首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider effects on an (ultra)relativistic jet and its ambient medium caused by high-energy cosmic rays accelerated at the jet side boundary. As illustrated by simple models, during the acceleration process a flat cosmic ray distribution can be created, with gyro-radii for the highest particle energies reaching scales comparable to the jet radius or energy density comparable to the pressure of the ambient medium . In the case of efficient radiative losses, a high-energy bump in the spectrum can dominate the cosmic ray pressure. In extreme cases, the cosmic rays are able to push the ambient medium off, providing a 'cosmic ray cocoon' separating the jet from the surrounding medium. The considered cosmic rays provide an additional jet braking force and lead to a number of consequences for the jet structure and its radiative output. In particular, the dynamic and acceleration time-scales involved are in the range observed in variable active galactic nuclei.  相似文献   

2.
In strong gravitational lensing, the multiple images we see correspond to light rays that leave the source in slightly different directions. If the source emission is anisotropic, the images may differ from conventional lensing predictions (which assume isotropy). To identify scales on which source anisotropy may be important, we study the angle δ between the light rays emerging from the source, for different lensing configurations. If the lens has a power-law profile   M ∝ R γ  , the angle δ initially increases with lens redshift and then either diverges (for a steep profile  γ < 1  ), remains constant (for an isothermal profile  γ= 1  ), or vanishes (for a shallow profile  γ > 1  ) as   z l→ z s  . The scaling with lens mass is roughly  δ∝ M 1/(2−γ)  . The results for an Navarro–Frenk–White (NFW) profile are qualitatively similar to those for a shallow power law, with δ peaking at about half the redshift of the source (not half the distance). In practice, beaming could modify the statistics of beamed sources lensed by massive clusters: for an opening angle  θjet  , there is a probability as high as   P ∼ 0.02–0.07(θjet/0.5°)−1  that one of the lensed images may be missed (for  2 ≲ z s≲ 6  ). Differential absorption within active galactic nuclei (AGNs) could modify the flux ratios of AGNs lensed by clusters; a sample of AGNs lensed by clusters could provide further constraints on the sizes of absorbing regions. Source anisotropy is not likely to be a significant effect in galaxy-scale strong lensing.  相似文献   

3.
The central engine causing the production of jets in radio sources may work intermittently, accelerating shells of plasma with different mass, energy and velocity. Faster but later shells can then catch up slower earlier ones. In the resulting collisions shocks develop, converting some of the ordered bulk kinetic energy into magnetic field and random energy of the electrons which then radiate. We propose that this internal shock scenario , which is the scenario generally thought to explain the observed gamma-ray burst radiation, can also work for radio sources in general, and for blazars in particular. We investigate in detail this idea, simulating the birth, propagation and collision of shells, calculating the spectrum produced in each collision, and summing the locally produced spectra from those regions of the jet which are simultaneously active in the observer's frame. We can thus construct snapshots of the overall spectral energy distribution, time-dependent spectra and light curves. This allows us to characterize the predicted variability at any frequency, study correlations between the emission at different frequencies, specify the contribution of each region of the jet to the total emission, and find correlations between flares at high energies and the birth of superluminal radio knots and/or radio flares. The model has been applied to reproduce qualitatively the observed properties of 3C 279. Global agreement in terms of both spectra and temporal evolution is found. In a forthcoming work, we will explore the constraints that this scenario sets on the initial conditions of the plasma injected in the jet and the shock dissipation for different classes of blazars.  相似文献   

4.
We present diagrams depicting the expected inter-dependences of two key kinematical parameters of radio knots in the parsec-scale jets of blazars, deduced from VLBI observations. The two parameters are the apparent speed (υ app = app) and the effective Doppler boosting factor (δ eff) of the relativistically moving radio knot. A novel aspect of these analytical computations of β-δ diagrams is that they are made for parsec-scale jets having a conical shape, with modest opening angles (ω up to 10°), in accord with the VLBI observations of the nuclei of the nearest radio galaxies. Another motivating factor is the recent finding that consideration of a conical geometry can have important implications for the interpretation of a variety of radio observations of blazar jets. In addition to uniform jet flows (i.e., those having a uniform bulk Lorentz factor, Γ), computational results are also presented for stratified jets where an ultra-relativistic central spine along the jet axis is surrounded by a slower moving sheath, possibly arising from a velocity shear.  相似文献   

5.
We study the collimation of radio jets in the high-luminosity Fanaroff–Riley class II sources by examining the dependence of the sizes of hotspots and knots in the radio jets on the overall size of the objects for a sample of compact steep-spectrum (CSS) and larger-sized objects. The objects span a wide range in overall size from about 50 pc to nearly 1 Mpc. The mean size of the hotspots increases with the source size during the CSS phase, which is typically taken to be about 20 kpc, and the relationship flattens for the larger sources. The sizes of the knots in the compact as well as the larger sources are consistent with this trend. We discuss possible implications of these trends. We find that the hotspot closer to the nucleus or core component tends to be more compact for the most asymmetric objects where the ratio of separations of the hotspots from the nucleus r d>2. These highly asymmetric sources are invariably CSS objects, and their location in the hotspot size ratio–separation ratio diagram is possibly the result of their evolution in an asymmetric environment. We also suggest that some sources, especially of lower luminosity, exhibit an asymmetry in the collimation of the oppositely directed radio jets.  相似文献   

6.
There is substantial observational evidence against the symmetric relativistic model of FR II radio sources. An asymmetric relativistic model is proposed which takes account of both relativistic effects and intrinsic/environmental asymmetries to explain the structural asymmetries of their radio lobes. A key parameter of the model is the jet-side of the double sources, which is estimated for 80 per cent of the FR II sources in the 3CRR complete sample. Statistical analyses of the properties of these sources show that the asymmetric model is in agreement with a wide range of observational data, and that the relativistic and intrinsic asymmetry effects are of comparable importance. Intrinsic/environmental asymmetry effects are more important at high radio luminosities and small physical scales. The mean translational speed of the lobes is found to be     consistent with the speeds found from spectral ageing arguments. According to a Gaussian model, the standard deviation of the distribution of v lobe is σ v l=0.04 c . The results are in agreement with an orientation-based unification scheme in which the critical angle separating the radio galaxies from quasars is about 45°.  相似文献   

7.
We investigate the polarization properties of Comptonized X-rays from relativistic jets in active galactic nuclei (AGN) using Monte Carlo simulations. We consider three scenarios commonly proposed for the observed X-ray emission in AGN: Compton scattering of blackbody photons emitted from an accretion disc; scattering of cosmic microwave background (CMB) photons and self-Comptonization of intrinsically polarized synchrotron photons emitted by jet electrons. Our simulations show that for Comptonization of disc and CMB photons, the degree of polarization of the scattered photons increases with the viewing inclination angle with respect to the jet axis. In both cases, the maximum linear polarization is  ≈20 per cent  . In the case of synchrotron self-Comptonization (SSC), we find that the resulting X-ray polarization depends strongly on the seed synchrotron photon injection site, with typical fractional polarizations   P ≈ 10–20 per cent  when synchrotron emission is localized near the jet base, while   P ≈ 20–70 per cent  for the case of uniform emission throughout the jet. These results indicate that X-ray polarimetry may be capable of providing unique clues to identify the location of particle acceleration sites in relativistic jets. In particular, if synchrotron photons are emitted quasi-uniformly throughout a jet, then the observed degree of X-ray polarization may be sufficiently different for each of the competing X-ray emission mechanisms (synchrotron, SSC or external Comptonization) to determine which is the dominant process. However, X-ray polarimetry alone is unlikely to be able to distinguish between disc and CMB Comptonization.  相似文献   

8.
The propagation of light highly relativistic jets carrying a toroidal magnetic field is studied numerically. The results show that jets with high Poynting flux develop the conspicuous nose cones discovered earlier in simulations of classical magnetized jets. The size of the nose cone is significantly reduced in kinetic energy-dominated jets, which develop extensive cocoons. The magnetic field nevertheless plays a significant role in the jet–cocoon dynamics by allowing self-confined flows. The results are explained in terms of the properties of perpendicular magnetohydrodynamic shocks.  相似文献   

9.
Particle acceleration in relativistic shocks is not a very well understood subject. Owing to that difficulty, radiation spectra from relativistic shocks, such as those in gamma-ray burst (GRB) afterglows, have been often modelled by making assumptions about the underlying electron distribution. One such assumption is a relatively soft distribution of the particle energy, which need not be true always, as is obvious from observations of several GRB afterglows. In this paper, we describe modifications to the afterglow standard model to accommodate energy spectra which are 'hard'. We calculate the overall evolution of the synchrotron and Compton flux arising from such a distribution. We also model two afterglows, GRB010222 and GRB020813, under this assumption and estimate the physical parameters.  相似文献   

10.
We study the influence of the matter content of extragalactic jets on their morphology, dynamics and emission properties. For this purpose we consider jets of extremely different compositions, including pure leptonic and baryonic plasmas. Our work is based on two-dimensional relativistic hydrodynamic simulations of the long-term evolution of powerful extragalactic jets propagating into a homogeneous environment. The equation of state used in the simulations accounts for an arbitrary mixture of electrons, protons and electron–positron pairs. Using the hydrodynamic models, we have also computed synthetic radio maps and the thermal bremsstrahlung X-ray emission from their cavities.
Although there is a difference of about three orders of magnitude in the temperatures of the cavities inflated by the simulated jets, we find that both the morphology and the dynamic behaviour are almost independent of the assumed composition of the jets. Their evolution proceeds in two distinct epochs. During the first one, multidimensional effects are unimportant and the jets propagate ballistically. The second epoch starts when the first larger vortices are produced near the jet head, causing the beam cross-section to increase and the jet to decelerate. The evolution of the cocoon and cavity is in agreement with a simple theoretical model. The beam velocities are relativistic  ( Γ ≃4)  at kiloparsec scales, supporting the idea that the X-ray emission of several extragalactic jets may be due to relativistically boosted CMB photons. The radio emission of all models is dominated by the contribution of the hotspots. All models exhibit a depression in the X-rays surface brightness of the cavity interior, in agreement with recent observations.  相似文献   

11.
12.
The model first introduced by Raga & Cantó in which astrophysical jets are deflected on passing through an isothermal high‐density region is generalized by taking into account gravitational effects on the motion of the jet as it crosses the high‐density cloud. The problem is also generalized for relativistic jets in which gravitational effects induced by the cloud are neglected. Two further cases, classical and relativistic, are discussed for the cases in which the jet is deflected on passing through the interstellar gas of a galaxy in which a dark matter halo dominates the gravitational potential. The criteria for the stability of jets due to the formation of internal shocks are also discussed.  相似文献   

13.
14.
15.
Allowing for the conical shape of ultrarelativistic blazar jets with opening angles of a few degrees on parsec-scales, we show that their bulk Lorentz factors and viewing angles can be much larger than the values usually inferred by combining their flux-variability and proper-motion measurements. This is in accord with our earlier finding that such ultrarelativistic (Lorentz factor,  Γ > 30  ) conical jets can reconcile the relatively slow apparent motions of Very Long Baseline Interferometry (VLBI) knots in TeV blazars with the extremely fast flows implied by their rapid γ-ray variability. This jet geometry also implies that de-projected jet opening angles will typically be significantly underestimated from VLBI measurements. In addition, de-projected jet lengths will be considerably overestimated if high Lorentz factors and significant opening angles are not taken into account.  相似文献   

16.
We present model fits to spectral energy distributions in the optical and near-infrared of >100 flat-spectrum radio quasars from the Parkes Half-Jansky Flat-spectrum Sample. We find that ∼40 per cent of the sources have power-law spectral energy distributions (SEDs), while a similar number show evidence for two primary components: a blue power law and optical synchrotron emission. The blue power law is similar to the dominant component observed in the spectra of optically selected quasars. There is strong evidence that the synchrotron component has a turnover in the ultraviolet–optical rest frame of the spectrum. In the remaining sources, it is likely that the synchrotron peaks at longer wavelengths. This mixture of two components is supported by optical polarization measurements in a subgroup of the sources. The sources with power-law SEDs show evidence for an excess number of red power-law slopes compared with optically selected quasars. There are additional spectral components in some of the sources, such as dust and the underlying galaxy, which have not been considered here.  相似文献   

17.
18.
The properties of thermal material co-existing with non-thermal emitting plasma and strong magnetic fields in the powerful jets of active galactic nuclei (AGN) are examined. Theoretical and observational constraints on the physical properties of this 'cold' component are determined. While the presence of a thermal component occupying a fraction ∼ 10−8 of the jet volume is possible, it seems unlikely that such a component is capable of contributing significantly to the total jet energy budget, since the thermal reprocessing signatures that should appear in the spectra have not, as yet, been detected.  相似文献   

19.
20.
The large-scale flow produced by classical and relativistic jets in a uniform external medium is explored using a combination of general arguments and numerical simulations. We find that in both cases, jets with finite initial opening angles are recollimated by the high pressure in the cocoon and that the outer flow becomes approximately self-similar at large times. However, if the opening angle is significantly less than 20°, then there is an intermediate stage during which the working surface propagates at a constant speed, which is of the same order as that in the jet. The behaviour of the relativistic and classical jets is very similar, except that the relativistic jets generate lighter cocoons. Application of the model to Cygnus A gives estimates of the source age and advance speed which agree very well with spectral ageing observations. Quantitative estimates and general arguments suggest that the regularly spaced knots in the Cygnus A jet can be interpreted as shocks associated with reconfinement of an initially free jet, knot 3 of the Cygnus A jet being identified with the reflection point of the reconfinement shock. However, the model predicts too large an initial opening angle for the Cygnus A jets. It is possible that this discrepancy is due to our imposition of axisymmetry which allows the numerical jets to become much better collimated after the reconfinement than they would be in the three-dimensional case. Further study is needed to test this idea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号