共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Response prediction,experimental characterization and P‐spectra design of frames with viscoelastic–plastic dampers 下载免费PDF全文
Viscoelastic–plastic (VEP) dampers are hybrid passive damping devices that combine the advantages of viscoelastic and hysteretic damping. This paper first formulates a semi‐analytical procedure for predicting the peak response of nonlinear SDOF systems equipped with VEP dampers, which forms the basis for the generation of Performance Spectra that can then be used for direct performance assessment and optimization of VEP damped structures. This procedure is first verified against extensive nonlinear time‐history analyses based on a Kelvin viscoelastic model of the dampers, and then against a more advanced evolutionary model that is calibrated to characterization tests of VEP damper specimens built from commercially available viscoelastic damping devices, and an adjustable friction device. The results show that the proposed procedure is sufficiently accurate for predicting the response of VEP systems without iterative dynamic analysis for preliminary design purposes. A design method based on the Performance Spectra framework is then proposed for systems equipped with passive VEP dampers and is applied to enhance the seismic response of a six‐storey steel moment frame. The numerical simulation results on the damped structure confirm the use of the Performance Spectra as a convenient and accurate platform for the optimization of VEP systems, particularly during the initial design stage. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
3.
In this paper, we present a conceptual‐numerical model that can be deduced from a calibrated finite difference groundwater‐flow model, which provides a parsimonious approach to simulate and analyze hydraulic heads and surface water body–aquifer interaction for linear aquifers (linear response of head to stresses). The solution of linear groundwater‐flow problems using eigenvalue techniques can be formulated with a simple explicit state equation whose structure shows that the surface water body–aquifer interaction phenomenon can be approached as the drainage of a number of independent linear reservoirs. The hydraulic head field could be also approached by the summation of the head fields, estimated for those reservoirs, defined over the same domain set by the aquifer limits, where the hydraulic head field in each reservoir is proportional to a specific surface (an eigenfunction of an eigenproblem, or an eigenvector in discrete cases). All the parameters and initial conditions of each linear reservoir can be mathematically defined in a univocal way from the calibrated finite difference model, preserving its characteristics (geometry, boundary conditions, hydrodynamic parameters (heterogeneity), and spatial distribution of the stresses). We also demonstrated that, in practical cases, an accurate solution can be obtained with a reduced number of linear reservoirs. The reduced computational cost of these solutions can help to integrate the groundwater component within conjunctive use management models. Conceptual approximation also facilitates understanding of the physical phenomenon and analysis of the factors that influence it. A simple synthetic aquifer has been employed to show how the conceptual model can be built for different spatial discretizations, the parameters required, and their influence on the simulation of hydraulic head fields and stream–aquifer flow exchange variables. A real‐world case was also solved to test the accuracy of the proposed approaches, by comparing its solution with that obtained using finite‐difference MODFLOW code. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
Three‐dimensional beam–truss model for reinforced concrete walls and slabs – part 2: modeling approach and validation for slabs and coupled walls 下载免费PDF全文
A three‐dimensional beam–truss model (BTM) for reinforced concrete (RC) walls that explicitly models flexure–shear interaction and accurately captures diagonal shear failures was presented in the first part of this two‐paper series. This paper extends the BTM to simulate RC slabs and coupled RC walls through slabs and beams. The inclination angle of the diagonal elements for coupled RC walls is determined, accounting for the geometry of the walls and the level of coupling. Two case studies validate the model: (1) a two‐bay slab–column specimen experimentally tested using cyclic static loading and (2) a five‐story coupled T‐wall–beam–slab specimen subjected to biaxial shake table excitation. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally measured response and observed damage. The five‐story specimen is characterized by diagonal shear failure at the bottom story of the walls, which is captured by the BTM. The BTM of the five‐story specimen is used to study the effects of coupling on shear demand for lightly reinforced RC coupled walls. The effect of mesh refinement and bar fracture of non‐ductile transverse reinforcement is studied. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
A. P. Nicholas 《地球表面变化过程与地形》2003,28(6):655-674
This paper reports the application of a two‐dimensional hydraulic model to a braided reach of the Avoca River, New Zealand. Field measurements of water surface elevation, depth and velocity obtained at low flow were used to validate the model and to optimize the parameterization of bed friction. The main systematic trends in the measured flow variables are reproduced by the model. However, field data are characterized by greater spatial variability than model output reflecting differences in the scale of processes measured in the field and represented by the model. Additional model runs were conducted to simulate flow patterns within the study reach at five higher discharges. The purpose of these simulations was to evaluate the potential for using two‐dimensional hydraulic models to quantify the reach‐scale hydraulic characteristics of braided rivers and their dependence on discharge. Changes in flow depth and velocity with increasing discharge exhibit trends that are consistent with the results of previous field investigations, although the tendency for the wetted area of the braidplain within particular depth and velocity categories to remain fixed as discharge rises, as has been noted for several braided rivers in New Zealand, was not observed. Modelled shear stress frequency distributions fit gamma functions that incorporate a distribution shape parameter, the value of which follows clear systematic trends with rising discharge. These results illustrate both the problems of, and potential for, using two‐dimensional hydraulic models in braided river applications. This leads to something of a paradox in that while such models provide a means of generating hydraulic information that would be difficult to obtain in the field at an equivalent spatial resolution, they are, due to the problems inherent to data collection, difficult to validate conclusively. Despite this limitation, the application of spatially distributed models to investigate relationships between discharge and reach‐scale form and process variables appears to have considerable potential. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
6.
Stormwater infiltration systems are a popular method for urban stormwater control. They are often designed using an assumption of one‐dimensional saturated outflow, although this is not very accurate for many typical designs where two‐dimensional (2D) flows into unsaturated soils occur. Available 2D variably saturated flow models are not commonly used for design because of their complexity and difficulties with the required boundary conditions. A purpose‐built stormwater infiltration system model was thus developed for the simulation of 2D flow from a porous storage. The model combines a soil moisture–based model for unsaturated soils with a ponded storage model and uses a wetting front‐tracking approach for saturated flows. The model represents the main physical processes while minimizing input data requirements. The model was calibrated and validated using data from laboratory 2D stormwater infiltration trench experiments. Calibrations were undertaken using five different combinations of calibration data to examine calibration data requirements. It was found that storage water levels could be satisfactorily predicted using parameters calibrated with either data from laboratory soils tests or observed water level data, whereas the prediction of soil moistures was improved through the addition of observed soil moisture data to the calibration data set. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
In this paper, a method for designing supplemental brace–damper systems in single‐degree‐of‐freedom (SDOF) structures is presented. We include the effects of the supporting brace stiffness in the dynamic response by using a viscoelastic Maxwell model. On the basis of the study of an SDOF under ground excitation, we propose a noniterative design procedure for simultaneously specifying both the damper and the brace while assuring a desired structural performance. It is shown that to increase the damper size beyond the value delivered by the proposed criteria will not provide any improvement but actually worsen the structural response. The design method presented here shows excellent agreement with the FEMA 273 design approach but offers solutions closer to optimality. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
Zaihua Liu Chris Groves Daoxian Yuan Joe Meiman Guanghui Jiang Shiyi He Qiang Li 《水文研究》2004,18(13):2423-2437
High‐resolution measurements of rainfall, water level, pH, conductivity, temperature and carbonate chemistry parameters of groundwater at two adjacent locations within the peak cluster karst of the Guilin Karst Experimental Site in Guangxi Province, China, were made with different types of multiparameter sonde. The data were stored using data loggers recording with 2 min or 15 min resolution. Waters from a large, perennial spring represent the exit for the aquifer's conduit flow, and a nearby well measures water in the conduit‐adjacent, fractured media. During flood pulses, the pH of the conduit flow water rises as the conductivity falls. In contrast, and at the same time, the pH of groundwater in the fractures drops, as conductivity rises. As Ca2+ and HCO3? were the dominant (>90%) ions, we developed linear relationships (both r2 > 0·91) between conductivity and those ions, respectively, and in turn calculated variations in the calcite saturation index (SIC) and CO2 partial pressure (P) of water during flood pulses. Results indicate that the P of fracture water during flood periods is higher than that at lower flows, and its SIC is lower. Simultaneously, P of conduit water during the flood period is lower than that at lower flows, and its SIC also is lower. From these results we conclude that at least two key processes are controlling hydrochemical variations during flood periods: (i) dilution by precipitation and (ii) water–rock–gas interactions. To explain hydrochemical variations in the fracture water, the water–rock–gas interactions may be more important. For example, during flood periods, soil gas with high CO2 concentrations dissolves in water and enters the fracture system, the water, which in turn has become more highly undersaturated, dissolves more limestone, and the conductivity increases. Dilution of rainfall is more important in controlling hydrochemical variations of conduit water, because rainfall with higher pH (in this area apparently owing to interaction with limestone dust in the lower atmosphere) and low conductivity travels through the conduit system rapidly. These results illustrate that to understand the hydrochemical variations in karst systems, considering only water–rock interactions is not sufficient, and the variable effects of CO2 on the system should be evaluated. Consideration of water–rock–gas interactions is thus a must in understanding variations in karst hydrochemistry. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
9.
This paper presents a design‐variable‐based inelastic hysteretic model for beam–column connections. It has been well known that the load‐carrying capacity of connections heavily depends on the types and design variables even in the same connection type. Although many hysteretic connection models have been proposed, most of them are dependent on the specific connection type with presumed failure mechanisms. The proposed model can be responsive to variations both in design choices and in loading conditions. The proposed model consists of two modules: physical‐principle‐based module and neural network (NN)‐based module in which information flow from design space to response space is formulated in one complete model. Moreover, owing to robust learning capability of a new NN‐based module, the model can also learn complex dynamic evolutions in response space under earthquake loading conditions, such as yielding, post‐buckling and tearing, etc. Performance of the proposed model has been demonstrated with synthetic and experimental data of two connection types: extended‐end‐plate and top‐ and seat‐angle with double‐web‐angle connection. Furthermore, the design‐variable‐based model can be customized to any structural component beyond the application to beam–column connections. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
10.
Many of the existing stream–aquifer interaction models available in the literature are very complex with limited applicability in semi‐gauged and ungauged catchments. In this study, to estimate the influent and effluent subsurface water fluxes under limited geo‐hydrometeorological data availability conditions, a simple stream–aquifer interaction model, namely, the variable parameter McCarthy–Muskingum (VPMM) hillslope‐storage Boussinesq (hsB) model, has been developed. This novel model couples the VPMM streamflow transport with the hsB groundwater flow transport modules in online mode. In this integrated model, the surface water–groundwater flux exchange process is modelled by the Darcian approach with the variable hydraulic heads between the river stage and groundwater table accounting for the rainfall forcing. Considering the exchange fluxes in the hyporheic zone and lateral overland flow contribution, this approach is field tested in a typical 48‐km stretch of the Brahmani River in eastern India to simulate the streamflow and its depth with the minimum Nash–Sutcliffe efficiency of 94% and 88%; the maximum root mean square error of 134 m3/s and 0.35 m; and the minimum index of agreement of 98% and 97%, respectively. This modelling approach could be very well utilized in data‐scarce world‐river basins to estimate the stream–aquifer exchange flux due to rainfall forcings. 相似文献
11.
12.
A three‐dimensional transmitting boundary is formulated in the Cartesian co‐ordinate system. It is developed for the dynamic soil–structure interaction problems of arbitrary shape foundations in laterally heterogeneous strata overlying rigid bedrock. Dynamics of a rectangular rigid surface foundation on a homogeneous stratum is analysed by a hybrid approach in which the finite region including foundation is modelled by the conventional finite element method and the surrounding infinite region by the newly developed transmitting boundary. To demonstrate its strength, the present method is applied to a rectangular foundation in a horizontally heterogeneous ground consisting of two distinct regions divided by and welded along a vertical plane. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
13.
14.
N. H. W. Donker 《水文研究》2001,15(1):135-149
A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall–runoff relationship of the 202 km2 Teba river catchment, located in semi‐arid south‐eastern Spain. The period of available data (1976–1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years. The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes. The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum. Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
15.
A two‐dimensional semi‐analytical solution to analyse stream–aquifer interactions in a coastal aquifer where groundwater level responds to tidal effects is presented. The conceptual model considered is a two‐dimensional subsurface system with stream and coastline boundaries at right angles. The dimensional and non‐dimensional boundary value problems were solved for water level in the aquifer by successive application of Laplace and Fourier transform techniques, and the results were obtained by numerical inversion of the transformed solution. The solution was then verified by reducing the solutions to one‐dimensional known problems and comparing the results with those from previous studies. Hypothetical examples were used to examine the characteristics of water‐level variations due to the variations in stream stage and the fluctuations in tide level. Sensitivity analysis indicated that streambed leakance has no influence over the amplitude of groundwater fluctuations, but that the effect of stream stage increases with increasing leakance. Little difference was observed in the water level for different aquifer penetration ratios with narrow stream width. Increases in streambed leakance caused increases in the effect of aquifer penetration by the stream on the water level. An increased specific yield value resulted in decreased amplitude of water fluctuations and mean water level, and showed that water‐level variations due to stream and tidal boundaries are sensitive to specific yield. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
16.
The retreat of mountain glaciers and ice caps has dominated the rise in global sea level and is likely to remain an import component of eustatic sea‐level rise in the 21st century. Mountain glaciers are critical in supplying freshwater to populations inhabiting the valleys downstream who heavily rely on glacier runoff, such as arid and semi‐arid regions of western China. Owing to recent climate warming and the consequent rapid retreat of many glaciers, it is essential to evaluate the long‐term change in glacier melt water production, especially when considering the glacier area change. This paper describes the structure, principles and parameters of a modified monthly degree‐day model considering glacier area variation. Water balances in different elevation bands are calculated with full consideration of the monthly precipitation gradient and air temperature lapse rate. The degree‐day factors for ice and snow are tuned by comparing simulated variables to observation data for the same period, such as mass balance, equilibrium line altitude and glacier runoff depth. The glacier area–volume scaling factor is calibrated with the observed glacier area change monitored by remote sensing data of seven sub‐basins of the Tarim interior basin. Based on meteorological data, the glacier area, mass balance and runoff are estimated. The model can be used to evaluate the long‐term changes of melt water in all glacierized basins of western China, especially for those with limited observation data. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
17.
Hans Van de Vyver 《水文研究》2018,32(11):1635-1647
Rainfall intensity–duration–frequency (IDF) curves are a standard tool in urban water resources engineering and management. They express how return levels of extreme rainfall intensity vary with duration. The simple scaling property of extreme rainfall intensity, with respect to duration, determines the form of IDF relationships. It is supposed that the annual maximum intensity follows the generalized extreme value (GEV) distribution. As well known, for simple scaling processes, the location parameter and scale parameter of the GEV distribution obey a power law with the same exponent. Although, the simple scaling hypothesis is commonly used as a suitable working assumption, the multiscaling approach provides a more general framework. We present a new IDF relationship that has been formulated on the basis of the multiscaling property. It turns out that the GEV parameters (location and scale) have a different scaling exponent. Next, we apply a Bayesian framework to estimate the multiscaling GEV model and to choose the most appropriate model. It is shown that the model performance increases when using the multiscaling approach. The new model for IDF curves reproduces the data very well and has a reasonable degree of complexity without overfitting on the data. 相似文献
18.
Past earthquake experiences indicate that most buildings designed in accordance with modern seismic design codes could survive moderate‐to‐strong earthquakes; however, the financial loss due to repairing cost and the subsequent business interruption can be unacceptable. Designing building structures to meet desired performance targets has become a clear direction in future seismic design practice. As a matter of fact, the performance of buildings is affected by structural as well as non‐structural components, and involves numerous uncertainties. Therefore, appropriate probabilistic approach taking into account structural and non‐structural damages is required. This paper presents a fuzzy–random model for the performance reliability analysis of RC framed structures considering both structural and non‐structural damages. The limit state for each performance level is defined as an interval of inter‐storey drift ratios concerning, respectively, the non‐structural and structural damage with a membership function, while the relative importance of the two aspects is reflected through the use of an appropriate cost function. To illustrate the methodology, herein the non‐structural damage is represented by infill masonry walls. The probabilistic drift limits for RC components and masonry walls from the associated studies are employed to facilitate the demonstration of the proposed model in an example case study. The results are compared with those obtained using classical reliability model based on single‐threshold performance definition. The proposed model provides a good basis for incorporating different aspects into the performance assessment of a building system. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
19.
The accuracy of a series spring model to predict the peak displacement and displacement history of Triple Pendulum? (TP) bearings in a strongly shaken, full‐scale building is evaluated in this paper. The series spring model was implemented as a self‐contained three‐dimensional TP bearing element in OpenSees and is now available for general use. The TP bearing element contains the option for constant friction or a generalized friction model that accounts for the effect of instantaneous velocity and compression load on the friction coefficient. Comparison between numerical simulation and experimental data of a five‐story steel moment frame building shows that the peak displacement of isolation system can generally be predicted with confidence using a constant friction coefficient model. The friction coefficient model accounting for the effect of axial load and velocity leads to minor improvement over the constant friction coefficient models in some cases. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.
Three methods, Shuffled Complex Evolution (SCE), Simple Genetic Algorithm (SGA) and Micro‐Genetic Algorithm (µGA), are applied in parameter calibration of a grid‐based distributed rainfall–runoff model (GBDM) and compared by their performances. Ten and four historical storm events in the Yan‐Shui Creek catchment, Taiwan, provide the database for model calibration and verification, respectively. The study reveals that the SCE, SGA and µGA have close calibration results, and none of them are superior with respect to all the performance measures, i.e. the errors of time to peak, peak discharge and the total runoff volume, etc. The performances of the GBDM for the verification events are slightly worse than those in the calibration events, but still quite satisfactory. Among the three methods, the SCE seems to be more robust than the other two approaches because of the smallest influence of different initial random number seeds on calibrated model parameters, and has the best performance of verification with a relatively small number of calibration events. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献