首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
Major, trace and rare earth elements (REE) concentration of the Eocene limestones, Jaisalmer Basin, Rajasthan, India are analysed to reconstruct the depositional conditions and to identify sources of REEs. Among the major oxides, CaO is the dominant oxide followed by SiO2 in the studied limestones. Trace element Ba dominates over the other trace elements and it shows negative correlation with CaO. The Sr, occurring in small concentration, shows positive correlation with CaO. Other trace elements such as V, Zr, Sc, Y, Rb, Ni, Pb Co, Cu, U occur in small concentrations. The studied limestones show a positive correlation of ΣREE with Fe2O3, Ni, Th, Sc, and Y. These limestones possess sea-water like shale-normalized REE + Y pattern with light REE depletion, slight Gd enrichment, slightly positive La anomaly, positive Y anomaly, positive Eu anomaly, negative Ce anomaly and superchondritic Y/Ho ratio from 23.12 to 28.57. The dominance of CaO and low percentage of MgO suggest that mineral phase is calcite and there is absence of dolomitization. The occurrence of SiO2 and Al2O3 in appreciable percentages may be because of the siliciclastic input during the limestone precipiatetion. The low concentration of Uranium (0.4-3.7) and authigenic Uranium (Average Total U-Th/3 value = 0.74) indicate that the studied limestones were precipitated in oxic condition from seawater. The depletion of LREE suggests that the limestones were precipitated from the seawater. The positive correlation of ΣREE with Al2O3 Fe2O3, Ni, Th, Sc, and Y and negative correlation with CaO suggest an input of siliciclastic sediments from the land during limestone precipitation. The negative Ce anomaly, slightly positive La anomaly, slight Gd enrichment, positive Y anomaly, and positive Eu anomaly also suggest that the limestone was precipitated from the seawater with some siliciclastic input from continent. The low values of the Y/Ho ratio (23.12 to 28.57) in the studied limestones suggest some modification of the seawater by the input of freshwater in a coastal environment. The REEs of the studied limestones are correlable with the shallow sea water REEs with exception of a few elements. We envisage a coastal/shallow marine depositional environment where mixing of the continental material in sea water appears feasible.  相似文献   

2.
Geochemical analysis for the Mesoproterozoic clastic sedimentary rocks of the basal Gulcheru Formation of the Cuddapah Basin in the Gugudu-Dadithota-Parnapalle-Palkonda region (extending atleast 40 km) have been performed to highlight their provenance and weathering history. The low K2O/Al2O3 ratios of the representative samples points to the recycled nature of sediments and illite clay in the sediments indicate an overall cold climate (low chemical weathering degree). All the provenance diagrams indicate a mixed source of the Gulcheru sediments with felsic dominancy and Upper continental crust (UCC) signature.  相似文献   

3.
Rare earth element and yttrium (REE+Y) concentrations were determined in 49 Late Devonian reefal carbonates from the Lennard Shelf, Canning Basin, Western Australia. Shale-normalized (SN) REE+Y patterns of the Late Devonian samples display features consistent with the geochemistry of well-oxygenated, shallow seawater. A variety of different ancient limestone components, including microbialites, some skeletal carbonates (stromatoporoids), and cements, record seawater-like REE+Y signatures. Contamination associated with phosphate, Fe-oxides and shale was tested quantitatively, and can be discounted as the source of the REE+Y patterns. Co-occurring carbonate components that presumably precipitated from the same seawater have different relative REE concentrations, but consistent REE+Y patterns. Clean Devonian early marine cements (n = 3) display REE+Y signatures most like that of modern open ocean seawater and the highest Y/Ho ratios (e.g., 59) and greatest light REE (LREE) depletion (average NdSN/YbSN = 0.413, SD = 0.076). However, synsedimentary cements have the lowest REE concentrations (e.g., 405 ppb). Non-contaminated Devonian microbialite samples containing a mixture of the calcimicrobe Renalcis and micritic thrombolite aggregates in early marine cement (n = 11) have the highest relative REE concentrations of tested carbonates (average total REE = 11.3 ppm). Stromatoporoid skeletons, unlike modern corals, algae and molluscs, also contain well-developed, seawater-like REE patterns. Samples from an estuarine fringing reef have very different REE+Y patterns with LREE enrichment (NdSN/YbSN > 1), possibly reflecting inclusion of estuarine colloidal material that contained preferentially scavenged LREE from a nearby riverine input source. Hence, Devonian limestones provide a proxy for marine REE geochemistry and allow the differentiation of co-occurring water masses on the ancient Lennard Shelf. Although appropriate partition coefficients for quantification of Devonian seawater REE concentrations from out data are unknown, hypothetical Devonian Canning Basin seawater REE patterns were obtained with coefficients derived from modern natural proxies and experimental values. Resulting Devonian seawater patterns are slightly enriched in LREE compared to most modern seawaters and suggest higher overall REE concentrations, but are very similar to seawaters from regions with high terrigenous inputs. Our results suggest that most limestones should record important aspects of the REE geochemistry of the waters in which they precipitated, provided they are relatively free of terrigenous contamination and major diagenetic alteration from fluids with high, non-seawater-like REE contents. Hence, we expect that many other ancient limestones will serve as seawater REE proxies, and thereby provide information on paleoceanography, paleogeography and geochemical evolution of the oceans.  相似文献   

4.
Major, trace and rare earth elements (REE) concentrations in limestone beds of the Asu River Group within the Middle Benue Trough were measured to understand the depositional conditions, characteristics and source of REE. The limestone has high content of CaO (Average of 46.55%), followed by SiO2 (Average of 7.90 %), Fe2O3(t), MgO and Al2O3. The limestones are depleted in most of the trace elements (Co, V, Rb, Ba, Zr, Y, Nb, Hf and Th) when compared with the Post-Archean Australian Shale (PAAS). The observed large variations in ΣREE contents among various limestones of the present study (12.22 to 142.53ppm) are mainly due to the amount of terrigenous matter present in them. The characteristics of non-seawater-like REE patterns, elevated REE concentrations, high LaN/YbN ratios and low Y/Ho ratios, suggest that the observed variations in ΣREE contents are mainly controlled by the amount of detrital sediments in the limestones of the Asu River Group in the middle Benue trough. The observed variations in Ce contents and Ce anomalies in the studied samples resulted from detrital input. The limestones show positive Mn* values (0.30 to 0.78) and low contents of U (~0.60–3.20 ppm) suggesting that they were deposited under oxygen-rich environment.  相似文献   

5.
The Palaeo–Mesoproterozoic Tadapatri formation of the Cuddapah basin is comprised of clastic sedimentary rocks with minor carbonates and mafic–ultramafic sill bodies. Geochemistry of the shale is used to study the provenance, paleoweathering and paleoredox conditions of this Tadpatri formation in order to better understand the development of the Cuddapah basin during Palaeo–Mesoproterozoic time. The higher CIA (average 74.39), PIA (average 85.94) and CIW (average 87.59) values of the Tadpatri shales suggest intensely weathered sources. Higher Al2O3/TiO2 (average 30.78) and LREE/HREE ratio (average 8.80) with negative europium anomaly indicate derivation of the clastic sediments from a felsic source rock. The geochemical parameters like U, U/Th, Cu/Zn, Ni/Co, V/Cr ratios reveal that the Tadpatri shales are mainly deposited in an oxic condition.  相似文献   

6.
Measurement of the major and trace elements were carried out on the Lower Cretaceous limestones interbedded in the volcano-sedimentary Alisitos Formation, northwestern México to understand the source of rare earth elements (REEs) and paleo-redox conditions. The five limestone beds (from the base up, Unit 5 to Unit 9) of the Alisitos Formation show large variations in SiO2 content (0.9–27.9%). A low concentration of CaO is observed in Unit 6 and Unit 8, and high content of CaO is observed in Unit 5, Unit 7 and Unit 9. The limestones are depleted in many trace elements with respect to Post-Archaean Australian Shale (PAAS), whereas Sr shows slight enrichment when compared to PAAS. The concentrations of ΣREE are higher in Unit 6 and Unit 8 (37.4 ± 7.5; 46.6 ± 19.4; respectively) than Unit5, Unit7, and Unit 9 (9.1 ± 3.2; 11.3 ± 9.4; 4.2 ± 2.5; respectively). The limestones of the Alisitos Formation show a non-seawater-like REE + Y pattern with positive Eu anomalies relative to PAAS (0.95–2.47). Variations in ΣREE, Al2O3, Zr, Sc, REE + Y patterns, and Y/Ho ratios are influenced mainly by the amount of terrigenous materials. The variations in the Eu/Eu*, La/Sc and La/Co suggest that the terrigenous materials included in the lower four limestone beds (from Unit 5, Unit 6, Unit 7 and Unit 8) were likely contributed by intermediate to felsic rocks whereas terrigenous materials from Unit 9 were derived from mafic to intermediate source rocks. The slightly negative to slightly positive Ce anomalies in the studied limestones resulted from variations in the bottom water oxygenation. This was also corroborated by V/Cr and Ni/Co ratios suggesting that the depositional environments experienced large fluctuations in oxygenation conditions ranging from oxic to anoxic conditions during the deposition of limestones of the Alisitos Formation.  相似文献   

7.
The Upper Neoproterozoic-Lower Cambrian sedimentary succession in the Central Iberian Zone has recently been divided into 12 sedimentary units (I to XII). Units I to IV are of Late Neoproterozoic age, and units V to XII are Early Cambrian.Throughout the stratigraphic section, shales with similar ranges of SiO2 and Al2O3 have TiO2 and Zr contents that are coupled and vary gradually from the bottom (unit I, TiO2 = 1.0-1.1%, Zr = 245-287 ppm) to the top (unit XII, TiO2 = 0.74-0.86%, Zr = 141-192 ppm). These two parameters clearly distinguish Upper Neoproterozoic from Lower Cambrian compositions, as do certain elemental ratios (Al2O3/TiO2, Rb/Zr, Nb/Ti), which vary from low values at the bottom of the section to high at the top. However, other elements (the rare earth elements [REEs], Y) do not fit this general trend, with heavy REEs and Y showing extreme concentrations in some Lower Cambrian units, which also have negative Ce anomalies.Units I to III and units XI to XII have uniform TDM neodymium model ages (∼1.1 and 1.7 Ga, respectively), but the units between these two groups have erratic values between 1.4 Ga (unit VII) and 3.4 Ga (unit VIII). Thus, the bottom and top units have neodymium isotope ratios that indicate the presence of two source compositions: a composition that records a juvenile contribution younger than 1.1 Ga and a composition mainly derived from an old basement. Some samples from Lower Cambrian units have disturbed REE abundances and neodymium isotope ratios that are attributed to extensive chemical alteration that resulted in REE and Y redistribution. This alteration probably affected the material now preserved as unit IV during a period of relative sea level fall at the end of the Late Neoproterozoic. Both elemental and isotopic results support the suggestion that the Upper Neoproterozoic-Lower Cambrian stratigraphic section records an inverse stratigraphy of a source hinterland composed of a cover sequence of relatively juvenile crustal materials underlain by an older basement. Through time, the deeper crust gradually increased its contribution to the sediments in the basin from Late Neoproterozoic to Lower Cambrian times. These results are compatible with data from many other European zones.  相似文献   

8.
Banded iron formations (BIFs) within the Lvliang region of Shanxi Province, China, are hosted by sediments of the Yuanjiacun Formation, part of the Paleoproterozoic Lvliang Group. These BIFs are located in a zone where sedimentation changed from clastic to chemical deposition, indicating that these are Superior-type BIFs. Here, we present new major, trace, and rare earth element (REE) data, along with Fe, Si, and O isotope data for the BIFs in the Yuanjiacun within the Fe deposits at Yuanjiacun, Jianshan, and Hugushan. When compared with Post Archean Australian Shale (PAAS), these BIFs are dominated by iron oxides and quartz, contain low concentrations of Al2O3, TiO2, trace elements, and the REE, and are light rare earth element (LREE) depleted and heavy rare earth element (HREE) enriched. The BIFs also display positive La, Y, and Eu anomalies, high Y/Ho ratios, and contain 30Si depleted quartz, with high δ18O values that are similar to quartz within siliceous units formed during hydrothermal activity. These data indicate that the BIFs within the Yuanjiacun Formation were precipitated from submarine hydrothermal fluids, with only negligible detrital contribution. None of the BIF samples analyzed during this study have negative Ce anomalies, although a few have a positive Ce anomaly that may indicate that the BIFs within the Yuanjiacun Formation formed during the Great Oxidation Event (GOE) within a redox stratified ocean. The positive Ce anomalies associated with some of these BIFs are a consequence of oxidization and the formation of surficial manganese oxide that have preferentially adsorbed Ho, LREE, and Ce4 +; these deposits formed during reductive dissolution at the oxidation–reduction transition zone or in deeper-level reducing seawater. The loss of Ce, LREE, and Ho to seawater and the deposition of these elements with iron hydroxides caused the positive Ce anomalies observed in some of the BIF samples, although the limited oxidizing ability of surface seawater at this time meant that Y/Ho and LREE/HREE ratios were not substantially modified, unlike similar situations within stratified ocean water during the Late Paleoproterozoic. Magnetite and hematite within the BIFs in the study area contain heavy Fe isotopes (56Fe values of 0.24–1.27‰) resulting from the partial oxidation and precipitation of Fe2 + to Fe3 + in seawater. In addition, mass-independent fractionation of sulfur isotopes within pyrite indicates that these BIFs were deposited within an oxygen-deficient ocean associated with a similarly oxygen-deficient atmosphere, even though the BIFs within the Yuanjiacun Formation formed after initiation of the GOE.  相似文献   

9.
The Trichinopoly Group (later redesignated as Garudamangalam) has unconformable relationship with underlying Uttatur Group and is divided into lower Kulakanattam Formation and upper Anaipadi Formation. These calcareous sandstones are analysed major, trace and rare earth elements (REEs) to find out CIA, CIW, provenance and tectonic setting. The silica content of fossiliferous calcareous sandstone show wide variation ranging from 12.93 to 42.56%. Alumina content ranged from 3.49 to 8.47%. Higher values of Fe2O3 (2.29–22.02%) and low MgO content (0.75–2.44%) are observed in the Garudamangalam Formation. CaO (23.53–45.90) is high in these sandstones due to the presence of calcite as cementing material. Major element geochemistry of clastic rocks (Al2O3 vs. Na2O) plot and trace elemental ratio (Th/U) reveal the moderate to intense weathering of the source rocks. The Cr/Zr ratio of clastic rocks reveal with an average of 1.74 suggesting of felsic provenance. In clastic rocks, high ratios of \(\sum \)LREE/\(\sum \)HREE, La/Sc, Th/Sc, Th/Co, La/Co and low ratios of Cr/Zr, and positive Eu anomaly ranges from (Eu/Eu* = 1.87–5.30) reveal felsic nature of the source rocks.  相似文献   

10.
莲花山铁矿位于昌邑-安丘铁成矿带的中部,铁矿体赋存于古元古代粉子山群小宋组中。本文通过矿石地球化学特征及其与矽卡岩矿物组合和赋矿围岩结构特征的对比研究,证明了莲花山铁矿与条带状铁矿相似。莲花山铁矿矿石稀土元素含量较低,经页岩标准化的稀土元素配分模式呈现轻稀土元素亏损、重稀土元素富集的特征,具有明显的Eu、Y、La异常,为无明显Ce异常,Y/Ho比值反映了在其沉积时受到海水作用的影响,表明莲花山铁矿的稀土元素来源于火山热液和海水的混合溶液。微量元素中Ti、V、Co、Ni、Mn、Sr、Ba等含量较低,原始地幔标准化的微量元素配分曲线显示,U、La、Hf呈正异常,Ba、Nb、Ta、Sr呈负异常,SiO2/Al2O3、Ti/V、Ni/Co、和Sr/Ba的比值指示了莲花山铁矿成矿物质来源于火山物质的沉积。研究结果表明,莲花山铁矿成矿作用源于火山热液与海水的混合,成矿物质来自火山沉积物,其地质与地球化学特征与五台山铁矿一致,为火山沉积变质型铁矿床。  相似文献   

11.
在滇西镇康地块东缘龙塘寨地区新发现的张家田组为一套斜坡-盆地相碎屑岩-放射虫硅质岩-灰岩-玄武岩建造,可见浊流远端低密度流序列、鲍马序列、深水的静水沉积序列,具典型浊流沉积特征。灰岩中采获大量的杜内阶至祥播阶牙形石分子,特别是维宪阶和杜内阶的深水盆地相远洋型分子Gnathodusbilineatus和Scaliognathodusanchoralis类群的出现,说明早石炭世地史时期该区已形成深海槽盆。硅质岩Al/(A1+Fe+Mn)比值为0. 22~0. 40,说明张家田组硅质岩为受热水作用影响的生物成因硅质岩; MnO/TiO_2比值为0. 13~0. 59,Ce异常值在1. 0左右,无明显异常,(La/Yb)_N值为0. 93~1. 93,(La/Ce)_N值为1. 01~1. 09,表现出大陆边缘型硅质岩的特征。结合区域地质资料,本文认为晚古生代时期,在东侧昌宁-孟连洋演化的同时,在镇康地块与耿马被动大陆边缘之间曾发育有一个裂陷海槽,而张家田组斜坡-盆地相浊流沉积正是这一构造事件的沉积记录。  相似文献   

12.
The Neoproterozoic (593–532 Ma) Dahongliutan banded iron formation (BIF), located in the Tianshuihai terrane (Western Kunlun orogenic belt), is hosted in the Tianshuihai Group, a dominantly submarine siliciclastic and carbonate sedimentary succession that generally has been metamorphosed to greenschist facies. Iron oxide (hematite), carbonate (siderite, ankerite, dolomite and calcite) and silicate (muscovite) facies are all present within the iron-rich layers. There are three distinctive sedimentary facies BIFs, the oxide, silicate–carbonate–oxide and carbonate (being subdivided into ankerite and siderite facies BIFs) in the Dahongliutan BIF. They demonstrate lateral and vertical zonation from south to north and from bottom to top: the carbonate facies BIF through a majority of the oxide facies BIF into the silicate–carbonate–oxide facies BIF and a small proportion of the oxide facies BIF.The positive correlations between Al2O3 and TiO2, Sc, V, Cr, Rb, Cs, Th and ∑REE (total rare earth element) for various facies of BIFs indicate these chemical sediments incorporate terrigenous detrital components. Low contents of Al2O3 (<3 wt%), TiO2 (<0.15 wt%), ∑REE (5.06–39.6 ppm) and incompatible HFSEs (high field strength elements, e.g., Zr, Hf, Th and Sc) (<10 ppm), and high Fe/Ti ratios (254–4115) for a majority of the oxide and carbonate facies BIFs suggest a small clastic input (<20% clastic materials) admixtured with their original chemical precipitates. The higher abundances of Al2O3 (>3 wt%), TiO2, Zr, Th, Cs, Sc, Cr and ∑REE (31.2–62.9 ppm), and low Fe/Ti ratios (95.2–236) of the silicate–carbonate–oxide facies BIF are consistent with incorporation of higher amounts of clastic components (20%–40% clastic materials). The HREE (heavy rare earth element) enrichment pattern in PAAS-normalized REE diagrams exhibited by a majority of the oxide and carbonate facies BIFs shows a modern seawater REE signature overprinted by high-T (temperature) hydrothermal fluids marked by strong positive Eu anomalies (Eu/Eu1PAAS = 2.37–5.23). The low Eu/Sm ratios, small positive Eu anomaly (Eu/Eu1PAAS = 1.10–1.58) and slightly MREE (middle rare earth element) enrichment relative to HREE in the silicate–carbonate–oxide facies BIF and some oxide and carbonate facies BIFs indicate higher contributions from low-T hydrothermal sources. The absence of negative Ce anomalies and the high Fe3+/(Fe3+/Fe2+) ratios (0.98–1.00) for the oxide and silicate–carbonate–oxide BIFs do not support ocean anoxia. The δ13CV-PDB (−4.0‰ to −6.6‰) and δ18OV-PDB (−14.0‰ to −11.5‰) values for siderite and ankerite in the carbonate facies BIF are, on average, ∼6‰ and ∼5‰ lower than those (δ13CV-PDB = −0.8‰ to + 3.1‰ and δ18OV-PDB = −8.2‰ to −6.3‰) of Ca–Mg carbonates from the silicate–carbonate–oxide facies BIF. This feature, coupled with the negative correlations between FeO, Eu/Eu1PAAS and δ13CV-PDB, imply that a water column stratified with regard to the isotopic omposition of total dissolved CO2, with the deeper water, from which the carbonate facies BIF formed, depleted in δ13C that may have been derive from hydrothermal activity.Integration of petrographic, geochemical, and isotopic data indicates that the silicate–carbonate–oxide facies BIF and part of the oxide facies BIF precipitated in a near-shore, oxic and shallow water environment, whereas a majority of the oxide and carbonate facies BIFs deposited in anoxic but Fe2+-rich deeper waters, closer to submarine hydrothermal vents. High-T hydrothermal solutions, with infusions of some low-T hydrothermal fluids, brought Fe and Si onto a shallow marine, variably mixed with detrital components from seawaters and fresh waters carrying continental landmass and finally led to the alternating deposition of the Dahongliutan BIF during regression–transgression cycles.The Dahongliutan BIF is more akin to Superior-type rather than Algoma-type and Rapitan-type BIF, and constitutes an additional line of evidence for the widespread return of BIFs in the Cryogenian and Ediacaran reflecting the recurrence of anoxic ferruginous deep sea and anoxia/reoxygenation cycles in the Neoproterozoic. In combination with previous studies on other Fe deposits in the Tianshuihai terrane, we propose that a Fe2+-rich anoxic basin or deep sea probably existed from the Neoproterozoic to the Early Cambrian in this area.  相似文献   

13.
Sandstones and shales from the Upper Neoproterozoic (UN) succession in the Central Iberian Zone (CIZ) show parallel REE patterns and relatively restricted and similar ranges and average values of some element ratios such as Al2O3/TiO2, Ti/Nb, Eu/Eu*, (La/Yb)n, (Gd/Yb)n and Th/U. This remarkable geochemical homogeneity for related medium- and fine-grained rocks is unusual, and strongly suggests a recycled source area. However, the Lower Cambrian (LC) equivalent rocks are, in general terms, geochemically less mature, more heterogeneous and more fractionated. Their average REE patterns are practically coincident, probably as a consequence of REE redistribution related to the reworking of sediments during a stage of sea level fall in Lower Cambrian times. Ti and Zr abundances, chemical index of alteration (CIA) values and element ratios such as Al2O3/TiO2, K/Rb, Ti/Nb and Rb/Zr can be used for discriminating purposes between the UN and LC siliciclastic rocks. Detrital zircons from a UN and a LC sandstone display morphological differences. However, U-Pb data are discordant and cannot be interpreted in a straightforward manner. Nevertheless, age data are compatible with a model in which the continent of Gondwana would have supplied zircons, showing a bimodal age distribution, in variable proportions to the respective sandstone units.  相似文献   

14.
The Jinshajiang–Red River alkaline igneous belt in the eastern Indian–Asian collision zone, of southwestern China, hosts abundant, economically important Cu–Mo–Au mineralization of Cenozoic age. Major- and trace-element compositions of titanites from representative Cu-mineralized intrusions determined by LA-ICP-MS show higher values for Fe2O3/Al2O3, ΣREE?+?Y, LREE/HREE, Ce/Ce*, (Ce/Ce*)/(Eu/Eu*), U, Th, Ta, Nb and Ga, and lower values for Al2O3, CaO, Eu/Eu*, Zr/Hf, Nb/Ta and Sr than those for titanites from barren intrusions. Different ΣREE?+?Y, LREE/HREE, U, Th, Ta and Nb values of titanites between Cu-mineralized and barren intrusions were controlled mainly by the coexisting melt compositions. However, different Sr concentrations and negative Eu anomalies of titanites between Cu-mineralized and barren intrusions were most probably caused by different degrees of crystallization of feldspar from melts. In addition, different Ga concentrations and positive Ce anomalies of titanites between Cu-mineralized and barren intrusions were most likely caused by different magmatic fO2 conditions. Pronounced compositional differences of titanites between Cu-mineralized and barren intrusions can provide a useful tool to help discriminate between ore-bearing and barren intrusions at an early stage of exploration, and, thus, have a potential application in exploration for porphyry Cu deposits in the Jinshajiang – Red River alkaline igneous belt, and to other areas.  相似文献   

15.
The Neoproterozoic Bhander Group in the Son Valley, central India conformably overlying the Rewa Group, is the uppermost subdivision of the Vindhyan Supergroup dominantly composed of arenites, carbonates and shales. In Maihar-Nagod area, a thick pile of unmetamorphosed clastic sedimentary rocks of Bhander Group is exposed, which provides a unique opportunity to study Neoproterozoic basin development through provenance and tectonic interpretations. The provenance discrimination and tectonic setting interpretations are based on modal analysis and whole rock geochemistry. The average framework composition of the detrital sediments composed of quartz and sedimentary lithic fragments are classified as quartz arenite to sublitharenite. The sandstone geochemically reflects high SiO2, moderate Al2O3 and low CaO and Na2O type arenite. The high concentration of HFSE such as Zr, Hf, and Th/Sc, Th/U ratios in these sandstones indicate a mixed provenance. The chondrite normalized REE pattern shows moderate to strong negative Eu anomaly which suggests that major part of the sediments were derived from the granitic source area. The sandstone tectonic discrimination diagrams and various geochemical plots suggest that the provenance of the lower and upper Bhander sandstone formations was continental interior to recycled orogen.  相似文献   

16.
皖北新元古界望山组灰岩微量元素地球化学特征*   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究皖北新元古界望山组灰岩地球化学特征及地质背景,对该地区灰岩进行了系统的岩石学和微量元素地球化学测试。研究结果表明:望山组灰岩中,元素U、Pb、Sr、Sm富集,Nb、Pr、Zr、Hf明显亏损;稀土总量偏低(6.68~42.78 μg/g),轻稀土略亏损,NdSN/YbSN值在0.65~0.91之间变化,轻重稀土分异微弱,灰岩样品均具有程度不同的La和Y正异常。U、Th、Ce等元素特征反映了研究区望山组形成于缺氧的水体环境,Sr/Ba、Sr/Cu值反映了望山组灰岩形成于盐度较大的海水环境和干旱的气候条件;La-Th-Sc和Th-Sc-Zr/10图解指示望山组灰岩可能形成于大陆岛弧环境。  相似文献   

17.
The Mesoproterozoic Srisailam Formation, exposed along the northern part of the Cuddapah basin, India, comprises mainly medium- to fine-grained siliciclastics, and is devoid of any carbonate sediment. Preliminary sedimentological studies helped in recognizing fifteen distinct facies (five facies associations) in Chitrial outlier of the Srisailam Formation deposited in continental half-graben basin(s). Black shales (sensu lato) are minor components of the Srisailam Formation, and inferred to have deposited in deep lacustrine and prodelta facies of the half-graben(s). The black shales show restricted thickness (up to 29.0 m), and are characterized by overall high ‘black shale' to ‘total shale' ratio (>0.51). Their geochemical characteristics were studied to constrain provenance, palaeoclimate, and tectonic setting of deposition of the Srisailam Formation. Further, an attempt has been made to use the Srisailam black shales as proxy for constraining the timing of breakup of the supercontinent Columbia.The Srisailam black shales are geochemically quite distinct. At similar SiO2 contents they are considerably different from PAAS. They are characterized by considerably lower ΣREE (Av. 136.0 ± 50.4 ppm) but a more conspicuous negative Eu-anomaly (Av. 0.34 ± 0.09) than PAAS. Al2O3/TiO2 and TiO2/Zr ratios coupled with Eu/Eu*, GdCN/YbCN, La/Sc, Th/Sc, and Th/Cr ratios suggest their derivation from granite and granodiorite. The CIA values (65–90, Av. 72 ± 9) as a whole indicate moderate chemical weathering under semiarid climate. Discriminating geochemical parameters indicate passive margin depositional setting. The combined sedimentological and geochemical characteristics reveal deposition of the Srisailam sediments in continental rift basin(s).Thick succession of black shales (with high CIA values) that deposited with shelf carbonates proxy for mantle superplume and supercontinent breakup events. The sedimentological characteristics and geochemical data of the Srisailam black shales plausibly exclude any large-scale breakup of Columbia during the interval (1400–1327 Ma) of deposition of the Srisailam Formation.  相似文献   

18.
This study examines the rare earth elements and yttrium (REY) concentrations of twenty-five samples from the reef outcrop exposed along the Lianglitage Mountain in the Ordovician, Tarim Basin in China. The concentration analysis provides constraints on the paleoenvironment during reef deposition. Based on the detailed sedimentology and petrographic work, we divide the reef facies into four sub-facies: the base facies, reef-core facies, reef-flank facies, and sealing facies. The geochemical data (such as major and trace elements, carbon and oxygen isotopes, and REYs) are further used to study the coeval seawater characteristics as well as potential diagenesis overprints. The result indicated that the diagenesis has little effect on the REY patterns of the reefal limestones. The REY concentrations of the reefal limestones are overall low (ranging from 3.69 to 19.60 ppm, arithmetic mean=10.22 ppm, SD=5.4). The PAAS-normalized REY patterns are consistently flat compared to the typical well-oxidized, shallow marine water patterns. However, the light REE (LREE) depletions, positive La anomalies, negative Ce anomalies and positive Y anomalies, suggest that these reefal limestones are likely an indicative of contemporaneous seawater REY signals. The seawater-like Y/Ho ratios (average at 37.51) further support that REY signals in these limestones are likely a reflection of seawater with little diagenetic modifications. The low Y/Ho ratios presented only in the reef-flank facies and sealing facies are likely a suggestion of detrital contamination. Hence, this study confirms that REY patterns of the limestones at the base facies and reef-core facies can record ancient seawater information, and reefs can be used as a potential geochemical proxy for paleoenvironment studies throughout the Earth’s history.  相似文献   

19.
http://www.sciencedirect.com/science/article/pii/S1674987112001296   总被引:1,自引:1,他引:0  
We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Nagamangala belt) and further northwest in Nuggihalli belt and Kalyadi belt we speculate ca. 3.2–3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influence of post-magmatic alteration and/or contamination. About 1/3 of studied komatiites show Al-depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd/Yb)N ratios show low CaO/Al2O3 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaO/Al2O3 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (>1.0), CaO/Al2O3 (>1.0), Al2O3/TiO2 (<18) together with lower HREE, Y, Zr and Hf indicate their derivation from deeper upper mantle with minor garnet (majorite?) involvement in residue whereas lower (Gd/Yb)N (<1.0), CaO/Al2O3 (<0.9), higher Al2O3/TiO2 (>18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observed chemical characteristics (CaO/Al2O3, Al2O3/TiO2, MgO, Ni, Cr, Nb, Zr, Y, Hf, and REE) indicate derivation of the komatiite and komatiite basalt magmas from heterogeneous mantle (depleted to primitive mantle) at different depths in hot spot environments possibly with a rising plume. The low content of incompatible elements in studied komatiites suggest existence of depleted mantle during ca. 3.2 Ga which in turn imply an earlier episode of mantle differentiation, greenstone volcanism and continental growth probably during ca. 3.6–3.3 Ga which is substantiated by Nd and Pb isotope data of gneisses and komatiites in western Dharwar craton (WDC).  相似文献   

20.
Study of the concentration of major, trace, and rare earth elements (REE) in the Shahindezh karst bauxite deposit, northwestern Iran clarifies the relationship of the tetrad effect with geochemical parameters in the bauxite ores. The existence of irregular curves in the chondrite-normalized REE patterns as well as non-CHARAC behavior of geochemically isovalent pairs (Y/Ho) are related to the tetrad effect. The meaningful positive correlation between the sizes of the calculated T3 tetrad effect and some geochemical factors such as Y/Ho, ΣREE, La/Y, (La/Yb)N, and (LREE/HREE)N as well as some major oxides-based parameters like Al2O3 + LOI/SiO2 + Fe2O3, Al2O3/Fe2O3, Al2O3 + LOI, IOL, and SiO2 + Fe2O3 indicate that the studied bauxite horizon was likely deposited by different (acidic and/or alkalic) solutions at different stages. The lower part of the studied horizon with a thickness of ~4.7 m displays alkali characteristics whereas the upper parts of the horizon with a thickness of ~5.3 m are characterized by more acidic conditions. These results are fully supported by the co-occurrence of convex-concave tetrad effect curves in the chondrite-normalized REE patterns. Therefore, the tetrad effect phenomenon used in this study has proved to be a good and reliable geochemical proxy to assess the conditions of the depositional environment in the Shahindezh bauxite ores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号