater to the Phoenix Landing Site, the presence of such hydrated minerals might therefore explain the landforms described here. If this is the case then the geographical distribution of martian freeze-thaw landforms might reflect relatively high temperatures (but still below 273 K) and the locally elevated concentration of salts in the regolith.  相似文献   

13.
McEwen et al. (McEwen, A.S., Preblich, B.S., Turtle, E.P., Artemieva, N.A., Golombek, M.P., Hurst, M., Kirk, R.L., Burr, D.M., Christensen, P. [2005]. Icarus 176, 351-381) developed a useful test for the internal consistency of crater-count chronometry systems. They argued that certain multi-kilometer, fresh-looking martian craters with prominent rays should be the youngest or near-youngest craters in their size range. The “McEwen et al. test” is that the ages determined from crater densities of the smallest superimposed craters (typically diameter D ∼ 5-20 m) should thus be comparable to the expected formation intervals of the host primary. McEwen et al. concluded from MOC data that crater chronometry failed this test by factors of 700-2000. We apply HiRISE and other imagery to eight different young craters in order to re-evaluate their arguments. We use existing crater chronology systems as well as the reported observed production rate of 16 m craters (Malin, M.C., Edgett, K., Posiolova, L., McColley, S., Noe Dobrea, E. [2006]. Science 314, 1573-1557; Hartmann, W.K., Quantin, C., Mangold, N. [2007]. Icarus 186, 11-23; Kreslavsky [2007]. Seventh International Conference on Mars, 3325). Every case passes the McEwen et al. test. We conclude that the huge inconsistencies suggested by McEwen et al. are spurious. Many of these craters show evidence of impact into ice-rich material, and appear to have ice-flow features and sublimation pits on their floors. As production rate data improve, decameter-scale craters will provide a valuable way of dating these young martian geological formations and the processes that modify them.  相似文献   

14.
George E. McGill 《Icarus》1974,21(4):437-447
This paper is a test of published theoretical and experimental studies of crater erosion by micrometeorite bombardment which predict systematic variations in the morphology of lunar craters as a function of crater diameter and crater age. Numerical, ranking-type degradation classifications indicate that the craters on Mare Imbrium and Mare Tranquillitatus confirm these predictions by showing a systematic increase in degradation with decreasing diameter for craters smaller than a few kilometers in diameter but larger than the equilibrium diameter, and by showing fixed proportions of fresh, moderately degraded and very degraded craters under equilibrium conditions. Furthermore, the relative ages of the two mare surfaces may be determined using a diameter/mean-degradation-number curve. These determinations of relative age and process of crater erosion are both essentially independent of the traditionally studied crater diameter/frequency relationships. Morphologies of terra craters near Mare Humorum suggest a young, non-equilibrium crater population superposed on a perimordial population with about equilibrium proportions of fresh, moderately degraded and very degraded craters. The primordial population has been modified by pre-Imbrian or early Imbrian deposition of blanketing deposits. A comparative study of several crater degradation classifications indicates that all are essentially interchangeable.  相似文献   

15.
Seth J. Kadish  James W. Head 《Icarus》2011,213(2):443-450
An outstanding question in Mars’ climate history is whether or not pedestal craters represent the armored remnants of ice-rich paleodeposits. We address this question using new high-resolution images; in a survey of several hundred high-latitude pedestal craters, we have identified 12 examples in which visible and/or topographically expressed layers are exposed on the marginal scarp of the pedestal. One example, located on the south polar layered deposits, preserves ice-rich layers that have otherwise been completely removed from the polar cap. These observations provide empirical evidence that the pedestal crater formation mechanism is capable of armoring and preserving ice-rich layered paleodeposits. Although layered exposures have not yet been observed in mid-latitude pedestal craters, high-latitude instances of discontinuous, partially covered layers suggest that layers can be readily concealed, likely through mantling and/or mass wasting processes along the marginal scarp. This interpretation is supported by the observation that high-latitude pedestals with exposed layers along their margins are, on average, taller than mid-latitude examples, and have larger, steeper marginal scarps, which may help to maintain layer exposures. These observations favor the interpretation that mid- to high-latitude pedestal craters represent the armored remnants of ice- and dust-rich paleodeposits, which occurred transiently due to changes in the climate regime. Preservation of fine-scale layering of ice and dust at these latitudes implies that the climate change did not involve regional melting conditions.  相似文献   

16.
Hiroyuki Sato  Kei Kurita 《Icarus》2010,207(1):248-264
Floor-fractured craters (FFC) are a peculiar form of degradation of impact craters defined by the presence of crevice networks and mesas affecting crater floors. They are preferentially distributed near chaotic terrains and outflow channels. The scope of this paper is to present a detailed systematic analysis of FFC at Xanthe Terra. FFC morphologies in this region are classified into five types making a picture of different stages of the same degradation process. FFC are geographically intermixed with un-fractured normal craters (non-FFC). Young craters are less prone to show this type of degradation, as suggested by fresh ejecta layer with preserved crater floor. Size distributions of FFC and non-FFC indicate that larger craters are preferentially fractured. Careful examinations of the crater floor elevations reveal that the crevices often extend deeper than the original crater cavity. Furthermore, an onset depth for the formation of FFC is evidenced from the difference of spatial distributions between FFC and non-FFC. Roof-collapsed depressions observed in the same region have been also documented and their characteristics suggest the removal of subsurface material at depth from about 1200 to 4000 m. These observations taken together suggest a subsurface zone of volume deficit at depth from 1 to 2 km down to several kilometers responsible for FFC formation. Then a scenario of FFC formations is presented in the context of groundwater discharge events at the late Hesperian. This scenario involves two key processes, Earth fissuring and piping erosion, known to occur with rapid groundwater migrations on Earth.  相似文献   

17.
Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8°E, 17.0°N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.  相似文献   

18.
We studied north Tyrrhena Terra, an approximately 39,000 km2 area, located in the transition region straddling the Amenthes and Mare Tyrrhenum Mars Chart quadrangles 14 and 22, respectively. The study area comprises ancient terrains with infilled craters, ridges and valleys. Interpretation of orbiter data of ancient terrains is inherently difficult, but valuable information can be obtained using multiple datasets and analyzing various geological features. Using data from the High Resolution Stereo Camera on board Mars Express, complemented by Mars Global Surveyor MOLA DEM and MOC Narrow Angle datasets, we observed and interpreted surface morphologies at a scale suitable for geologic investigation. Morphometric examination of a 31 km diameter large impact crater indicated that tectonism and volcanism were responsible for its morphologic modification. Small impact crater depth/diameter relationships indicated that smooth surfaces of valleys are composed of highly consolidated material. Surface cracks and lobate fronts further suggested that the rocks are volcanic. Examination of tectonic features revealed that in the study area: a dominant NW-SE fabric is related to a ridge/bench-scarp-valley repetition consistent with synthetic and antithetic normal faulting; a NNW-SSE lineament represents the surface expression of normal faulting post-dating all other tectonic features. A weak NE-SW fabric is observable as small sublinear depressions, and at the contact between units internal to one large crater. One 20 km diameter crater in the study area was interpreted to be a caldera, infilled by thick volcanic rock layers. Identification of wrinkle ridges further indicated that thick layered lava flows infilled the main depressions of the study area. The available evidence suggests that the study area underwent multiple episodes of extension and volcanism.  相似文献   

19.
Recent geomorphic, remote sensing, and atmospheric modeling studies have shown evidence for abundant ground ice deposits in the martian mid-latitudes. Numerous potential water/ice-rich flow features have been identified in craters in these regions, including arcuate ridges, gullies, and small flow lobes. Previous studies (such as in Newton Basin) have shown that arcuate ridges and gullies are mainly found in small craters (∼2-30 km in diameter). These features are located on both pole-facing and equator-facing crater walls, and their orientations have been found to be dependent on latitude. We have conducted surveys of craters >20 km in diameter in two mid-latitude regions, one in the northern hemisphere in Arabia Terra, and one in the southern hemisphere east of Hellas basin. In these regions, prominent lobes, potentially ice-rich, are commonly found on the walls of craters with diameters between ∼20-100 km. Additional water/ice-rich features such as channels, valleys, alcoves, and debris aprons have also been found in association with crater walls. In the eastern Hellas study region, channels were found to be located primarily on pole-facing walls, whereas valleys and alcoves were found primarily on equator-facing walls. In the Arabia Terra study region, these preferences are less distinct. In both study regions, lobate flows, gullies, and arcuate ridges were found to have pole-facing orientation preferences at latitudes below 45° and equator-facing orientation preferences above 45°, similar to preferences previously found for gullies and arcuate ridges in smaller craters. Interrelations between the features suggest they all formed from the mobilization of accumulated ice-rich materials. The dependencies of orientations on latitude suggest a relationship to differences in total solar insolation along the crater walls. Differences in slope of the crater wall, differences in total solar insolation with respect to wall orientation, and variations in topography along the crater rim can explain the variability in morphology of the features studied. The formation and evolution of these landforms may best be explained by multiple cycles of deposition of ice-rich material during periods of high obliquity and subsequent modification and transport of these materials down crater walls.  相似文献   

20.
Apparently, there are two types of size-frequency distributions of small lunar craters (1–100 m across): (1) crater production distributions for which the cumulative frequency of craters is an inverse function of diameter to power near 2.8, and (2) steady-state distributions for which the cumulative frequency of craters is inversely proportional to the square of their diameters. According to theory, cumulative frequencies of craters in each morphologic category within the steady-state should also be an inverse function of the square of their diameters. Some data on frequency distribution of craters by morphologic types are approximately consistent with theory, whereas other data are inconsistent with theory.A flux of crater producing objects can be inferred from size-frequency distributions of small craters on the flanks and ejecta of craters of known age. Crater frequency distributions and data on the craters Tycho, North Ray, Cone, and South Ray, when compared with the flux of objects measured by the Apollo Passive Seismometer, suggest that the flux of objects has been relatively constant over the last 100 m.y. (within 1/3 to 3 times of the flux estimated for Tycho).Steady-state frequency distributions for craters in several morphologic categories formed the basis for estimating the relative ages of craters and surfaces in a system used during the Apollo landing site mapping program of the U.S. Geological Survey. The relative ages in this system are converted to model absolute ages that have a rather broad range of values. The range of values of the absolute ages are between about 1/3 to 3 times the assigned model absolute age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号