首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jihong Jia  Wenzhi Zhao  Shoubo Li 《水文研究》2013,27(24):3409-3414
The surface energy balance algorithm for land method was used in this study to calculate the evapotranspiration (ET) rate for the middle reaches of the Heihe River Basin, Gansu Province, China, to analyse ET distribution within the oasis and the surrounding desert and, especially, on the edge zone of the oasis. Five profile graphs were created vertical to the river. Because of the inverse humidity phenomenon, the least amount of evapotranspiration occurred on the desert close to the oasis. The average evapotranspiration rate was roughly proportioned from the edge of the oasis to inside and outside its boundary. Two meteorological ground stations located close to the oasis edge showed a notable difference in net radiation flux that led to the difference found in ET. The primary reason for the significant differences observed in net radiation may be largely the result of differences in flux reflectivity and surface temperature. Meteorological data show that water supply also played an important role. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
By taking the sum of annual precipitation and lateral water input (in which irrigation water withdrawal is the main component) for water availability, the Budyko hypothesis and Fu's formula derived from it was extended to the study of oases in the Tarim Basin, Northwest China. For both long‐term (multi‐year) and annual values on water balances in the 26 oases subregions, the extended Fu's formula was confirmed. Regional patterns on water balance on the 26 oases subregions were related to change in land‐use types due to increased area for irrigation. Moreover, an empirical formula for the parameter was established to reflect the influences of change in land use on water balance. The extended Budyko framework was employed to evaluate the impact of irrigation variability on annual water balance. According to the multi‐year mean timescale, variabilities in actual evapotranspiration in the oases were mainly controlled by variability in irrigation water withdrawal rather than potential evapotranspiration. The influences of variability on potential evapotranspiration became increasingly apparent together with increases in irrigation water withdrawal. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
M. Ionita  P. Scholz  S. Chelcea 《水文研究》2015,29(20):4483-4497
The present study focuses on the analysis of dryness/wetness conditions in the Danube River catchment area from 1901 to 2013 based on reanalysis data. The spatio‐temporal variability of dryness/wetness conditions is analyzed by means of the Standardized Precipitation Index (SPI) for an accumulation periods of 6 months. To characterize the spatial variability of SPI6 at monthly time scales, an empirical orthogonal function (EOF) analysis was applied. The leading mode of SPI variability captures in‐phase variability of SPI over the entire catchment area of Danube River. The leading mode of dryness/wetness variability was found to be strongly related to the different phases of the Arctic Oscillation. The second and third modes of variability show a more regional character of the dryness/wetness variability over the Danube River catchment area. Based on a composite map analysis, between the time series corresponding to the first three leading modes of dryness/wetness variability and the geopotential height at 850 mb and precipitation totals, it is shown that dryness (wetness) conditions over the Danube catchment area are associated with an anticyclonic (cyclonic) circulation, transport of dry (humid) air towards the Danube catchment area and reduced (enhanced) number of rain days. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
7.
There is a high degree of uncertainty about the state and fate of Pakistan's Karakoram glaciers due to data scarcity in high altitude regions. They are thought to be less vulnerable to climatic change because they behave differently as compared with eastern Himalayas. This study measures the decadal temporal changes in the glacial ice area of Karakoram's Hunza River Basin, one of the eight subbasins of Upper Indus Basin. An attempt has been made to investigate the relationship between glacial ice area changes and calculated values of precipitation, temperature and run‐off. A combination of satellite and field‐based approach is applied. Output includes maps of glacial ice hypsometries of eight glacial ice subregions of Hunza River Basin for 3 years (i.e., 1989, 2002, and 2010). The results show a decreasing trend in the glacial ice‐covered area signifying a reduction of 20.47% with the largest reduction being in the lower elevation bands. There is presently no conclusive answer as to why glacial ice in the Karakoram is acting differently from the near‐global indication of glacial ice changes. Climate data from high altitudes are needed to find answer for this anomalous behaviour.  相似文献   

8.
Soil moisture is highly variable both spatially and temporally. It is widely recognized that improving the knowledge and understanding of soil moisture and the processes underpinning its spatial and temporal distribution is critical. This paper addresses the relationship between near‐surface and root zone soil moisture, the way in which they vary spatially and temporally, and the effect of sampling design for determining catchment scale soil moisture dynamics. In this study, catchment scale near‐surface (0–50 mm) and root zone (0–300 mm) soil moisture were monitored over a four‐week period. Measurements of near‐surface soil moisture were recorded at various resolutions, and near‐surface and root zone soil moisture data were also monitored continuously within a network of recording sensors. Catchment average near‐surface soil moisture derived from detailed spatial measurements and continuous observations at fixed points were found to be significantly correlated (r2 = 0·96; P = 0·0063; n = 4). Root zone soil moisture was also found to be highly correlated with catchment average near‐surface, continuously monitored (r2 = 0·81; P < 0·0001; n = 26) and with detailed spatial measurements of near‐surface soil moisture (r2 = 0·84). The weaker relationship observed between near‐surface and root zone soil moisture is considered to be caused by the different responses to rainfall and the different factors controlling soil moisture for the soil depths of 0–50 mm and 0–300 mm. Aspect is considered to be the main factor influencing the spatial and temporal distribution of near‐surface soil moisture, while topography and soil type are considered important for root zone soil moisture. The ability of a limited number of monitoring stations to provide accurate estimates of catchment scale average soil moisture for both near‐surface and root zone is thus demonstrated, as opposed to high resolution spatial measurements. Similarly, the use of near‐surface soil moisture measurements to obtain a reliable estimate of deeper soil moisture levels at the small catchment scale was demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The Kouris catchment is located in the south of the Troodos massif in Cyprus. The hydrology is driven by a Mediterranean climate, a mountainous topography, and a complex distribution of hydrogeological properties resulting from complex geology. To quantify the regional water balance further, a simple method using continuous streamflow records in the River Limnatis (Kouris catchment) was applied to calculate the actual evapotranspiration rate in the dry seasons. It was found that daily cycles of streamflow, recorded by automatic pressure logger, were caused by direct evaporation from the groundwater table and by transpiration of riparian forest. The daily amounts of ‘missing’ streamflow were calculated for the period 30 October–4 November 2001 and were extrapolated to the entire dry season and to the whole Kouris catchment. The actual evapotranspiration rate from the alluvial aquifer of the region is 2·4 ± 0·5 Mm3 for April–September 2001. The validity of the assumptions and the uncertainties in the estimates used in the method are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Information on the main drivers of subsurface flow generation on hillslopes of alpine headwater catchments is still missing. Therefore, the dominant factors controlling the water table response to precipitation at the hillslope scale in the alpine Bridge Creek Catchment, Northern Italy, were investigated. Two steep hillslopes of similar size, soil properties and vegetation cover but contrasting topography were instrumented with 24 piezometric wells. Sixty‐three (63) rainfall‐runoff events were selected over three years in the snow‐free months to analyse the influence of rainfall depth, antecedent moisture conditions, hillslope topographic characteristics and soil depth on shallow water table dynamics. Piezometric response, expressed as percentage of well activation and water peak magnitude, was strongly correlated with soil moisture status, as described by an index combining antecedent soil moisture and rainfall depth. Hillslope topography was found to be a dominant control only for the convex‐divergent hillslope and during wet conditions. Timing of water table response depended primarily on soil depth and topographic position, with piezometric peak response occurring later and showing a greater temporal variability at the hillslope bottom, characterized by thicker soil. The relationship between mean hillslope water table level and standard deviation for all wells reflected the timing of the water table response at the different locations along the hillslopes. The outcomes of this research contribute to a better understanding of the controls on piezometric response at the hillslope scale in steep terrain and its role on the hydrological functioning of the study catchment and of other sites with similar physiographic characteristics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Spatio‐temporal heterogeneity in soil water content is recognized as a common phenomenon, but heterogeneity in the hydrogen and oxygen isotope composition of soil water, which can reveal processes of water cycling within soils, has not been well studied. New advances are being driven by measurement approaches allowing sampling with high density in both space and time. Using in situ soil water vapour probe techniques, combined with conventional soil and plant water vacuum distillation extraction, we monitored the hydrogen and oxygen stable isotopic composition of soil and plant waters at paired sites dominated by grasses and Gambel's oak (Quercus gambelii) within a semiarid montane ecosystem over the course of a growing season. We found that sites spaced only 20 m apart had profoundly different soil water isotopic and volumetric conditions. We document patterns of depth‐ and time‐explicit variation in soil water isotopic conditions at these sites and consider mechanisms for the observed heterogeneity. We found that soil water content and isotopic variability were damped under Q. gambelii, perhaps due in part to hydraulic redistribution of deep soil water or groundwater by Q. gambelii in these soils relative to the grass‐dominated site. We also found some support for H isotope discrimination effects during water uptake by Q. gambelii. In this ecosystem, the soil water content was higher than that at the neighbouring Grass site, and thus, 25% more water was available for transpiration by Q. gambelii compared with the Grass site. This work highlights the role of plants in governing soil water variation and demonstrates that they can also strongly influence the isotope ratios of soil water. The resulting fine‐scale heterogeneity has implications for the use of isotope tracers to study soil hydrology and evaporation and transpiration fluxes to improve understanding of water cycling through the soil–plant–atmosphere continuum.  相似文献   

12.
Daily actual evapotranspiration (AET) and seasonal AET values are of great practical importance in the management of regional water resources and hydrological modelling. Remotely sensed AET models and Landsat satellite images have been used widely in producing AET estimates at the field scale. However, the lack of validation at a high spatial frequency under different soil water conditions and vegetation coverages limits their operational applications. To assess the accuracies of remote sensing‐based AET in an oasis‐desert region, a total of 59 local‐scale daily AET time series, simulated using HYDRUS‐1D calibrated with soil moisture profiles, were used as ground truth values. Of 59 sampling sites, 31 sites were located in the oasis subarea and 28 sites were located in the desert subarea. Additionally, the locally validated mapping evapotranspiration at high resolution with internalized calibration surface energy balance model was employed to estimate instantaneous AET values in the area containing all 59 of the sampling sites using seven Landsat subimages acquired from June 5 to August 24 in 2011. Daily AET was obtained using extrapolation and interpolation methods with the instantaneous AET maps. Compared against HYDRUS‐1D, the remote sensing‐based method produced reasonably similar daily AET values for the oasis sites, while no correlation was observed for daily AET estimated using these two methods for the desert sites. Nevertheless, a reasonable monthly AET could be estimated. The correlation analysis between HYDRUS‐1D‐simulated and remote sensing‐estimated monthly AET values showed relative root‐mean‐square error values of 15.1%, 12.1%, and 12.3% for June, July, and August, respectively. The root mean square error of the summer AET was 10.0%. Overall, remotely sensed models can provide reasonable monthly and seasonal AET estimates based on periodic snapshots from Landsat images in this arid oasis‐desert region.  相似文献   

13.
14.
Alaa A. Masoud 《水文研究》2013,27(20):2987-3002
Eighteen groundwater well sites located in Kafr Al‐Zayat (Egypt) were sampled monthly from January 2009 to November 2011 for microbial content, Mn+2, Fe+2, total dissolved solids (TDS), total hardness, NO3?, and turbidity. The data were analyzed combining the integrated use of factor and cluster analyses as well as the geostatistical semi‐variogram modeling. The prime objectives were to assess the groundwater suitability for drinking, to document the factors governing the spatio‐tempral variability, and to recognize distinctive groundwater quality patterns to help enable effective sustainability and proactive management of the limited resource. The groundwater microbial, Mn+2, Fe+2, TDS, and total hardness contents violated the drinking water local standards while the turbidity and the nitrate content complied with them. Factor analysis indicated that the microbial content is the most influential factor raising the variability potential followed, in decreasing order, by Mn2+, Fe2+, TDS, NO3?, turbidity, and finally the total hardness. Turbidity resulting from urban and agricultural runoff was strongly associated with most of the quality parameters. Quality parameters fluctuate sporadically without concrete pattern in space and time while their variability scores peak in November every year. Three spatially distinctive quality patterns were recognized that were consistent with and affected by the cumulative effects of the local topography, depth to water table, thickness of the silty clay (cap layer), surface water, and groundwater flow direction and hence the recharge from contaminated surface canals and agricultural drains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g., transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment, and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in isotope‐based hydrograph separation determined preevent water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterize this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.  相似文献   

16.
This study was undertaken to evaluate the effects of climatic variability on inter‐annual variations in each component of evapotranspiration (ET) and the total ET in a temperate coniferous forest in Japan. We conducted eddy covariance flux and meteorological measurements for 7 years and parameterized a one‐dimensional multi‐layer biosphere‐atmosphere model (Kosugi et al., 2006 ) that partitions ET to transpiration (Tr), wet‐canopy evaporation (Ewet), and soil evaporation (Esoil). The model was validated with the observed flux data. Using the model, the components of ET were estimated for the 7 years. Annual precipitation, ET, Tr, Ewet, and Esoil over the 7 years were 1536 ± 334 mm, 752 ± 29 mm, 425 ± 37 mm, 219 ± 34 mm, and 108 ± 10 mm, respectively. The maximum inter‐annual fluctuation of observed ET was 64 mm with a coefficient of variance (CV) of 2.7%, in contrast to relatively large year‐to‐year variations in annual rainfall (CV = 20.1%). Tr was related to the vapour pressure deficit, incoming radiation, and air temperature with relatively small inter‐annual variations (CV = 8.2%). Esoil (CV = 8.6%) was related mainly to the vapour pressure deficit. Ewet was related to precipitation with large inter‐annual variations (CV = 14.3%) because of the variability in precipitation. The variations in Ewet were counterbalanced by the variations in Tr and Esoil, producing the small inter‐annual variations in total ET. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Quantifying and partitioning evapotranspiration (ET) into evaporation and transpiration is challenging but important for interpreting vegetation effects on the water balance. We applied a model based on the theory of maximum entropy production to estimate ET for shrubs for the first time in a low‐energy humid headwater catchment in the Scottish Highlands. In total, 53% of rainfall over the growing season was returned to the atmosphere through ET (59 ± 2% as transpiration), with 22% of rainfall ascribed to interception loss and understory ET. The remainder of rainfall percolated below the rooting zone. The maximum entropy production model showed good capability for total ET estimation, in addition to providing a first approximation for distinguishing evaporation and transpiration in such ecosystems. This study shows that this simple and low‐cost approach has potential for local to regional ET estimation with availability of high‐resolution hydroclimatic data. Limitations of the approach are also discussed.  相似文献   

18.
Evapotranspiration (ET) can cause diel fluctuations in the elevation of the water table and the stage in adjacent streams. The diel fluctuations of water levels change head gradients throughout the day, causing specific discharge through near‐stream sediment to fluctuate at the same time scale. In a previous study, we showed that specific discharge controls the residence time of groundwater in streambed sediment that, in turn, exerted the primary control on removal from groundwater passing through the streambed. In this study, we examine the magnitude of diel specific discharge patterns through the streambed driven by ET in the riparian zone with a transient numerical saturated–unsaturated groundwater flow model. On the basis of a first‐order kinetic model for removal, we predicted diel fluctuations in stream concentrations. Model results indicated that ET drove a diel pattern in specific discharge through the streambed and riparian zone (the removal zones). Because specific discharge is inversely proportional to groundwater travel time through the removal zones and travel time determines the extent of removal, diel changes in ET can result in a diel pattern in concentration in the stream. The model predictions generally matched observations made during summertime base‐flow conditions in a small coastal plain stream in Virginia. A more complicated pattern was observed following a seasonal drawdown period, where source components to the stream changed during the receding limb of the hydrograph and resulted in diel fluctuations being superimposed over a multi‐day trend in concentrations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Analysis of spatial and temporal variations of reference evapotranspiration (ETo) is important in arid and semi‐arid regions where water resources are limited. The main aim of this study was to analyse the spatial distribution and the annual, seasonal and monthly trends of the Penman–Monteith ETo for 21 stations in the arid and semi‐arid regions of Iran. Three statistical tests the Mann‐Kendall, Sen's slope estimator and linear regression were used for the analysis. The analysis revealed that ETo increased from January to July and deceased from July to December at almost all stations. Additionally, higher annual ETo values were found in the southeast of the study region and lower values in the northwest of the region. Although the results showed both positive and negative trends in annual ETo series, ETo generally increased, significantly so in six (~30%) of the stations. Analysis of the impacts of meteorological variables on the temporal trends of ETo indicated that the increasing trend of ETo was most likely due to a significant increase in minimum air temperature, while decreasing trend of ETo was mainly caused by a significant decrease in wind speed. At the sites where increasing ETo trends were statistically significant, the rate of increase varied from (+)8·36 mm/year at Mashhad station to (+)31·68 mm/year at Iranshahr station. On average, an increasing trend of (+)4·42 mm/year was obtained for the whole study area during the last four decades. Seasonal and monthly ETo have also tended to increase at the majority of the stations. The greatest numbers of significant trends were observed in winter on the seasonal time‐scale and in September on the monthly time‐scale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Multiple natural and anthropogenic factors affect urban water chemistry. However, little is known about the abundance or temporal variation of major ions in urban runoff. This study explores the spatio‐temporal variation of major dissolved ions (Na, K, Ca, Mg, Cl, NO3, and SO4) and total dissolved solids (TDS) in cold climate urban stormwater. Three watersheds with varying degrees of urban land use intensity and imperviousness (from 36% to 66%) in Helsinki, Finland, were continuously monitored for 5 years using an automated sampling procedure to obtain stormwater discharge and ion concentrations and, thus, loadings. High‐resolution datasets, including long‐term continuous discharge, both measured and simulated (using Storm Water Management Model), and automatic water quality sampling enabled the accurate calculation of loads of ions and TDS. Water quality was related to explanatory watershed characteristics (e.g., watershed physiography and sampling time) using hierarchical clustering, nonmetric multidimensional scaling, and hierarchical partitioning methods. Urban land use contributed to increased ion concentrations and loads year‐round. This study highlights how stormwater ion concentrations are elevated across seasons, indicating chronic pollution phenomena. The greatest loads occurred during summer (except for Na and Cl), while the highest variation in loads was observed in autumn. Significant clusters among ions were found in the hierarchical cluster analysis, suggesting similar temporal patterns and sources for the ions in each cluster. The importance of land use was evident, though in the most urbanized watershed, concentrations were not linked to any of the investigated watershed characteristics. Based on our results, only Na and Cl are manageable by alternative winter road antiskid practices, whereas other ions resulted from diffuse pollution sources, being therefore more difficult to control. Finally, this study contributes to an increased understanding of the temporal and spatial patterns of ions in stormwater and highlights the need for consistent time series data for ion monitoring under cold climatic conditions in order to enable reliable estimates of their loads to adjacent water bodies. Finally, year‐round stormwater treatment is highly recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号