首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jack Drummond  Jerry Nelson 《Icarus》2009,202(1):147-159
Five main belt asteroids, 2 Pallas, 129 Antigone, 409 Aspasia, 532 Herculina, and 704 Interamnia were imaged with the adaptive optics system on the 10 m Keck-II telescope in the near infrared on one night, August 16, 2006. The three axis dimensions and rotational poles were determined for Pallas, Antigone, Aspasia, and Interamnia, from their changing apparent sizes and shapes as measured with parametric blind deconvolution. The rotational pole found for Interamnia is much different from all previous work, including our own at Lick Observatory the previous month. Although images of Herculina were obtained at only two rotational phases, its rotation appears to be opposite to that predicted from the lightcurve inversion model of M. Kaasalainen, J. Torppa, and J. Piironen [2002. Icarus 159, 369-395]. A search for satellites was made in all of the asteroid images, with negative results, but three trailing stars around Herculina (200 km diameter), down to 8.9 magnitudes fainter and between 1 and 115 asteroid radii (100 to 11,500 km) from the asteroid, establishes an upper limit of 3.3 km for any object with the same albedo near Herculina.  相似文献   

2.
We present adaptive optics (AO) observations of Io taken with the W.M. Keck II telescope on 18 December 2001 (UT) before the satellite went into eclipse, and while it was in Jupiter's shadow. Making these kind of Io-in-eclipse observations, as well as the associated data reduction and analysis are challenging; hence one focus of the paper is to explain the methods and tools used for these data sets. For the sunlit images Io itself was used as the wavefront reference source, while nearby Ganymede was used as reference ‘star’ when Io was in eclipse. Observations were obtained in K′-, L′-, and M-bands. The sunlit images have been deconvolved using MISTRAL. The Io-in-eclipse data were deconvolved with IDAC and MISTRAL. The former gives better results, both in absolute photometry and in matching the original images. We determined the flux densities of the hot spots from the original Io-in-eclipse data with StarFinder, as well as from the deconvolved images by integrating the intensity over the relevant areas. We determined the highly anisoplanatic PSF via a FFT method from the original data, and used this in StarFinder and as a starting PSF for IDAC and MISTRAL. We derived temperatures and areal coverage of all 19 spots detected in both K′- and L′-band images of Io-in-eclipse. We also determined temperatures and areal coverage of the hot spots visible on the L′- and M-band images of sunlit Io. Most volcanoes contain a compact hot ‘core’ (?10 km2 at 600-800 K) within a larger area at lower temperatures (e.g., ∼102-104 km2 at 300-500 K). The total heat flow contributed by these active volcanoes is 0.2 W m−2, ∼8% of the average global heat flow measured at 5-20 μm by Veeder et al. [J. Geophys. Res. 99 (1994) 17095].  相似文献   

3.
Seven main belt asteroids, 2 Pallas, 3 Juno, 4 Vesta, 16 Psyche, 87 Sylvia, 324 Bamberga, and 707 Interamnia, were imaged with the adaptive optics system on the 3 m Shane telescope at Lick Observatory in the near infrared, and their triaxial ellipsoid dimensions and rotational poles have been determined with parametric blind deconvolution. In addition, the dimensions and pole for 1 Ceres are derived from resolved images at multiple epochs, even though it is an oblate spheroid.  相似文献   

4.
David Parry Rubincam   《Icarus》2007,192(2):460-468
Photon thrust from shape alone can produce quasi-secular changes in an asteroid's orbital elements. An asteroid in an elliptical orbit with a north–south shape asymmetry can steadily alter its elements over timescales longer than one orbital trip about the Sun. This thrust, called here orbital YORP (YORP = Yarkovsky–O'Keefe–Radzievskii–Paddack), operates even in the absence of thermal inertia, which the Yarkovsky effects require. However, unlike the Yarkovsky effects, which produce secular orbital changes over millions or billions of years, the change in an asteroid's orbital elements from orbital YORP operates only over the precession timescale of the orbit or of the asteroid's spin axis; this is generally only thousands or tens of thousands of years. Thus while the orbital YORP timescale is too short for an asteroid to secularly journey very far, it is long enough to warrant investigation with respect to 99942 Apophis, which might conceivably impact the Earth in 2036. A near-maximal orbital YORP effect is found by assuming Apophis is without thermal inertia and is shaped like a hemisphere, with its spin axis lying in the orbital plane. With these assumptions orbital YORP can change its along-track position by up to ±245 km, which is comparable to Yarkovsky effects. Though Apophis' shape, thermal properties, and spin axis orientation are currently unknown, the practical upper and lower limits are liable to be much less than the ±245 km extremes. Even so, the uncertainty in position is still likely to be much larger than the 0.5 km “keyhole” Apophis must pass through during its close approach in 2029 in order to strike the Earth in 2036.  相似文献   

5.
A long-term adaptive optics (AO) campaign of observing the double Asteroid (90) Antiope has been carried out in 2003-2005 using 8-10-m class telescopes, allowing prediction of the circumstances of mutual events occurring during the July 2005 opposition [Marchis, F., Descamps, P., Hestroffer, D., Berthier, J., de Pater, I., 2004. Bull. Am. Astron. Soc. 36, 1180]. This is the first opportunity to use complementary lightcurve and AO observations to extensively study the (90) Antiope system, an interesting visualized binary doublet system located in the main belt. The orbital parameters derived from the AO observations have served as input quantities for the derivation of a whole set of other physical parameters (namely shapes, surface scattering, bulk density, and internal properties) from analysis of collected lightcurves. To completely model the observed lightcurves, we employed Roche figures to construct an overall shape solution. The combination of these complementary observations has enabled us to derive a reliable physical and orbital solution for the system. Our model is consistent with a system of slightly non-spherical components, having a size ratio of 0.95 (with Ravg=42.9±0.5 km, separation=171±1 km), and exhibiting equilibrium figures for homogeneous rotating bodies. A comparison with grazing occultation event lightcurves suggests that the real shapes of the components do not depart from Roche equilibrium figures by more than 10%. The J2000 ecliptic coordinates of the pole of the system are λn=200°±2° and αn=38°±2°. The orbital period was refined to P=16.5051±0.0001 h, and the density is found to be slightly lower than previous determinations, with a value of 1.25±0.05 g/cm3, leading to a significant macro-porosity of 30%. Possible scenarios for the origin of the system are also discussed.  相似文献   

6.
F. Marchis  M. Kaasalainen 《Icarus》2006,185(1):39-63
This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100×RHill (1/4×RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D<200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to determine a unique photometric mirror pole solution, which is normally ambiguous for asteroids moving close to the plane of the ecliptic (e.g., 192 Nausikaa and 52 Europa). The photometric inversion models agree well with the AO images, thus confirming the validity of both the lightcurve inversion method and the AO image reduction technique.  相似文献   

7.
We present observations at near-infrared wavelengths (1-5 μm) of Jupiter’s north polar region and Northern Red Oval (NN-LRS-1). The observations were taken with the near-infrared camera NIRC2 coupled to the adaptive optics system on the 10-m W.M. Keck Telescope on UT 21 August 2010. At 5-μm Jupiter’s disk reveals considerable structure, including small bright rings which appear to surround all small vortices. It is striking, though, that no such ring is seen around the Northern Red Oval. In de Pater et al. [2010a. Icarus 210, 742-762], we showed that such rings also exist around all small vortices in Jupiter’s southern hemisphere, and are absent around the Great Red Spot and Red Oval BA. We show here that the vertical structure and extent of the Northern Red Oval is very similar to that of Jupiter’s Red Oval BA. These new observations of the Northern Red Oval, therefore, support the idea of a dichotomy between small and large anticyclones, in which ovals larger than about two Rossby deformation radii do not have 5-μm bright rings. In de Pater et al. [2010a. Icarus 210, 742-762], we explained this difference in terms of the secondary circulations within the vortices. We further compare the brightness distribution of our new 5-μm images with previously published radio observations of Jupiter, highlighting the depletion of NH3 gas over areas that are bright at 5 μm.  相似文献   

8.
We recorded 101 new rotation lightcurves of five Koronis family members, and then combined the new observations with previous data to determine the objects' sidereal rotation periods, spin vector orientations, and model shape solutions. The observing program was tailored specifically for spin vector analyses by determining single-apparition Lumme–Bowell solar phase coefficients, and by measuring synodic rotation periods precisely enough to unambiguously count the rotations between two consecutive oppositions, which is a prerequisite for identifying the correct sidereal period. The new data make possible first pole and shape determinations for (263) Dresda, (462) Eriphyla, and (1289) Kutaïssi, and they improve the models for (277) Elvira and (534) Nassovia, two objects previously studied by Slivan et al. [Slivan, S.M., Binzel, R.P., Crespo da Silva, L.D., Kaasalainen, M., Lyndaker, M.M., Kr?o, M., 2003. Icarus 162, 285–307]. Our results increase the number of Koronis family spin vectors reported in the literature to fourteen, a sample which now includes the seven largest family members. The spin properties of Eriphyla (rotation period , spin vector obliquity ε=51°) and Kutaïssi (P=3.62 h, ε=165°) are consistent with the markedly nonrandom distribution reported by Slivan [Slivan, S.M., 2002. Nature 419, 49–51], and explained by Vokrouhlický et al. [Vokrouhlický, D., Nesvorný, D., Bottke, W.F., 2003. Nature 425, 147–151] as the result of the effects of thermal “YORP” torques combined with solar and planetary gravitational torques. Dresda (P=16.81 h, ε=16°) is the first prograde Koronis member whose spin obliquity and spin rate significantly differ from the clustered spin properties previously found for other prograde Koronis members; nevertheless, its spin vector is consistent with several of the spin evolution possibilities that were identified in the YORP modeling.  相似文献   

9.
In 2007, the M-type binary Asteroid 22 Kalliope reached one of its annual equinoxes. As a consequence, the orbit plane of its small moon, Linus, was aligned closely to the Sun's line of sight, giving rise to a mutual eclipse season. A dedicated international campaign of photometric observations, based on amateur-professional collaboration, was organized and coordinated by the IMCCE in order to catch several of these events. The set of the compiled observations is released in this work. We developed a relevant model of these events, including a topographic shape model of Kalliope refined in the present work, the orbit solution of Linus as well as the photometric effect of the shadow of one component falling on the other. By fitting this model to the only two full recorded events, we derived a new estimation of the equivalent diameter of Kalliope of 166.2±2.8 km, 8% smaller than its IRAS diameter. As to the diameter of Linus, considered as purely spherical, it is estimated to 28±2 km. This substantial “shortening” of Kalliope, gives a bulk density of 3.35±0.33 g/cm3, significantly higher than past determinations but more consistent with its taxonomic type. Some constraints can be inferred on the composition.  相似文献   

10.
We observed the near-Earth ASTEROID 2008 EV5 with the Arecibo and Goldstone planetary radars and the Very Long Baseline Array during December 2008. EV5 rotates retrograde and its overall shape is a 400 ± 50 m oblate spheroid. The most prominent surface feature is a ridge parallel to the asteroid’s equator that is broken by a concavity about 150 m in diameter. Otherwise the asteroid’s surface is notably smooth on decameter scales. EV5’s radar and optical albedos are consistent with either rocky or stony-iron composition. The equatorial ridge is similar to structure seen on the rubble-pile near-Earth asteroid (66391) 1999 KW4 and is consistent with YORP spin-up reconfiguring the asteroid in the past. We interpret the concavity as an impact crater. Shaking during the impact and later regolith redistribution may have erased smaller features, explaining the general lack of decameter-scale surface structure.  相似文献   

11.
We present observations of the Centaur (32532) 2001 PT13 taken between September 2000 and December 2000. A multi-wavelength lightcurve was assembled from V-, R- and J-band photometry measurements. Analysis of the lightcurve indicates that there are two peaks of slightly different brightness, a rotation period of 0.34741±0.00005 day, and a maximum photometric range of 0.18 mag. We obtained VRJHK colors (V-R=0.50±0.01, V-J=1.69±0.02, V-H=2.19±0.04, and V-K=2.30±0.04) that are consistent with the grey KBO/Centaur population. The V-R color shows no variation as a function of rotational phase; however, we cannot exclude the possibility that rotational variations are present in the R-J color. Assuming a 4% albedo, we estimate that 2001 PT13 has an effective diameter of 90 km and a minimum axial ratio a/b of 1.18. We find no evidence of a coma and place an upper limit of 15 g s−1 on the dust production rate.  相似文献   

12.
Matija ?uk  Joseph A. Burns 《Icarus》2005,176(2):418-431
The Yarkovsky force, produced when thermal radiation is re-emitted asymmetrically, causes significant orbital evolution of asteroids in the 10 m-10 km size range. When acting on a non-spherical body, the momentum carried by this radiation generally produces a torque, called the YORP effect, which may be important in re-orienting asteroidal spins. Here we explore a related effect, the “binary YORP” (BYORP), that can modify the orbit of a synchronously rotating secondary in a binary system. It arises because a locked secondary is effectively an asymmetric appendage of the primary. It should be particularly important for Near-Earth Asteroids (NEAs) owing to their small sizes, proximity to the Sun, and benign collisional environment. To estimate BYORP's strength, we subjected 100 random Gaussian spheroids to the thermal radiation model of Rubincam (2000, Radiative spin-up and spin-down of small asteroids, Icarus, 148, 2-11). For most shapes, a significant torque arose on the secondary's orbit, typically modifying the orbit's size, eccentricity and inclination in less than 105 years, for components of 1 and 0.3 km radii, separated by 2 km, at 1 AU, each of density 1750 kg m−3. Together YORP and BYORP are capable of synchronizing secondaries and circularizing orbits, making tidal dissipation unnecessary to explain the evolved state of observed NEA pairs. However, BYORP's rapid timescale poses a problem for the abundance of observed NEA binaries, since their formation rate is thought to be much slower. We consider and reject the following resolutions of this quandary: (i) the approximation using Gaussian spheroids inadequately models YORP; (ii) most secondaries are not synchronous, but inhabit other spin-orbit resonances (very unlikely); (iii) tidal dissipation is much more efficient than previously estimated, and thus capable of stabilizing observed systems; and (iv) moderately close encounters with planets can re-orient secondaries, turning BYORP into a slower, random-walk process. Finally, we speculate that most observed binary NEAs are in a stable state in which the obliquity-changing torques of YORP (acting on the primary) and BYORP cancel out, and that those systems must be close to 55° inclination, where the momentum-changing torques of both YORP and BYORP tend to be very small. Some retrograde systems might develop such that the nodes precess at a Sun-synchronous rate, while some prograde ones might move into the “evection” resonance. All three of these hypotheses can be tested directly by comparison with the i, Ω and ? observed for NEA binaries.  相似文献   

13.
We present a new experimental result of fragment spin-rate in impact disruption, using a thin glass plate. A cylindrical projectile impacts on a side (edge) of the plate. Dispersed fragments are observed using a high-speed camera and the spin rates of fragments are measured. We find that the measured fragment spin-rate decreases with increasing size. Assuming that the rotational energy of fragments is supplied from the residual stress, the spin rate ω decreases with increasing fragment size r as ωr−1, which explains the above experimental results. This size-dependence is similar to that of the observed spin rates of small fast-rotating asteroids. Our results suggest that spin rates of fragments of small asteroids immediately after disruption may have a similar size-dependence, and can provide constraints on the subsequent spin-state evolution of small asteroids due to thermal torques.  相似文献   

14.
We examine the shape of a “rubble pile” asteroid as it slowly gains angular momentum by YORP torque, to the point where “landsliding” occurs. We find that it evolves to a “top” shape with constant angle of repose from the equator up to mid-latitude, closely resembling the shapes of several nearly critically spinning asteroids imaged by radar, most notably (66391) 1999 KW4 [Ostro, S.J., Margot, J.-L., Benner, L.A.M., Giorgini, J.D., Scheeres, D.J., Fahnestock, E.G., Broschart, S.B., Bellerose, J., Nolan, M.C., Magri, C., Pravec, P., Scheirich, P., Rose, R., Jurgens, R.F., De Jong, E.M., Suzuki, S., 2006. Science 314, 1276-1280]. Similar calculations for non-spinning extremely prolate or oblate “rubble piles” show that even loose rubble can sustain shapes far from fluid equilibrium, thus inferences based on fluid equilibrium are generally useless for inferring bulk properties such as density of small bodies. We also investigate the tidal effects of a binary system with a “top shape” primary spinning at near the critical limit for stability. We find that very close to the stability limit, the tide from the secondary can actually levitate loose debris from the surface and re-deposit it, in a process we call “tidal saltation.” In the process, angular momentum is transferred from the primary spin to the satellite orbit, thus maintaining the equilibrium of near-critical spin as YORP continues to add angular momentum to the system. We note that this process is in fact dynamically related to the process of “shepherding” of narrow rings by neighboring satellites.  相似文献   

15.
A. Parker  ?. Ivezi?  R. Lupton  A. Kowalski 《Icarus》2008,198(1):138-155
Asteroid families, traditionally defined as clusters of objects in orbital parameter space, often have distinctive optical colors. We show that the separation of family members from background interlopers can be improved with the aid of SDSS colors as a qualifier for family membership. Based on an ∼88,000 object subset of the Sloan Digital Sky Survey Moving Object Catalog 4 with available proper orbital elements, we define 37 statistically robust asteroid families with at least 100 members (12 families have over 1000 members) using a simple Gaussian distribution model in both orbital and color space. The interloper rejection rate based on colors is typically ∼10% for a given orbital family definition, with four families that can be reliably isolated only with the aid of colors. About 50% of all objects in this data set belong to families, and this fraction varies from about 35% for objects brighter than an H magnitude of 13 and rises to 60% for objects fainter than this. The fraction of C-type objects in families decreases with increasing H magnitude for H>13, while the fraction of S-type objects above this limit remains effectively constant. This suggests that S-type objects require a shorter timescale for equilibrating the background and family size distributions via collisional processing. The size distribution varies significantly among families, and is typically different from size distributions for background populations. The size distributions for 15 families display a well-defined change of slope and can be modeled as a “broken” double power-law. Such “broken” size distributions are twice as likely for S-type familes than for C-type families (73% vs. 36%), and are dominated by dynamically old families. The remaining families with size distributions that can be modeled as a single power law are dominated by young families (<1 Gyr). When size distribution requires a double power-law model, the two slopes are correlated and are steeper for S-type families. No such slope-color correlation is discernible for families whose size distribution follows a single power law. For several very populous families, we find that the size distribution varies with the distance from the core in orbital-color space, such that small objects are more prevalent in the family outskirts. This “size sorting” is consistent with predictions based on the Yarkovsky effect.  相似文献   

16.
Vesta, the second largest Main-Belt Asteroid, will be the first to be explored in 2011 by NASA’s Dawn mission. It is a dry, likely differentiated body with spectrum suggesting that is has been resurfaced by basaltic lava flows, not too different from the lunar maria.Here we present the first disk-resolved spectroscopic observations of an asteroid from the ground. We observed (4) Vesta with the ESO-VLT adaptive optics equipped integral-field near-infrared spectrograph SINFONI, as part of its science verification campaign. The highest spatial resolution of ∼90 km on Vesta’s surface was obtained during excellent seeing conditions (0.5) in October 2004.We observe spectral variations across Vesta’ surface that can be interpreted as variations of either the pyroxene composition, or the effect of surface aging. We compare Vesta’s 2 μm absorption band to that of howardite-eucrite-diogenite (HED) meteorites that are thought to originate from Vesta, and establish particular links between specific regions and HED subclasses. The overall composition is found to be mostly compatible with howardite meteorites, although a small area around 180°E longitude could be attributed to a diogenite-rich spot. We finally focus our spectral analysis on the characteristics of Vesta’s bright and dark regions as seen from Hubble Space Telescope’s visible and Keck-II’s near-infrared images.  相似文献   

17.
We estimate Asteroid 1992 SK's physical properties from delay-Doppler images and Doppler-only echo spectra obtained during March 22-27, 1999, at Goldstone and from optical lightcurves obtained during February-March 1999 at Ond?ejov Observatory. The images span only about 15° of sky motion and are not strong, but they place up to twenty 40 m by 160 m pixels on the asteroid and have complete rotational phase coverage. Our analysis establishes that the radar observations are confined to subradar latitudes between −20° and −40°. The echo spectra and optical lightcurves span ∼80° of sky motion, which provides important geometric leverage on the pole direction. The lightcurves are essential for accurate estimation of the asteroid's shape and spin state. We estimate the asteroid's period to be 7.3182±0.0003 h and its pole direction to be at ecliptic longitude, latitude=(99°±5°,−3°±5°). The asteroid is about 1.4 km in maximum extent and mildly asymmetric, with an elongation of about 1.5 and relatively subdued topography. The OC radar albedo is 0.11±0.02 and the SC/OC ratio is 0.34±0.05. The current orbital solution permits accurate identification of planetary close approaches during 826-2690. We use our model to predict salient characteristics of radar images and optical lightcurves obtainable during the asteroid's March 2006 approach.  相似文献   

18.
We present a comprehensive theory for the breakup conditions for ellipsoidal homogeneous secondary bodies subjected to the tidal forces from a nearby larger primary: for materials ranging from purely fluid ones, to granular rubble-pile gravel-like ones, and to those with either cohesive or granular strength including cohesive rocks and metals. The theory includes but greatly extends the classical analyses given by Roche in 1847, which dealt only with fluids, and also our previous analysis [Holsapple, K.A., Michel, P., 2006. Icarus 183, 331-348], which dealt only with solid but non-cohesive bodies. The results here give the distance inside of which breakup must occur, for both a steadily orbiting satellite and for a passing or impacting object. For the fluid bodies there is a single specific shape (a “Roche Ellipsoid”) that can be in equilibrium at any given distance from a primary, and especially only one shape that can exist at the overall minimum distance (d/R)(ρ/ρp)1/3=2.455, the classical well-known “Roche limit.” In contrast, solid bodies can exist at a given distance from a primary with a range of shapes. Here we give multiple plots of the minimum distances for various important combinations of body shape, spin, mass density, and the strength parameters characterized by an angle of friction and cohesive strength. Such results can be used in different ways. They can be used to estimate limits on strengths and mass densities for orbiting bodies at a known distance and shape. They can be used to determine breakup distances for passing bodies with an assumed strength and shape. They can be used to constraint physical properties such as bulk density of bodies with a known shape that were known to breakup at a given distance. A collection of approximately 40 satellites of the Solar System is used for comparison to the theory. About half of those bodies are closer than the Roche fluid limit and must have some cohesion and/or friction angle to exist at their present orbital distance. The required solid strength for those states is determined. Finally, we apply the theory to the break up of the SL9 comet at close approach with Jupiter. Our results make clear that the literature estimates of its bulk density depend markedly on unknown parameters such as shape, orientation and spin, and most importantly, material strength characterization.  相似文献   

19.
Keck AO survey of Io global volcanic activity between 2 and 5 μm   总被引:1,自引:0,他引:1  
We present in this Keck AO paper the first global high angular resolution observations of Io in three broadband near-infrared filters: Kc (2.3 μm), Lp (3.8 μm), and Ms (4.7 μm). The Keck AO observations are composed of 13 data sets taken during short time intervals spanning 10 nights in December, 2001. The MISTRAL deconvolution process, which is specifically aimed for planetary images, was applied to each image. The spatial resolution achieved with those ground-based observations is 150, 240, and 300 km in the Kc, Lp, and Ms band, respectively, making them similar in quality to most of the distant observations of the Galileo/NIMS instrument. Eleven images per filter were selected and stitched together after being deprojected to build a cylindrical map of the entire surface of the satellite. In Kc-band, surface albedo features, such as paterae (R>60 km) are easily identifiable. The Babbar region is characterized by extremely low albedo at 2.2 μm, and shows an absorption band at 0.9 μm in Galileo/SSI data. These suggest that this region is covered by dark silicate deposits, possibly made of orthopyroxene. In the Lp-Ms (3-5 μm) bands, the thermal emission from active centers is easily identified. We detected 26 hot spots in both broadband filters over the entire surface of the minor planet; two have never been seen active before, nine more are seen in the Ms band. We focused our study on the hot spots detected in both broadband filters. Using the measurements of their brightness, we derived the temperature and area covered by 100 brightness measurements. Loki displayed a relatively quiescent activity. Dazhbog, a new eruption detected by Galileo/NIMS in August 2001, is a major feature in our survey. We also point out the fading of Tvashtar volcanic activity after more than two years of energetic activity, and the presence of a hot, but small, active center at the location of Surt, possibly a remnant of its exceptional eruption detected in February 2001. Two new active centers, labeled F and V on our data, are detected. Using the best temperature and the surface area derived from the L and M band intensities, we calculated the thermal output of each active center. The most energetic hot spots are Loki and Dazhbog, representing respectively 36 and 19% of the total output calculated from a temperature fit of all hot spots (20.6×1012 W). Based on the temperature derived from hot spots (∼400 K), our measurement can unambiguously identify the contribution to the heat flux from the silicate portion of the surface. Because the entire surface was observed, no extrapolation was required to calculate that flux. It is also important to note that we measured the brightness of the individual hot spots when they were located close to the Central Meridian. This minimizes the line-of-sight effect which does not follow strictly a classical cosine law. Finally, we argue that despite the widespread volcanic activity detected, Io was relatively quiescent in December 2001, with a minimum mean total output of 0.4-1.2 W m−2. This output is at least a factor of two lower than those inferred from observations made at longer wavelengths and at different epochs.  相似文献   

20.
We present new observations and models of the shapes and rotational states of the eight near-Earth Asteroids (1580) Betulia, (1627) Ivar, (1980) Tezcatlipoca, (2100) Ra-Shalom, (3199) Nefertiti, (3908) Nyx, (4957) Brucemurray, and (5587) 1990 SB. We also outline some of their solar phase curves, corrected to common reference geometry with the models. Some of the targets may feature sizable global nonconvexities, but the observable solar phase angles were not sufficiently high for confirming these. None is likely to have a very densely cratered surface. We discuss the role of the intermediate topographic scale range in photometry, and surmise that this scale range is less important than large or small scale lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号