首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
By studying orbits of asteroids potentially in 3:2 exterior mean motion resonance with Earth, Venus, and Mars, we have found plutino analogs. We identify at least 27 objects in the inner Solar System dynamically protected from encounter through this resonance. These are four objects associated with Venus, six with Earth, and seventeen with Mars. Bodies in the 3:2 exterior resonance (including those in the plutino resonance associated with Neptune) orbit the Sun twice for every three orbits of the associated planet, in such a way that with sufficiently low libration amplitude close approaches to the planet are impossible. As many as 15% of Kuiper Belt objects share the 3:2 resonance, but are poorly observed. One of several resonance sweeping mechanisms during planetary migration is likely needed to explain the origin and properties of 3:2 resonant Kuiper Belt objects. Such a mechanism likely did not operate in the inner Solar System. We suggest that scattering by the next planet out allows entry to, and exit from, 3:2 resonance for objects associated with Venus or Earth. 3:2 resonators of Mars, on the other hand, do not cross the paths of other planets, and have a long lifetime. There may exist some objects trapped in the 3:2 Mars resonance which are primordial, with our tests on the most promising objects known to date indicating lifetimes of at least tens of millions of years. Identifying 3:2 resonant systems in the inner Solar System permits this resonance to be studied on shorter timescales and with better determined orbits than has been possible to date, and introduces new mechanisms for entry into the resonant configuration.  相似文献   

2.
A number of Jupiter family comets such as Otermaand Gehrels 3make a rapid transition from heliocentric orbits outside the orbit of Jupiter to heliocentric orbits inside the orbit of Jupiter and vice versa. During this transition, the comet can be captured temporarily by Jupiter for one to several orbits around Jupiter. The interior heliocentric orbit is typically close to the 3:2 resonance while the exterior heliocentric orbit is near the 2:3 resonance. An important feature of the dynamics of these comets is that during the transition, the orbit passes close to the libration points L 1and L 2, two of the equilibrium points for the restricted three-body problem for the Sun-Jupiter system. Studying the libration point invariant manifold structures for L 1and L 2is a starting point for understanding the capture and resonance transition of these comets. For example, the recently discovered heteroclinic connection between pairs of unstable periodic orbits (one around the L 1and the other around L 2) implies a complicated dynamics for comets in a certain energy range. Furthermore, the stable and unstable invariant manifold tubes associated to libration point periodic orbits, of which the heteroclinic connections are a part, are phase space conduits transporting material to and from Jupiter and between the interior and exterior of Jupiter's orbit.  相似文献   

3.
We present families of periodic orbits and their stability for the exterior mean motion resonances 1:2, 1:3 and 1:4 with Neptune in the framework of the planar circular restricted three-body problem. We found that in each resonance there exist two branches of symmetric elliptic periodic orbits with stable and unstable segments. Asymmetric periodic orbits bifurcate from the corresponding symmetric ones. Asymmetric periodic orbits are stable and the motion in their neighbourhood is a libration with respect to the resonant angle variable. In all the families of asymmetric periodic orbits the eccentricity extends to high values. Poincaré sections reveal the changes of the topology in phase space.  相似文献   

4.
5.
The effect of the radiation pressure and Poynting-Robertson effect on the evolution of the orbits of geosynchronous satellites is studied, depending on their area to mass ratio. The qualitative changes of the orbital evolution caused by these disturbances are considered. The reflection coefficient of the satellite’s surface was assumed to be 1.44. In the vicinity of the stable point with the longitude of 75° the exit from the libration resonance mode was registered when the area to mass ratio value changed from 5.9 to 6.0 m2/kg; in the vicinity of the unstable point at 345° with the area to mass ratio of 1.4 it occurred at 1.5 m2/kg. Re-entry to Earth occurs at values of the area to mass ratio above 32.2 m2/kg, and hyperbolic exit from the low-Earth orbit occurs at values of the area to mass ratio over 5267 m2/kg. At high values of the area to mass ratio, slopes of initially equatorial orbits can reach 49°. It is shown that due to the Poynting-Robertson effect the secular decrease in the semimajor axis of orbit in libration resonance region is 3–4 orders of magnitude less than outside of it.  相似文献   

6.
Tidal evolution of Mimas, Enceladus, and Dione   总被引:2,自引:0,他引:2  
Jennifer Meyer  Jack Wisdom 《Icarus》2008,193(1):213-223
The tidal evolution through several resonances involving Mimas, Enceladus, and/or Dione is studied numerically with an averaged resonance model. We find that, in the Enceladus-Dione 2:1 e-Enceladus type resonance, Enceladus evolves chaotically in the future for some values of k2/Q. Past evolution of the system is marked by temporary capture into the Enceladus-Dione 4:2 ee-mixed resonance. We find that the free libration of the Enceladus-Dione 2:1 e-Enceladus resonance angle of 1.5° can be explained by a recent passage of the system through a secondary resonance. In simulations with passage through the secondary resonance, the system enters the current Enceladus-Dione resonance close to tidal equilibrium and thus the equilibrium value of tidal heating of 1.1(18,000/QS) GW applies. We find that the current anomalously large eccentricity of Mimas can be explained by passage through several past resonances. In all cases, escape from the resonance occurs by unstable growth of the libration angle, sometimes with the help of a secondary resonance. Explanation of the current eccentricity of Mimas by evolution through these resonances implies that the Q of Saturn is below 100,000. Though the eccentricity of Enceladus can be excited to moderate values by capture in the Mimas-Enceladus 3:2 e-Enceladus resonance, the libration amplitude damps and the system does not escape. Thus past occupancy of this resonance and consequent tidal heating of Enceladus is excluded. The construction of a coherent history places constraints on the allowed values of k2/Q for the satellites.  相似文献   

7.
《Planetary and Space Science》1999,47(8-9):997-1003
Numerical simulations of orbits in the 3 : 1 mean-motion resonance reveal the existence of nearly closed homoclinic loops attached to a periodic orbit. Chaos in the vicinity of these loops is associated not with the separatrix of libration as in Wisdoms study but with secular instabilities first noted by Henrard and Caranicolas.  相似文献   

8.
Selected orbits of asteroids close to the 3/2 and 4/3 resonances in the outer belt are studied by extended numerical integrations of the four-body problem Sun-Jupiter-Saturn-asteroid. Jupiter's variable eccentricity causes strong or dominant effects in the asteroidal eccentricity, rate of perihelion, and critical argument. However, a suitable transformation removes most of these effects by the transition to respective new quantities. Cases of circulation can change to permanent libration in the new critical argument. This happens in the case of (1256) Normannia, one of the two objects found to be circulating near the 3/2 resonance in former work. The other object, (334) Chicago, remains a case of circulation and shows significant deviations from quasi-periodic motion, contrary to all the other studied Hildas (3/2 cases) and to (279) Thule (4/3). Temporary libration with respect to a resonance of high order is visible in the long-period evolution of Chicago's orbit. There are cases of some analogy further inward in the belt: (903) Nealley changes to permanent libration at the 2/1 resonance by the use of the new critical argument, and (522) Helga's orbit shows a non-quasi-periodic behaviour.  相似文献   

9.
Earlier work indicates a comparatively rapid chaotic evolution of the orbits of some Hilda asteroids that move at the border of the domain occupied by the characteristic parameters of the objects at the 3/2 mean motion resonance. A simple Jupiter–Saturn model of the forces leads to numerical results on some of these cases and allows a search for additional resonances that can contribute to the chaotic evolution. In this context the importance of the secondary resonances that depend on the period of revolution of the argument of perihelion is pointed out. Among the studied additional resonances there are three-body resonances with arguments that depend on the mean longitudes of Jupiter, Saturn, and asteroid, but on slowly circulating angular elements of the asteroid as well, and the frequency of these arguments is close to a rational ratio with respect to the frequency of the libration due to the basic resonance.  相似文献   

10.
The stability of collinear and triangular libration points is investigated in the photogravitational elliptic restricted three-body problem, in which two primary bodies emit light energy simultaneously. The conditions of stability of the collinear and triangular libration points are obtained based on a linearized set of equations of perturbed motion for various values of the eccentricity of the Keplerian orbits and the mass ratio of the primary bodies. The maximal numerical value is defined for the eccentricity at which a stable libration point can still exist. It is demonstrated how the parametric resonance causes an instability of collinear and triangular libration points; the evolution of the origination of the instability zones is traced. The minimal eccentricity value is found at which zones of instability of triangular libration points arise.  相似文献   

11.
The dynamics of the two Jupiter triangular libration points perturbed by Saturn is studied in this paper. Unlike some previous works that studied the same problem via the pure numerical approach, this study is done in a semianalytic way. Using a literal solution, we are able to explain the asymmetry of two orbits around the two libration points with symmetric initial conditions. The literal solution consists of many frequencies. The amplitudes of each frequency are the same for both libration points, but the initial phase angles are different. This difference causes a temporary spatial asymmetry in the motions around the two points, but this asymmetry gradually disappears when the time goes to infinity. The results show that the two Jupiter triangular libration points should have symmetric spatial stable regions in the present status of Jupiter and Saturn. As a test of the literal solution, we study the resonances that have been extensively studied in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006). The resonance structures predicted by our analytic theory agree well with those found in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006) via a numerical approach. Two kinds of chaotic orbits are discussed. They have different behaviors in the frequency map. The first kind of chaotic orbits (inner chaotic orbits) is of small to moderate amplitudes, while the second kind of chaotic orbits (outer chaotic orbits) is of relatively larger amplitudes. Using analytical theory, we qualitatively explain the transition process from the inner chaotic orbits to the outer chaotic orbits with increasing amplitudes. A critical value of the diffusion rate is given to separate them in the frequency map. In a forthcoming paper, we will study the same problem but keep the planets in migration. The time asymmetry, which is unimportant in this paper, may cause an observable difference in the two Jupiter Trojan groups during a very fast planet migration process.  相似文献   

12.
We use numerical integrations to investigate the dynamical evolution of resonant Trojan and quasi-satellite companions during the late stages of migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. Our migration simulations begin with Jupiter and Saturn on orbits already well separated from their mutual 2:1 mean-motion resonance. Neptune and Uranus are decoupled from each other and have orbital eccentricities damped to near their current values. From this point we adopt a planet migration model in which the migration speed decreases exponentially with a characteristic timescale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus test particle Trojans and quasi-satellites. We find that the libration frequencies of Trojans are similar to those of quasi-satellites. This similarity enables a dynamical exchange of objects back and forth between the Trojan and quasi-satellite resonances during planetary migration. This exchange is facilitated by secondary resonances that arise whenever there is more than one migrating planet. For example, secondary resonances may occur when the circulation frequencies, f, of critical arguments for the Uranus-Neptune 2:1 mean-motion near-resonance are commensurate with harmonics of the libration frequency of the critical argument for the Trojan and quasi-satellite 1:1 mean-motion resonance . Furthermore, under the influence of these secondary resonances quasi-satellites can have their libration amplitudes enlarged until they undergo a close-encounter with their host planet and escape from the resonance. High-resolution simulations of this escape process reveal that ≈80% of jovian quasi-satellites experience one or more close-encounters within Jupiter’s Hill radius (RH) as they are forced out of the quasi-satellite resonance. As many as ≈20% come within RH/4 and ≈2.5% come within RH/10. Close-encounters of escaping quasi-satellites occur near or even below the 2-body escape velocity from the host planet. Finally, the exchange and escape of Trojans and quasi-satellites continues to as late as 6-9τ in some simulations. By this time the dynamical evolution of the planets is strongly dominated by distant gravitational perturbations between the planets rather than the migration force. This suggests that exchange and escape of Trojans and quasi-satellites may be a contemporary process associated with the present-day near-resonant configuration of some of the giant planets in our Solar System.  相似文献   

13.
Epimetheus, a small moon of Saturn, has a rotational libration (an oscillation about synchronous rotation) of 5.9°±1.2°, placing Epimetheus in the company of Earth’s Moon and Mars’ Phobos as the only natural satellites for which forced rotational libration has been detected. The forced libration is caused by the satellite’s slightly eccentric orbit and non-spherical shape.Detection of a moon’s forced libration allows us to probe its interior by comparing the measured amplitude to that predicted by a shape model assuming constant density. A discrepancy between the two would indicate internal density asymmetries. For Epimetheus, the uncertainties in the shape model are large enough to account for the measured libration amplitude. For Janus, on the other hand, although we cannot rule out synchronous rotation, a permanent offset of several degrees between Janus’ minimum moment of inertia (long axis) and the equilibrium sub-Saturn point may indicate that Janus does have modest internal density asymmetries.The rotation states of Janus and Epimetheus experience a perturbation every 4 years, as the two moons “swap” orbits. The sudden change in the orbital periods produces a free libration about synchronous rotation that is subsequently damped by internal friction. We calculate that this free libration is small in amplitude (<0.1°) and decays quickly (a few weeks, at most), and is thus below the current limits for detection using Cassini images.  相似文献   

14.
The dynamical behavior of asteroids inside the 2:1 and 3:2 commensurabilities with Jupiter presents a challenge. Indeed most of the studies, either analytical or numerical, point out that the two resonances have a very similar dynamical behavior. In spite of that, the 3:2 resonance, a little outside the main belt, hosts a family of asteroids, called the Hildas, while the 2:1, inside the main belt, is associated to a gap (the Hecuba gap) in the distribution of asteroids.In his search for a dynamical explanation for the Hecuba gap, Wisdom (1987) pointed out the existence of orbits starting with low eccentricity and inclination inside the 2:1 commensurability and going to high eccentricity, and thus to possible encounters with Mars. It has been shown later (Henrard et al.), that these orbits were following a path from the low eccentric belt of secondary resonances to the high eccentric domain of secular resonances. This path crosses a bridge, at moderate inclination and large amplitude of libration, between the two chaotic domains associated with these resonances.The 3:2 resonance being similar in many respects to the 2:1 resonance, one may wonder whether it contains also such a path. Indeed we have found that it exists and is very similar to the 2:1 one. This is the object of the present paper.  相似文献   

15.
Janus and Epimetheus are famously known for their distinctive horseshoe-shaped orbits resulting from a 1:1 orbital resonance. Every 4 years these two satellites swap their orbits by a few tens of kilometers as a result of their close encounter. Recently Tiscareno et al. (Tiscareno, M.S., Thomas, P.C., Burns, J.A. [2009]. Icarus 204, 254-261) have proposed a model of rotation based on images from the Cassini orbiter. These authors inferred the amplitude of rotational librational motion in longitude at the orbital period by fitting a shape model to Cassini ISS images. By a quasi-periodic approximation of the orbital motion, we describe how the orbital swap impacts the rotation of the satellites. To that purpose, we have developed a formalism based on quasi-periodic series with long- and short-period librations. In this framework, the amplitude of the libration at the orbital period is found proportional to a term accounting for the orbital swap. We checked the analytical quasi-periodic development by performing a numerical simulation and find both results in good agreement. To complete this study, the results obtained for the short-period librations are studied with the help of an adiabatic-like approach.  相似文献   

16.
This paper is devoted to the study of the transfer problem from a libration point orbit of the Earth–Moon system to an orbit around the Moon. The transfer procedure analysed has two legs: the first one is an orbit of the unstable manifold of the libration orbit and the second one is a transfer orbit between a certain point on the manifold and the final lunar orbit. There are only two manoeuvres involved in the method and they are applied at the beginning and at the end of the second leg. Although the numerical results given in this paper correspond to transfers between halo orbits around the \(L_1\) point (of several amplitudes) and lunar polar orbits with altitudes varying between 100 and 500 km, the procedure we develop can be applied to any kind of lunar orbits, libration orbits around the \(L_1\) or \(L_2\) points of the Earth–Moon system, or to other similar cases with different values of the mass ratio.  相似文献   

17.
D. Nesvorný  S. Ferraz-Mello 《Icarus》1997,130(2):247-258
The frequency map analysis was applied to the fairly realistic models of the 2/1, 3/2, and 4/3 jovian resonances and the results were compared with the asteroidal distribution at these commensurabilities. The presence of the Hecuba gap at the 2/1 and of the Hilda group in the 3/2 is explained on the basis of different rates of the chaotic transport (diffusion) in these resonances. The diffusion in the most stable 2/1-resonant region is almost two orders in magnitude faster than the diffusion in the region which accommodates the Hildas. In the 2/1 commensurability there are two possible locations for long-surviving asteroids: the one centered at an eccentricity of 0.3 near the libration stable centers with small libration amplitude and the other at a slightly lower eccentricity with a moderate libration amplitude (∼90°). Surprisingly, all asteroids observed in the 2/1 resonance (8 numbered and multi-opposition objects in Bowell's catalog from 1994) occupy the moderate-libration area and avoid the area in a close vicinity of the libration stable centers. Possible explanations of this fact were discussed. Concerning the 4/3 resonance, the only asteroid in the corresponding stable region is 279 Thule, in spite of the fact that this region is almost as regular (although not as extensive) as the one where the Hilda group in the 3/2, with 79 members, is found.  相似文献   

18.
A near equality between the nodal rates of suitably defined Trojan orbits and Jupiter represents an important type of a secular resonance. This case is realized by the model Sun-Jupiter-Saturn-Trojan, referred to the invariable plane. A second theoretical example is based on the elliptic three-body problem Sun-Jupiter-Trojan, where the vanishing nodal rate of a special Trojan orbit and the vanishing rate of Jupiter's longitude of perihelion define a secular resonance.We investigate the perturbations in the asteroidal inclinations and the nodes and consider the possibility of a libration.  相似文献   

19.
Due to various perturbations, the collinear libration points of the real Earth–Moon system are not equilibrium points anymore. Under the assumption that the Moon’s motion is quasi-periodic, special quasi-periodic orbits called dynamical substitutes exist. These dynamical substitutes replace the geometrical collinear libration points as time-varying equilibrium points. In the paper, the dynamical substitutes of the three collinear libration points in the real Earth–Moon system are computed. For the points L 1 and L 2, linearized motions around the dynamical substitutes are described, and the variational equations of the dynamical substitutes are reduced to a form with a near constant coefficient matrix. Then higher order analytical formulae of the central manifolds are constructed. Using these analytical solutions as initial seeds, Lissajous orbits and halo orbits are computed with numerical algorithms.  相似文献   

20.
Martin Veasey 《Icarus》2011,214(1):265-274
As Mercury orbits the Sun, gravitational torques on its equatorial elliptical shape give rise to a planetary libration. The amplitude of Mercury’s libration, as determined from Earth-based radar speckle pattern observations, suggests that only the mantle participates in the motion. This indicates a decoupling between the core and the mantle, and therefore that the outermost part of the core must be fluid. If a solid inner core is present at the center of Mercury, the equatorial elliptical shape of the latter may become misaligned with that of Mercury’s mantle, leading to an internal gravitational torque between the two. If this torque is large, it may participate in the dynamics of Mercury’s libration. The goal of this work is to determine whether Mercury’s observed librations can be used to place constraints on the properties of its inner core. We present a comparison between predicted and observed librations for a range of interior models of Mercury, with various inner core sizes and fluid core densities. We show that a marginally better fit to observations can be achieved for interior models that have an inner core radius larger than 400 km. However, the improvement in fit is small, and it is not possible to draw robust conclusions on the size of Mercury’s inner core on the basis of existing libration data. Nevertheless, our study demonstrates that the influence of the inner core on the libration of Mercury could be detected with a decade worth of accurate observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号