首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
Spatially distributed hydrologic models can be effectively utilized for flood event simulation over basins where a complex system of reservoirs affecting the natural flow regime is present. Flood peak attenuation through mountain reservoirs can, in fact, mitigate the impact of major floods in flood‐prone areas of the lower river valley. Assessment of this effect for a complex reservoir system is performed with a spatially distributed hydrologic model where the surface runoff formation and the hydraulic routing through each reservoir and the river system are performed at a fine spatial and time resolution. The Toce River basin is presented as a case study, because of the presence of 14 active hydroelectric dams that affect the natural flow regime. A recent extreme flood event is simulated using a multi‐realization kriging method for modelling the spatial distribution of rainfall. A sensitivity analysis of the key elements of the distributed hydrologic model is also performed. The flood hydrograph attenuation is assessed. Several possible reservoir storage conditions are used to characterize the initial condition of each reservoir. The results demonstrate how a distributed hydrologic model can contribute to defining strategies for reservoir management in flood mitigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Nonstationary GEV-CDN models considering time as a covariate are built for evaluating the flood risk and failure risk of the major flood-control infrastructure in the Pearl River basin, China. The results indicate: (1) increasing peak flood flow is observed in the mainstream of the West River and North River basins and decreasing peak flood flow is observed in the East River basin; in particular, increasing peak flood flow is detected in the mainstream of the lower Pearl River basin and also in the Pearl River Delta region, the most densely populated region of the Pearl River basin; (2) differences in return periods analysed under stationarity and nonstationarity assumptions are found mainly for floods with return periods longer than 50 years; and (3) the failure risks of flood-control infrastructure based on failure risk analysis are higher under the nonstationarity assumption than under the stationarity assumption. The flood-control infrastructure is at higher risk of flood and failure under the influence of climate change and human activities in the middle and lower parts of Pearl River basin.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR G. Thirel  相似文献   

3.
常露  刘开磊  姚成  李致家 《湖泊科学》2013,25(3):422-427
随着社会经济的快速发展,洪水灾害造成的损失日益严重.洪水预报作为一项重要的防洪非工程措施,对防洪、抗洪工作起着至关重要的作用.淮河洪水危害的严重性和洪水演进过程的复杂性使得淮河洪水预报系统的研究长期以来受到高度重视.本文以王家坝至小柳巷区间流域为例,以河道洪水演算为主线,采用新安江三水源模型进行子流域降雨径流预报,概化具有行蓄洪区的干流河道,进行支流与干流、行蓄洪区与干流的洪水汇流耦合计算,采用实时更新的基于多元回归的方法确定水位流量关系,并以上游站点降雨径流预报模型提供的流量作为上边界条件、以下游站点的水位流量关系作为下边界条件,结合行蓄洪调度模型,建立具有行蓄洪区的河道洪水预报系统,再与基于K-最近邻(KNN)的非参数实时校正模型耦合,建立淮河中游河道洪水预报系统.采用多年资料模拟取得了较好的预报效果,并以2003和2007年大洪水为例进行检验,模拟结果精度较高,也证明了所建预报系统的合理性和适用性.  相似文献   

4.
The impacts of historical land cover changes witnessed between 1973 and 2000 on the hydrologic response of the Nyando River Basin were investigated. The land cover changes were obtained through consistent classifications of selected Landsat satellite images. Their effects on runoff peak discharges and volumes were subsequently assessed using selected hydrologic models for runoff generation and routing available within the HEC‐HMS. Physically based parameters of the models were estimated from the land cover change maps together with a digital elevation model and soil datasets of the basin. Observed storm events for the simulation were selected and their interpolated spatial distributions obtained using the univariate ordinary Kriging procedure. The simulated flows from the 14 sub‐catchments were routed downstream afterwards to obtain the accrued effects in the entire river basin. Model results obtained generally revealed significant and varying increases in the runoff peak discharges and volumes within the basin. In the upstream sub‐catchments with higher rates of deforestation, increases between 30 and 47% were observed in the peak discharge. In the entire basin, however, the flood peak discharges and volumes increased by at least 16 and 10% respectively during the entire study period. The study successfully outlined the hydrological consequences of the eminent land cover changes and hence the need for sustainable land use and catchment management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Guoqiang Wang  Zongxue Xu 《水文研究》2011,25(16):2506-2517
A grid‐based distributed hydrological model, PDTank model, is used to simulate hydrological processes in the upper Tone River catchment. The Tone River catchment often suffers from heavy rainfall events during the typhoon seasons. The reservoirs located in the catchment play an important role in flood regulation. Through the coupling of the PDTank model and a reservoir module that combines the storage function and operation function, the PDTank model is used for flood forecasting in this study. By comparing the hydrographs simulated using gauging and radar rainfall data, it is found that the spatial variability of rainfall is an important factor for flood simulation and the accuracy of the hydrographs simulated using radar rainfall data is slightly improved. The simulation of the typhoon flood event numbered No. 9 shows that the reservoirs in the catchment attenuate the peak flood discharge by 423·3 m3/s and validates the potential applicability of the distributed hydrological model on the assessment of function of reservoirs for flood control during typhoon seasons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Using a nonstationary flood frequency model, this study investigates the impact of trends on the estimation of flood frequencies and flood magnification factors. Analysis of annual peak streamflow data from 28 hydrological stations across the Pearl River basin, China, shows that: (1) northeast parts of the West and the North River basins are dominated by increasing annual peak streamflow, whereas decreasing trends of annual peak streamflow are prevailing in other regions of the Pearl River basin; (2) trends significantly impact the estimation of flood frequencies. The changing frequency of the same flood magnitude is related to the changing magnitude or significance/insignificance of trends, larger increasing frequency can be detected for stations with significant increasing trends of annual peak streamflow and vice versa, and smaller increasing magnitude for stations with not significant increasing annual peak streamflow, pointing to the critical impact of trends on estimation of flood frequencies; (3) larger‐than‐1 flood magnification factors are observed mainly in the northeast parts of the West River basin and in the North River basin, implying magnifying flood processes in these regions and a higher flood risk in comparison with design flood‐control standards; and (4) changes in hydrological extremes result from the integrated influence of human activities and climate change. Generally, magnifying flood regimes in the northeast Pearl River basin and in the North River basin are mainly the result of intensifying precipitation regime; smaller‐than‐1 flood magnification factors along the mainstream of the West River basin and also in the East River basin are the result of hydrological regulations of water reservoirs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The study simulated the effect of using reservoir storage for reducing flood peaks and volumes in urban areas with the Dzorwulu basin in Accra, Ghana as case study. A triangulated irregular network surface of the floodplain was created using ArcGIS from ESRI by integrating digital elevation model and the map of the study area. The weighted curve number for the basin was obtained from the land use and soil type shape files using ArcGIS. The Soil Conservation Service curve number unit hydrograph procedure was used to obtain an inflow hydrograph based on the highest rainfall recorded in recent history (3–4 June 1995) in the study area and then routed through an existing reservoir to assess the impact of the reservoir on potential flood peak attenuation. The results from the analysis indicate that a total of 13.09 × 106 m3 of flood water was generated during this 10‐h rainstorm, inundating a total area of 6.89 km2 with a depth of 4.95 m at the deepest section of the basin stream. The routing results showed that the reservoir has capacity to store 34.52% of the flood hydrograph leading to 45% reduction in flood peak and subsequently 38.5% reduction in flood inundation depth downstream of the reservoir. From results of the study, the reservoir storage concept looks promising for urban flood management in Ghana, especially in communities that are over‐urbanized downstream but have some space upstream for creating the storage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Severe floods can have disastrous impacts and cause wide ranging destruction in the Mekong River basin. At the same time groundwater resources are significantly influenced and extensively recharged by flood water in inundation areas of the basin. This study determines the variation of groundwater resources caused by flooding over inundated areas located in lower part of the Mekong River basin using numerical modeling and field observations. The inundation calculations have been evaluated using satellite image outputs. Comparing large, medium and small flood events, we conclude that flood control which reduces the area of inundation, results in a reduction of groundwater resources in the area. In 1993, a 19% reduction in inundation areas resulted in a 31% reduction in groundwater storage. In 1998, a 44% reduction in inundation areas led to a 42% reduction in groundwater storage. Thus, while flood control activities are vital to reduce negative flood impacts in the Mekong River basin, they also negatively impact groundwater resources in the area.  相似文献   

9.
淮河具有行蓄洪区河系洪水预报水力学模型研究   总被引:5,自引:0,他引:5  
针对淮河流域河系特点,建立淮河具有行蓄洪区河系洪水预报模型.干流河道洪水演进采用一维水动力学模型,钐岗分流量利用分流曲线法推求,利用虚拟线性水库法解决大洪水时支流洪水受干流顶托作用,临淮岗闸作为水力学模型的内边界条件进行处理,利用分流比法概化行洪过程,行洪区内只有蓄满时,才会有出流,行洪区内的洪水利用Muskingum...  相似文献   

10.

The assessment of flood risk under climate change impacts is necessary for sustainable flood management strategies at national level. Referring to the aforesaid statement, this research aims to evaluate the potential impacts of climate change on reservoir operations in the Huong River Basin, Vietnam. To enable further representation of climate change impacts, the HadGEM3-RA Regional Climate Model (RCM) under Representative Concentration Pathways (RCPs) 8.5 climate change scenario was used in this study. For assessing the level of flood risk posed to the study area, a coupled HEC-HMS hydrologic model and HEC-RAS hydrodynamic model was used to represent the behaviour of flow regimes under climate change impacts in the Huong River Basin. The key results demonstrated that the mean temperature and mean annual rainfall would be increased in the future from 0.2–0.8°C, and 4.8–6.0%, respectively. Consequently, the mean annual runoff and mean water level would also be increased from 10–30%, and 0.1–0.3 m above mean sea level, respectively. Moreover, the proposed reservoir operation rules corresponding to flood control warning stages was also derived to reduce peak flows downstream during the rainy season. Finally, the main findings of this study can be a good example for future planning of flood control reservoir systems in Vietnam.

  相似文献   

11.
The Itajaí River basin is one of the areas most affected by flood-related disasters in Brazil. Flood hazard maps based on digital elevation models (DEM) are an important alternative in the absence of detailed hydrological data and for application in large areas. We developed a flood hazard mapping methodology by combining flow frequency analysis with the Height Above the Nearest Drainage (HAND) model – f2HAND – and applied it in three municipalities in the Itajaí River basin. The f2HAND performance was evaluated through comparison with observed 2011 flood extent maps. Model performance and sensitivity were tested for different DEM resolutions, return periods and streamflow data from stations located upstream and downstream on the main river. The flood hazard mapping with our combined approach matched 92% of the 2011 flood event. We found that the f2HAND model has low sensitivity to DEM resolution and high sensitivity to area threshold of channel initiation.  相似文献   

12.
Abstract

This study contributes to the comprehensive assessment of flood hazard and risk for the Phrae flood plain of the Yom River basin in northern Thailand. The study was carried out using a hydrologic–hydrodynamic model in conjunction with a geographic information system (GIS). The model was calibrated and verified using the observed rainfall and river flood data during flood seasons in 1994 and 2001, respectively. Flooding scenarios were evaluated in terms of flooding depth for events of 25-, 50-, 100- and 200-year return periods. An impact-based hazard estimation technique was applied to assess the degree of hazard across the flood plain. The results showed that 78% of the Phrae flood-plain area of 476 km2 in the upper Yom River basin lies in the hazard zone of the 100-year return-period flood. Risk analyses were performed by incorporating flood hazard and the vulnerability of elements at risk. Based on relative magnitude of risk, flood-prone areas were divided into low-, moderate-, high- and severe-risk zones. For the 100-year return-period flood, the risk-free area was found to be 22% of the total flood plain, while areas under low, medium, high and severe risk were 33, 11, 28 and 6%, respectively. The outcomes are consistent with overall property damage recorded in the past. The study identifies risk areas for priority-based flood management, which is crucial when there is a limited budget to protect the entire risk zone simultaneously.

Citation Tingsanchali, T. & Karim, F. (2010) Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol. Sci. J. 55(2), 145–161.  相似文献   

13.
Japan has traditionally performed flood prevention through the construction and use of dikes, storage reservoirs, and basins which are costly and time consuming options. Another non-structural option is to operate the flood control system appropriately with a view to reducing flood damage. In this paper, a flood control system combining the runoff prediction model in the whole river basin with the reservoir operation is discussed. Different models of the runoff process are introduced in order to compare their accuracies and the computational time for the flood forecasting system. The reservoir operational rule is formulated in terms of fuzzy inference theory. Historical data are applied in a case study for verification of the proposed theories.  相似文献   

14.
气候变化和人类活动导致珠江流域水文变化,变化前后洪水频率分布显著不同.运用滑动秩和(Mann-Whitney U test)结合Brown-Forsythe、滑动T、有序聚类和Mann-Kendall检验法,并用累积距平曲线法获取年最大流量序列详细信息,综合确定样本最佳变化节点,并对水文变化成因做了系统分析.在此基础上,对整体序列、变化前后序列用线性矩法推求广义极值分布参数以及不同重现期设计流量.结果表明:(1)西江大部以及北江流域最佳变化节点在1991年左右;东江流域最佳变化节点与该流域内3大控制性水库建成时间基本吻合;(2)变化后,西江、北江年最大流量持续增加,洪峰强度增大,尤其是西江干流年最大流量显著增加;东江流域年最大流量显著减小,洪峰强度降低;(3)变化后,西江与北江洪水风险增加,尤其是下游珠三角地区本身受人类活动显著影响,加之西江与北江持续增加的洪水强度,珠三角地区发生洪水的强度及频次加剧,而东江洪水风险减小.此研究对于珠江流域在变化环境下的洪水风险评估与防洪抗灾具有重要意义.  相似文献   

15.
Lei Wang  Jaehyung Yu 《水文研究》2012,26(19):2973-2984
The construction of stormwater detention basins is a best management practice to effectively control floods, to provide additional surface storage for excess floodwater and to compensate for the adverse effects of urban development. Traditional field‐based levelling survey methods are very time consuming and subject to human‐induced arbitrariness and error. This article presents an approach to modelling detention basins measured from light detection and ranging remote sensing data. A case study is illustrated by using the White Oak Bayou watershed of Harris County, Texas. The storage–stage curve obtained from the volumetric analysis is used in a modified detention basins routing model, which was developed by adding the weir structure control to the traditional hydrologic reservoir routing equations. The model simulation showed that the peak flow of the synthetic 100‐year reoccurrence event was effectively reduced and delayed by the detention basins. The comparison with the simulation results from the traditional reservoir routing model suggested that previous studies using the reservoir routing model were likely to underestimate the flood reduction effect of detention basins. The sensitivity analysis of the parameters showed that the detention basin design and evaluation should pay more attention on the weir height and river channel's roughness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

In a typical reservoir routing problem, the givens are the inflow hydrograph and reservoir characteristic functions. Flood attenuation investigations can be easily accomplished using a hydrological or hydraulic routing of the inflow hydrograph to obtain the reservoir outflow hydrograph, unless the inflow hydrograph is unavailable. Although attempts for runoff simulation have been made in ungauged basins, there is only a limited degree of success in special cases. Those approaches are, in general, not suitable for basins with a reservoir. The objective of this study is to propose a procedure for flood attenuation estimation in ungauged reservoir basins. In this study, a kinematic-wave based geomorphic IUH model was adopted. The reservoir inflow hydrograph was generated through convolution integration using the rainfall excess and basin geomorphic information. Consequently, a fourth-order Runge-Kutta method was used to route the inflow hydrograph to obtain the reservoir outflow hydrograph without the aid of recorded flow data. Flood attenuation was estimated through the analysis of the inflow and outflow hydrographs of the reservoir. An ungauged reservoir basin in southern Taiwan is presented as an example to show the applicability of the proposed analytical procedure. The analytical results provide valuable information for downstream flood control work for different return periods.  相似文献   

17.
ABSTRACT

This study experiments with reservoir representation schemes to improve the ability to model active water management in the National Water Model (NWM). For this purpose, we developed an integrated water management model, NWM-ResSim, by coupling the NWM with HEC-ResSim, and two reservoir representation schemes are tested: simulation of reservoir operations and retrieval of scheduled operations. The experiments focus on a pilot reservoir domain in the Russian River basin – Lake Mendocino, California – and its contributing watershed. The evaluation results suggest that the NWM-ResSim improves the simulation performance of reservoir outflow from this managed reservoir over the NWM default level pool routing scheme. The degree of this improvement depends on the suitability of the operation guidance; the reservoir operations simulation scheme could have acceptable errors for the purposes of water resources management, but not for flood operations. Results of the retrieval scheme of scheduled operations demonstrated better performance for sub-daily flood operations.  相似文献   

18.
Sheng Yue 《水文研究》2001,15(6):1033-1045
A gamma distribution is one of the most frequently selected distribution types for hydrological frequency analysis. The bivariate gamma distribution with gamma marginals may be useful for analysing multivariate hydrological events. This study investigates the applicability of a bivariate gamma model with five parameters for describing the joint probability behavior of multivariate flood events. The parameters are proposed to be estimated from the marginal distributions by the method of moments. The joint distribution, the conditional distribution, and the associated return periods are derived from marginals. The usefulness of the model is demonstrated by representing the joint probabilistic behaviour between correlated flood peak and flood volume and between correlated flood volume and flood duration in the Madawask River basin in the province of Quebec, Canada. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

A semi-distributed hydrological model and reservoir optimization algorithm are used to evaluate the potential impacts of climate change on existing and proposed reservoirs in the Sonora River Basin, Mexico. Inter-annual climatic variability, a bimodal precipitation regime and climate change uncertainties present challenges to water resource management in the region. Hydrological assessments are conducted for three meteorological products during a historical period and a future climate change scenario. Historical (1990–2000) and future (2031–2040) projections were derived from a mesoscale model forced with boundary conditions from a general circulation model under a high emissions scenario. The results reveal significantly higher precipitation, reservoir inflows, elevations and releases in the future relative to historical simulations. Furthermore, hydrological seasonality might be altered with a shift toward earlier water supply during the North American monsoon. The proposed infrastructure would have a limited ability to ameliorate future conditions, with more benefits in a tributary with lower flood hazard. These projections of the impacts of climate change and its interaction with infrastructure should be of interest to water resources managers in arid and semi-arid regions.
Editor D. Koutsoyiannis  相似文献   

20.
ABSTRACT

Stream gauge-based information is the foundation for many hydrological applications in a river basin including the aquatic-habitat conservation. A simple two-parameter model for routing streamflow depth (alternatively, stream–stage) hydrographs and estimating corresponding discharge hydrographs in river channels is proposed using the multilinear approach, based on Nash-type discrete-cascade model. The applicability of this model is investigated by extending its framework to the realm of compound cross-section trapezoidal channels for both in-bank and overbank flows by using 20 flood events of the Tiber River in the Umbria region of Central Italy, and subsequently comparing the simulated results with the corresponding simulations of the HEC-RAS (Hydrologic Engineering Center – River Analysis System) hydrodynamic model and observed flow depth hydrographs. The field application, comparative study, and uncertainty and sensitivity analysis of the results demonstrate that the proposed multilinear discrete Nash-cascade stage-hydrograph (MDNS) routing model has the potential for routing floods in real-world rivers and canal irrigation systems, especially in operational mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号