首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Automation in baseflow separation procedures allowed fast and convenient baseflow and baseflow index (BF and BFI) estimation for studies including multiple watersheds and covering large spatio‐temporal scales. While most of the existing algorithms are developed and tested extensively for rainfall‐ and baseflow‐dominated systems, little attention is paid on their suitability for snowmelt‐dominated systems. Current publishing practice in regional‐scale studies is to omit BF and BFI uncertainty evaluation or sensitivity analysis. Instead, “standard” and “previously recommended” parameterizations are transferred from rainfall/BF to snowmelt‐dominated systems. We believe that this practice should be abandoned. First, we demonstrate explicitly that the three most popular heuristic automated BF separation methods—Lyne–Hollick and Eckhardt recursive digital filters, and the U.K. Institute of Hydrology smoothed minima method—produce a wide range of annual BF and BFI estimates due to parameter sensitivity during the annual snowmelt period. Then, we propose a solution for cases when BF and BFI calibration is not possible, namely excluding the snowmelt‐dominated period from the analysis. We developed an automated filtering procedure, which divides the hydrograph into pre‐snowbelt, post‐snowmelt, and snowmelt periods. The filter was tested successfully on 218 continuous water years of daily streamflow data for four snowmelt‐dominated headwater watersheds located in Wyoming (60–837 km2). The post‐snowmelt BF and BFI metric can be used for characterizing summer low‐flows for snowmelt‐dominated systems. Our results show that post‐snowmelt BF and BFI sensitivity to filter parameterization is reduced compared with the sensitivity of annual BF and BFI and is similar to the sensitivity levels for rainfall/baseflow systems.  相似文献   

2.
A geochemical and end‐member mixing analysis (EMMA) is undertaken in Devil Canyon catchment, located in southern California, to further understanding of watershed behaviour and source water contributions after an acute and extensive wildfire. Physical and chemical transformations in post‐fire watersheds are known to increase overland flow and decrease infiltration, mainly due to formation of a hydrophobic layer at, or near, the soil surface. However, less is known about subsurface flow response in burned watersheds. The current study incorporates EMMA to evaluate and quantify source water contributions before, and after, a catchment affected by wildfires in southern California during the fall of 2003. Pre‐ and post‐fire stream water data were available at several sampling sites within the catchment, allowing the identification of contributing water sources at varying spatial scales. Proposed end‐member observations (groundwater, overland flow, shallow subsurface flow) were also collected to constrain and develop the catchment mixing model. Post‐fire source water changes are more evident in the smaller and faster responding sub‐basin (interior sampling point). Early post‐fire storm events are dominated by overland flow with no significant soil water or groundwater flow contribution. Inter‐storm streamwater in this smaller basin shows an increase in groundwater and a decrease in soil water. In the larger, baseflow‐dominated system, source water components appear less affected by fire. A slight increase in lateral flow is observed with only a slight decrease in baseflow. Changes in the post‐fire flow regimes affect nutrient loading and chemical response of the basin. Relatively rapid recovery of the chaparral ecosystem is evidenced, with active re‐growth and evapotranspiration evidenced by the fourth post‐fire rainy season. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The lower coastal plain of the Southeast USA is undergoing rapid urbanisation as a result of population growth. Land use change has been shown to affect watershed hydrology by altering stream flow and, ultimately, impairing water quality and ecologic health. However, because few long‐term studies have focused on groundwater–surface water interactions in lowland watersheds, it is difficult to establish what the effect of development might be in the coastal plain region. The objective of this study was to use an innovative improvement to end‐member mixing analysis (EMMA) to identify time sequences of hydrologic processes affecting storm flow. Hydrologic and major ion chemical data from groundwater, soil water, precipitation and stream sites were collected over a 2‐year period at a watershed located in USDA Forest Service's Santee Experimental Forest near Charleston, South Carolina, USA. Stream flow was ephemeral and highly dependent on evapotranspiration rates and rainfall amount and intensity. Hydrograph separation for a series of storm events using EMMA allowed us to identify precipitation, riparian groundwater and streambed groundwater as main sources to stream flow, although source contribution varied as a function of antecedent soil moisture condition. Precipitation, as runoff, dominated stream flow during all storm events while riparian and streambed groundwater contributions varied and were mainly dependent on antecedent soil moisture condition. Sensitivity analyses examined the influence of 10% and 50% increases in analyte concentration on EMMA calculations and found that contribution estimates were very sensitive to changes in chemistry. This study has implications on the type of methodology used in traditional forms of EMMA research, particularly in the recognition and use of median end‐member water chemistry in hydrograph separation techniques. Potential effects of urban development on important hydrologic processes (groundwater recharge, interflow, runoff, etc.) that influence stream flow in these lowland watersheds were qualitatively examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
We analysed contributions to run‐off using hourly stream water samples from seven individual melt‐induced run‐off events (plus one rainfall event) during 2011, 2012 and 2013 in two nested glacierized catchments in the Eastern Italian Alps. Electrical conductivity and stable isotopes of water were used for mixing analysis and two‐component and three‐component hydrograph separation. High‐elevation snowmelt, glacier melt and autumn groundwater were identified as major end‐members. Discharge and tracers in the stream followed the diurnal variations of air temperature but markedly reacted to rainfall inputs. Hysteresis patterns between discharge and electrical conductivity during the melt‐induced run‐off events revealed contrasting loop directions at the two monitored stream sections. Snowmelt contribution to run‐off was highest in June and July (up to 33%), whereas the maximum contribution of glacier melt was reached in August (up to 65%). The maximum groundwater and rainfall contributions were 62% and 11%, respectively. Run‐off events were generally characterized by decreasing snowmelt and increasing glacier melt fractions from the beginning to the end of the summer 2012, while run‐off events in 2013 showed less variable snowmelt and lower glacier melt contributions than in 2012. The results provided essential insights into the complex dynamics of melt‐induced run‐off events and may be of further use in the context of water resource management in alpine catchments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号