首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A process‐based, spatially distributed hydrological model was developed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions (arctic hydrological and thermal model, ARHYTHM). The model first determines the flow direction in each element, the channel drainage network and the drainage area based upon the digital elevation data. Then it simulates various physical processes: including snow ablation, subsurface flow, overland flow and channel flow routing, soil thawing and evapotranspiration. The kinematic wave method is used for conducting overland flow and channel flow routing. The subsurface flow is simulated using the Darcian approach. The energy balance scheme was the primary approach used in energy‐related process simulations (snowmelt and evapotranspiration), although there are options to model snowmelt by the degree‐day method and evapotranspiration by the Priestley–Taylor equation. This hydrological model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture and evapotranspiration over a watershed at each time step as well as discharge in any specified channel(s). The model was applied to Imnavait watershed (about 2·2 km2) and the Upper Kuparuk River basin (about 146 km2) in northern Alaska. Simulated results of spatially distributed soil moisture content, discharge at gauging stations, snowpack ablations curves and other results yield reasonable agreement, both spatially and temporally, with available data sets such as SAR imagery‐generated soil moisture data and field measurements of snowpack ablation, and discharge data at selected points. The initial timing of simulated discharge does not compare well with the measured data during snowmelt periods mainly because the effect of snow damming on runoff was not considered in the model. Results from the application of this model demonstrate that spatially distributed models have the potential for improving our understanding of hydrology for certain settings. Finally, a critical component that led to the performance of this modelling is the coupling of the mass and energy processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Distributed, continuous hydrologic models promote better understanding of hydrology and enable integrated hydrologic analyses by providing a more detailed picture of water transport processes across the varying landscape. However, such models are not widely used in routine modelling practices, due in part to the extensive data input requirements, computational demands, and complexity of routing algorithms. We developed a two‐dimensional continuous hydrologic model, HYSTAR, using a time‐area method within a grid‐based spatial data model with the goal of providing an alternative way to simulate spatiotemporally varied watershed‐scale hydrologic processes. The model calculates the direct runoff hydrograph by coupling a time‐area routing scheme with a dynamic rainfall excess sub‐model implemented here using a modified curve number method with an hourly time step, explicitly considering downstream ‘reinfiltration’ of routed surface runoff. Soil moisture content is determined at each time interval based on a water balance equation, and overland and channel runoff is routed on time‐area maps, representing spatial variation in hydraulic characteristics for each time interval in a storm event. Simulating runoff hydrographs does not depend on unit hydrograph theory or on solution of the Saint Venant equation, yet retains the simplicity of a unit hydrograph approach and the capability of explicitly simulating two‐dimensional flow routing. The model provided acceptable performance in predicting daily and monthly runoff for a 6‐year period for a watershed in Virginia (USA) using readily available geographic information about the watershed landscape. Spatial and temporal variability in simulated effective runoff depth and time area maps dynamically show the areas of the watershed contributing to the direct runoff hydrograph at the outlet over time, consistent with the variable source area overland flow generation mechanism. The model offers a way to simulate watershed processes and runoff hydrographs using the time‐area method, providing a simple, efficient, and sound framework that explicitly represents mechanisms of spatially and temporally varied hydrologic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Basin landscapes possess an identifiable spatial structure, fashioned by climate, geology and land use, that affects their hydrologic response. This structure defines a basin's hydrogeological signature and corresponding patterns of runoff and stream chemistry. Interpreting this signature expresses a fundamental understanding of basin hydrology in terms of the dominant hydrologic components: surface, interflow and groundwater runoff. Using spatial analysis techniques, spatially distributed watershed characteristics and measurements of rainfall and runoff, we present an approach for modelling basin hydrology that integrates hydrogeological interpretation and hydrologic response unit concepts, applicable to both new and existing rainfall‐runoff models. The benefits of our modelling approach are a clearly defined distribution of dominant runoff form and behaviour, which is useful for interpreting functions of runoff in the recruitment and transport of sediment and other contaminants, and limited over‐parameterization. Our methods are illustrated in a case study focused on four watersheds (24 to 50 km2) draining the southern coast of California for the period October 1988 though to September 2002. Based on our hydrogeological interpretation, we present a new rainfall‐runoff model developed to simulate both surface and subsurface runoff, where surface runoff is from either urban or rural surfaces and subsurface runoff is either interflow from steep shallow soils or groundwater from bedrock and coarse‐textured fan deposits. Our assertions and model results are supported using streamflow data from seven US Geological Survey stream gauges and measured stream silica concentrations from two Santa Barbara Channel–Long Term Ecological Research Project sampling sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Two hydrological models with different structures and spatial capabilities are selected to simulate the runoff and actual evapotranspiration (AET) in Yingluoxia watershed, the upper reaches of Heihe River basin in northwest of China, to validate their performances in simulating hydrological processes. They are calibrated against the observed runoff at the watershed outlet (Yingluoxia station) for the period from 1990 to 1996 and validated for the period from 1997 to 2000. Results show that in terms of the simulated hydrograph against observations and the two selected objective functions, the conceptual, lumped Water And Snow balance MODeling system (WASMOD) with simple model structure could give the same, even better results than the semi‐distributed Soil and Water Assessment Tool (SWAT) with complex structure. Compared with other model applications to the watershed, simulation for monthly runoff made in this study seems better. With regard to AET, results calculated from both models are comparable as well. Both WASMOD and SWAT are proved to be suitable and satisfactory tools in simulating hydrological processes in the study area, although both of them have strengths and limitations in applications. WASMOD model may be one of the promising alternatives in hydrological modelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Saturation‐excess runoff is the major runoff mechanism in humid well‐vegetated areas where infiltration rates often exceed rainfall intensity. Although the Soil and Water Assessment Tool (SWAT) is one of the most widely used models, it predicts runoff based mainly on soil and land use characteristics, and is implicitly an infiltration‐excess runoff type of model. Previous attempts to incorporate the saturation‐excess runoff mechanism in SWAT fell short due to the inability to distribute water from one hydrological response unit to another. This paper introduces a modified version of SWAT, referred to as SWAT‐Hillslope (SWAT‐HS). This modification improves the simulation of saturation‐excess runoff by redefining hydrological response units based on wetness classes and by introducing a surface aquifer with the ability to route interflow from “drier” to “wetter” wetness classes. Mathematically, the surface aquifer is a nonlinear reservoir that generates rapid subsurface stormflow as the water table in the surface aquifer rises. The SWAT‐HS model was tested in the Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill region of New York, USA. SWAT‐HS predicted discharge well with a Nash‐Sutcliffe Efficiency of 0.68 and 0.87 for daily and monthly time steps. Compared to the original SWAT model, SWAT‐HS predicted less surface runoff and groundwater flow and more lateral flow. The saturated areas predicted by SWAT‐HS were concentrated in locations with a high topographic index and were in agreement with field observations. With the incorporation of topographic characteristics and the addition of the surface aquifer, SWAT‐HS improved streamflow simulation and gave a good representation of saturated areas on the dates that measurements were available. SWAT‐HS is expected to improve water quality model predictions where the location of the surface runoff matters.  相似文献   

6.
A number of previous studies using models of integrated surface‐subsurface hydrology have adopted the Panday and Huyakorn (P&H) tilted V‐catchment test case (Panday S, Huyakorn PS. 2004. A fully coupled spatially distributed model for evaluating surface/subsurface flow. Advances in Water Resources 27: 361–382) to show inter‐code comparability. The P&H test case is used to evaluate models that simulate a broad range of hydrological processes, and yet only the catchment outflow hydrograph has been presented as verification of the consistency between codes. Therefore, a more comprehensive evaluation of the surface‐subsurface hydrology of the P&H case is needed. This study explores the internal catchment functioning of the P&H case, using the popular catchment simulator MODHMS. The processes leading to streamflow generation in the model are illustrated, including separation of overland flow (OLF) and groundwater discharge to the stream. The results identify non‐physical flow processes due to the problem set‐up, and modifications to the P&H case are suggested that include changes to stream roughness and incision of the stream channel to overcome these shortcomings. A modified P&H case produced more plausible transfers between OLF and the stream, and an increased groundwater discharge to the stream (6·5% of streamflow in the modified case compared to 0·5% in the original case). Despite changes to internal flow processes, near‐identical outflow hydrographs were obtained, showing the importance of considering and comparing internal flow processes when using surface‐subsurface hydrology test cases to evaluate integrated hydrological simulators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Agricultural pollutant runoff is a major source of water contamination in California's Sacramento River watershed where 8500 km2 of agricultural land influences water quality. The Soil and Water Assessment Tool (SWAT) hydrology, sediment, nitrate and pesticide transport components were assessed for the Sacramento River watershed. To represent flood conveyance in the area, the model was improved by implementing a flood routing algorithm. Sensitivity/uncertainty analyses and multi‐objective calibration were incorporated into the model application for predicting streamflow, sediment, nitrate and pesticides (chlorpyrifos and diazinon) at multiple watershed sites from 1992 to 2008. Most of the observed data were within the 95% uncertainty interval, indicating that the SWAT simulations were capturing the uncertainties that existed, such as model simplification, observed data errors and lack of agricultural management data. The monthly Nash–Sutcliffe coefficients at the watershed outlet ranged from 0.48 to 0.82, indicating that the model was able to successfully predict streamflow and agricultural pollutant transport after calibration. Predicted sediment loads were highly correlated to streamflow, whereas nitrate, chlorpyrifos and diazinon were moderately correlated to streamflow. This indicates that timing of agricultural management operations plays a role in agricultural pollutant runoff. Best management practices, such as pesticide use limits during wet seasons, could improve water quality in the Sacramento River watershed. The calibrated model establishes a modelling framework for further studies of hydrology, water quality and ecosystem protection in the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Agricultural water management (AWM) is the adaptation strategy for increasing agricultural production through enhancing water resources availability while maintaining ecosystem services. This study characterizes groundwater hydrology in the Kothapally agricultural watershed, in hard rock Deccan plateau area in India and assesses the impact of AWM interventions on groundwater recharge using a calibrated and validated hydrological model, SWAT, in combination with observed water table data in 62 geo‐referenced open wells. Kothapally receives, on average, 750 mm rainfall (nearly 90% of annual rainfall) during the monsoon season (June to October). Water balance showed that 72% of total rainfall was converted as evapotranspiration (ET), 16% was stored in aquifer, and 8% exported as runoff from the watershed boundary with AWM interventions. Nearly 60% of the runoff harvested by AWM interventions recharged shallow aquifers and rest of the 40% increased ET. Water harvesting structures (WHS) contributed 2.5 m additional head in open wells, whereas hydraulic head under natural condition was 3.5 m, resulting in total 6 m rise in water table during the monsoon. At the field scale, WHSs recharged open wells at a 200 to 400 m spatial scale.  相似文献   

9.
C. L. Tague  L. E. Band 《水文研究》2001,15(8):1415-1439
This paper explores the behaviour and sensitivity of a watershed model used for simulating lateral soil water redistribution and runoff production. In applications such as modelling the effects of land‐use change in small headwater catchments, interactions between soil moisture, runoff and ecological processes are important. Because climate, soil and canopy characteristics are spatially variable, both the pattern of soil moisture and the associated outflow must be represented in modelling these processes. This study compares implicit and explicit routing approaches to modelling the evolution of soil moisture pattern and spatially variable runoff production. It also addresses the implications of using different landscape partitioning strategies. This study presents the results of calibration and application of these different routing and landscape partitioning approaches on a 60 ha forested watershed in Western Oregon. For comparison, the different approaches are incorporated into a physically based hydro‐ecological model, RHESSys, and the resulting simulated soil moisture, runoff production and sensitivity to unbiased error are examined. Results illustrate that both routing approaches can be calibrated to achieve a reasonable fit between observed and modelled outflow. Calibrated values for effective watershed hydraulic conductivity are higher for the explicit routing approach, which illustrates differences between the two routing approaches in their representation of internal watershed dynamics. The explicit approach illustrates a seasonal shift in drainage organization from watershed to more local control as climate goes from a winter wet to a summer dry period. Assumptions used in the implicit approach maintain the same pattern of drainage organization throughout the season. The implicit approach is also more sensitive to random error in soil and topographic input information, particularly during wetter periods. Comparison between the two routing approaches illustrates the advantage of the explicit routing approach, although the loss of computational efficiency associated with the explicit routing approach is noted. To compare different strategies for partitioning the landscape, the use of a non‐grid‐based method of partitioning is introduced and shown to be comparable to grid‐based partitioning in terms of simulated soil moisture and runoff production. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The integration of a two-dimensional, raster-based rainfall–runoff model, CASC2D, with a raster geographical information system (GIS), GRASS, offers enhanced capabilities for analysing the hydrological impact under a variety of land management scenarios. The spatially varied components of the watershed, such as slope, soil texture, surface roughness and land-use disturbance, were characterized in GRASS at a user-specified grid cell resolution for input into the CASC2D model. CASC2D is a raster-based, single-event rainfall–runoff model that divides the watershed into grid cell elements and simulates the hydrological processes of infiltration, overland flow and channel flow in response to distributed rainfall precipitation. The five-step integration of CASC2D and GRASS demonstrates the potential for analysing spatially and temporally varied hydrological processes within a 50 square mile semi-arid watershed. By defining possible land-use disturbance scenarios for the watershed, a variety of rainfall–runoff events were simulated to determine the changes in watershed response under varying disturbance and rainfall conditions. Additionally, spatially distributed infiltration outputs derived from the simulations were analysed in GRASS to determine the variability of hydrological change within the watershed. Grid cell computational capabilities in GRASS allow the user to combine the scenario simulation outputs with other distributed watershed parameters to develop complex maps depicting potential areas of hydrological sensitivity. This GIS–hydrological model integration provides valuable spatial information to researchers and managers concerned with the study and effects of land-use on hydrological response.  相似文献   

11.
Fluvial erosion processes are driven by water discharge on the land surface, which is produced by surface runoff and groundwater discharge. Although groundwater is often neglected in long‐term landscape evolution problems, water table levels control patterns of Dunne runoff production, and groundwater discharge can contribute significantly to storm flows. In this analysis, we investigate the role that groundwater movement plays in long‐term drainage basin evolution by modifying a widely used landscape evolution model to include a more detailed representation of basin hydrology. Precipitation is generated by a stochastic process, and the precipitation is partitioned between surface runoff and groundwater recharge using a specified infiltration capacity. Groundwater flow is simulated by a dynamic two‐dimensional Dupuit equation for an unconfined aquifer with an irregular underlying impervious layer. The model is applied to the WE‐38 basin, an experimental catchment in Pennsylvania, because 60–80 per cent of the discharge is derived from groundwater and substantial hydrologic and geomorphic information is available. The hydrologic model is first calibrated to match the observed streamflows, and then the combined hydrologic/geomorphic model is used to simulate scenarios with different infiltration capacities. The results of this modelling exercise indicate that the basin can be divided into three zones with distinct streamflow‐generating characteristics, and different parts of the basin can have different geomorphic effective events. Over long periods of time, scenarios in which groundwater discharge is large tend to modify the topography in a way that promotes groundwater discharge and inhibits Dunne runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Experimental research in the Ethiopian highlands found that saturation excess induced runoff and erosion are common in the sub‐humid conditions. Because most erosion simulation models applied in the highlands are based on infiltration excess, we, as an alternative, developed the Parameter Efficient Distributed (PED) model, which can simulate water and sediment fluxes in landscapes with saturation excess runoff. The PED model has previously only been tested at the outlet of a watershed and not for distributed runoff and sediment concentration within the watershed. In this study, we compare the distributed storm runoff and sediment concentration of the PED model against collected data in the 95‐ha Debre Mawi watershed and three of its nested sub‐watersheds for the 2010 and 2011 rainy seasons. In the PED model framework, the hydrology of the watershed is divided between infiltrating and runoff zones, with erosion only taking place from two surface runoff zones. Daily storm runoff and sediment concentration values, ranging from 0.5 to over 30 mm and from 0.1 to 35 g l?1, respectively, were well simulated. The Nash Sutcliffe efficiency values for the daily storm runoff for outlet and sub‐watersheds ranged from 0.66 to 0.82, and the Nash–Sutcliffe efficiency for daily sediment concentrations were greater than 0.78. Furthermore, the model uses realistic fractional areas for surface and subsurface flow contributions, for example between saturated areas (15%), degraded areas (30%) and permeable areas (55%) at the main outlet, while close similarity was found for the remaining hydrology and erosion parameter values. One exception occurred for the distinctly greater transport limited parameter at the actively gullying lower part of the watershed. The results suggest that the model based on saturation excess provides a good representation of the observed spatially distributed runoff and sediment concentrations within a watershed by modelling the bottom lands (as opposed to the uplands) as the dominant contributor of the runoff and sediment load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, we investigated the responses of hydrology and sediment yield with impacts of land‐use and climate change scenarios in the Be River Catchment, using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a powerful tool for simulating the impact of environmental change on hydrology and sediment yield in this catchment. The hydrologic and sediment yield responses to land‐use and climate changes were simulated based on the calibrated model. The results indicated that a 16.3% decrease in forest land is likely to increase streamflow (0.2 to 0.4%), sediment load (1.8 to 3.0%), and surface runoff (SURQ) (4.8 to 10.7%) and to decrease groundwater discharge (GW_Q) (3.5 to 7.9%). Climate change in the catchment leads to decreases in streamflow (0.7 to 6.9%) and GW_Q (3.0 to 8.4%), increase in evapotranspiration (0.5 to 2.9%), and changes in SURQ (?5.3 to 2.3%) and sediment load (?5.3 to 4.4%). The combined impacts of land‐use and climate changes decrease streamflow (2.0 to 3.9%) and GW_Q (12.3 to 14.0%), increase evapotranspiration (0.7 to 2.8%), SURQ (8.2 to 12.4%), and sediment load (2.0 to 7.9%). In general, the separate impacts of climate and land‐use changes on streamflow, sediment load, and water balance components are offset each other. However, SURQ and some component of subsurface flow are more sensitive to land‐use change than to climate change. Furthermore, the results emphasized water scarcity during the dry season and increased soil erosion during the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Groundwater abstraction and depletion were assessed at a 1‐km resolution in the irrigated areas of the Indus Basin using remotely sensed evapotranspiration (ET) and precipitation; a process‐based hydrological model and spatial information on canal water supplies. A calibrated Soil and Water Assessment Tool (SWAT) model was used to derive total annual irrigation applied in the irrigated areas of the basin during the year 2007. The SWAT model was parameterized by station corrected precipitation data (R) from the Tropical Rainfall Monitoring Mission, land use, soil type, and outlet locations. The model was calibrated using a new approach based on spatially distributed ET fields derived from different satellite sensors. The calibration results were satisfactory and strong improvements were obtained in the Nash‐Sutcliffe criterion (0.52 to 0.93), bias (?17.3% to ?0.4%), and the Pearson correlation coefficient (0.78 to 0.93). Satellite information on R and ET was then combined with model results of surface runoff, drainage, and percolation to derive groundwater abstraction and depletion at a nominal resolution of 1 km. It was estimated that in 2007, 68 km3 (262 mm) of groundwater was abstracted in the Indus Basin while 31 km3 (121 mm) was depleted. The mean error was 41 mm/year and 62 mm/year at 50% and 70% probability of exceedance, respectively. Pakistani and Indian Punjab and Haryana were the most vulnerable areas to groundwater depletion and strong measures are required to maintain aquifer sustainability.  相似文献   

15.
The present effect of watershed subdivision on simulated water balance components using the thoroughly tested Soil and Water Assessment Tool (SWAT) model has been evaluated for the Nagwan watershed in eastern India. Observed meteorological and hydrological data (daily rainfall, temperature, relative humidity and runoff) for the years 1995 to 1998 were collected and used. The watershed and sub‐watershed boundaries, slope and soil texture maps were generated using a geographical information system. A supervised classification method was used for land‐use/cover classification from satellite imagery of 1996. In order to study the effect of watershed subdivision, the watershed was spatially defined into three decomposition schemes, namely a single watershed, and 12 and 22 sub‐watersheds. The simulation using the SWAT model was done for a period of 4 years (1995 to 1998). Results of the study showed a perfect water balance for the Nagwan watershed under all of the decomposition schemes. Results also revealed that the number and size of sub‐watersheds do not appreciably affect surface runoff. Except for runoff, there was a marked variation in the individual components of the water balance under the three decomposition schemes. Though the runoff component of the water balance showed negligible variation among the three cases, variations were noticed in the other components: evapotranspiration (5 to 48%), percolation (2 to 26%) and soil water content (0·30 to 22%). Thus, based on this study, it is concluded that watershed subdivision has a significant effect on the water balance components. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The evaluation of climate change and its side effects on the hydrological processes of the basin can increasingly help in dealing with the challenges that water resource managers and planners face in future courses. These side effects are investigated using the simulation of hydrological processes with the help of physical rainfall‐runoff model. Hydrological models provide a framework for examining the relationship between climate and water resources. This research aims at the investigation of the effect of climate change on the runoff of Gharesou, which is one of the main branches of the “Karkheh” River in Iran during the periods 2040–2069. To achieve this, the distributed hydrological model Soil and Water Assessment Tool (SWAT) – a model that is sensitive to the changes in land, water, and climate – has been used with the aim of evaluating the impact of climate change on the hydrology of the Gharesou Basin. For this reason, first, the continuous distributed model of rainfall‐runoff SWAT for the period 1971–2000 has been calibrated and validated. Next, with the aim of evaluating the impact of climate change and global warming on the basin hydrology for the period 2040–2069, HadCM3‐AR4 global climate model data under the A2 scenario – from the SRES scenario set‐haves been downscaled. Eventually, the downscaled climate data haves been introduced in the SWAT model, and the future runoff changes have been studied. The results showed that the temperature increases in most of the months, and the precipitation rate exhibits a change in the range of ±30%. Moreover, the produced runoff in this period changes from ?90 to 120% during different months.  相似文献   

17.
Hydrological interaction between surface and subsurface water systems has a significant impact on water quality, ecosystems and biogeochemistry cycling of both systems. Distributed models have been developed to simulate this function, but they require detailed spatial inputs and extensive computation time. The soil and water assessment tool (SWAT) model is a semi‐distributed model that has been successfully applied around the world. However, it has not been able to simulate the two‐way exchanges between surface water and groundwater. In this study, the SWAT‐landscape unit (LU) model – based on a catena method that routes flow across three LUs (the divide, the hillslope and the valley) – was modified and applied in the floodplain of the Garonne River. The modified model was called SWAT‐LUD. Darcy's equation was applied to simulate groundwater flow. The algorithm for surface water‐level simulation during flooding periods was modified, and the influence of flooding on groundwater levels was added to the model. Chloride was chosen as a conservative tracer to test simulated water exchanges. The simulated water exchange quantity from SWAT‐LUD was compared with the output of a two‐dimensional distributed model, surface–subsurface water exchange model. The results showed that simulated groundwater levels in the LU adjoining the river matched the observed data very well. Additionally, SWAT‐LUD model was able to reflect the actual water exchange between the river and the aquifer. It showed that river water discharge has a significant influence on the surface–groundwater exchanges. The main water flow direction in the river/groundwater interface was from groundwater to river; water that flowed in this direction accounted for 65% of the total exchanged water volume. The water mixing occurs mainly during high hydraulic periods. Flooded water was important for the surface–subsurface water exchange process; it accounted for 69% of total water that flowed from the river to the aquifer. The new module also provides the option of simulating pollution transfer occurring at the river/groundwater interface at the catchment scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Groundwater is an important component of the hydrological cycle with significant interactions with soil hydrological processes. Recent studies have demonstrated that incorporating groundwater hydrology in land surface models (LSMs) considerably improves the prediction of the partitioning of water components (e.g., runoff and evapotranspiration) at the land surface. However, the Joint UK Land Environment Simulator (JULES), an LSM developed in the United Kingdom, does not yet have an explicit representation of groundwater. We propose an implementation of a simplified groundwater flow boundary parameterization (JULES-GFB), which replaces the original free drainage assumption in the default model (JULES-FD). We tested the two approaches under a controlled environment for various soil types using two synthetic experiments: (1) single-column and (2) tilted-V catchment, using a three-dimensional (3-D) hydrological model (ParFlow) as a benchmark for JULES’ performance. In addition, we applied our new JULES-GFB model to a regional domain in the UK, where groundwater is the key element for runoff generation. In the single-column infiltration experiment, JULES-GFB showed improved soil moisture dynamics in comparison with JULES-FD, for almost all soil types (except coarse soils) under a variety of initial water table depths. In the tilted-V catchment experiment, JULES-GFB successfully represented the dynamics and the magnitude of saturated and unsaturated storage against the benchmark. The lateral water flow produced by JULES-GFB was about 50% of what was produced by the benchmark, while JULES-FD completely ignores this process. In the regional domain application, the Kling-Gupta efficiency (KGE) for the total runoff simulation showed an average improvement from 0.25 for JULES-FD to 0.75 for JULES-GFB. The mean bias of actual evapotranspiration relative to the Global Land Evaporation Amsterdam Model (GLEAM) product was improved from −0.22 to −0.01 mm day−1. Our new JULES-GFB implementation provides an opportunity to better understand the interactions between the subsurface and land surface processes that are dominated by groundwater hydrology.  相似文献   

19.
Modelling the hydrology of North American Prairie watersheds is complicated because of the existence of numerous landscape depressions that vary in storage capacity. The Soil and Water Assessment Tool (SWAT) is a widely applied model for long‐term hydrological simulations in watersheds dominated by agricultural land uses. However, several studies show that the SWAT model has had limited success in handling prairie watersheds. In past works using SWAT, landscape depression storage heterogeneity has largely been neglected or lumped. In this study, a probability distributed model of depression storage is introduced into the SWAT model to better handle landscape storage heterogeneity. The work utilizes a probability density function to describe the spatial heterogeneity of the landscape depression storages that was developed from topographic characteristics. The integrated SWAT–PDLD model is tested using datasets for two prairie depression dominated watersheds in Canada: the Moose Jaw River watershed, Saskatchewan; and the Assiniboine River watershed, Saskatchewan. Simulation results were compared to observed streamflow using graphical and multiple statistical criterions. Representation of landscape depressions within SWAT using a probability distribution (SWAT–PDLD) provides improved estimations of streamflow for large prairie watersheds in comparison to results using a lumped, single storage approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Numerical groundwater flow models necessarily are limited to subsurface flow evaluation. It is of interest, however, to examine the possibility that, for unconfined aquifer systems, they could be used to proportionately measure the magnitude of seepage they estimate when these aquifers intersect the landscape surface. Our goal in this study was to determine the degree to which an unconfined groundwater model can estimate run‐off or seepage at the land surface during winter time wet season conditions, as well as in the dry season, when evapotranspiration is a major part of the water balance, using a lowland basin‐fill example study area in the Pacific Northwest. The exit gradient is a metric describing the potential for vertical seepage at the landscape surface. We investigated the spatial relationship of mapped surface features, such as wetlands, streams and ponds, to the model‐predicted mapped exit gradient. We found that areas mapped as wetlands had positive exit gradients. During the wet season, modelled exit gradients predicted seepage throughout extensive areas of the groundwater shed, extending far beyond mapped wetland areas (355% increase), associated with previously observed increases in nitrate‐nitrogen in streams in wet season. During the dry season, exit gradients spatially corresponded with wetland areas. The increase in in‐stream nitrogen corresponds with shorter residence times in carbon‐rich wetland zones because of the onset of saturation overland flow. We present results that suggest that the exit gradient could be a useful concept in examining the groundwater–surface water linkage that is often under represented physically in watershed flow models. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号