首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in land use and land cover are major drivers of hydrological alteration in the tropical Andes. However, quantifying their impacts is fraught with difficulties because of the extreme diversity in meteorological boundary conditions, which contrasts strongly with the lack of knowledge about local hydrological processes. Although local studies have reduced data scarcity in certain regions, the complexity of the tropical Andes poses a big challenge to regional hydrological prediction. This study analyses data generated from a participatory monitoring network of 25 headwater catchments covering three of the major Andean biomes (páramo, jalca and puna) and links their hydrological responses to main types of human interventions (cultivation, afforestation and grazing). A paired catchment setup was implemented to evaluate the impacts of change using a ‘trading space‐for‐time’ approach. Catchments were selected based on regional representativeness and contrasting land use types. Precipitation and discharge have been monitored and analysed at high temporal resolution for a time period between 1 and 5 years. The observed catchment responses clearly reflect the extraordinarily wide spectrum of hydrological processes of the tropical Andes. They range from perennially humid páramos in Ecuador and northern Peru with extremely large specific discharge and baseflows, to highly seasonal, flashy catchments in the drier punas of southern Peru and Bolivia. The impacts of land use are similarly diverse and their magnitudes are a function of catchment properties, original and replacement vegetation and management type. Cultivation and afforestation consistently affect the entire range of discharges, particularly low flows. The impacts of grazing are more variable but have the largest effect on the catchment hydrological regulation. Overall, anthropogenic interventions result in increased streamflow variability and significant reductions in catchment regulation capacity and water yield, irrespective of the hydrological properties of the original biome. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.  相似文献   

2.
Páramos are high‐altitudinal neotropical ecosystems located in the upper regions of the northern Andes. Their hydrology is characterized by an extraordinarily high run‐off ratio. One major contributing mechanism is thought to be fog occurrence, which is common in the páramos and occurs by the cooling of near‐surface moist air, as it is forced to higher elevations by topography. However, field‐based observations and quantification of this flux are rare. We present results of monitoring of occult precipitation, understood as the combination of fog and drizzle inputs, combined with meteorological and soil moisture monitoring for periods between 7 to 17 months in 6 sites distributed over 3 páramos catchments in Colombia: three sites in Romerales (Quindío), two in Chingaza (Cundinamarca), and one in Belmira (Antioquia). Occult precipitation inputs were measured with cylindrical fog gauges with a cover on top. We estimate occult precipitation inputs to add between 7% and 28% to rainfall inputs in the study sites. Our results also show that occult precipitation has a large temporal and spatial variability, both within one site and between sites, which make it difficult to upscale and quantify at a catchment scale. Nevertheless, occult precipitation can be important for downstream water supply given that these inputs are especially concentrated during periods with low rainfall. Lastly, we also find evidence for an increase in soil moisture related to occult precipitation during a dry period in Romerales páramo.  相似文献   

3.
Warming in the Arctic is occurring at twice the rate of the global average, resulting in permafrost thaw and a restructuring of the Arctic hydrologic cycle as indicated by increased stream discharge during low-flow periods. In these cold regions, permafrost thaw is postulated to increase low-flow discharge, or baseflow, through either: (a) localized increases in groundwater storage and discharge to streams due to increased aquifer transmissivity from thickening of the freeze–thaw layer above permafrost known as the active layer or (b) long-term increases in regional groundwater circulation via enhancement of groundwater–surface water interactions due to extensive permafrost loss over decades. While increasing baseflow has been observed throughout northern Eurasia, the precise mechanistic causes remain elusive. In this study, we differentiate between where these two subsurface physical mechanisms of baseflow increase are occurring by performing a baseflow recession analysis using daily streamflow records from 1913 to 2003 for 139 stations in northern Eurasia underlain by varying permafrost areal extents. Results indicate that from 1913 to 2003, the majority of catchments underlain by continuous permafrost have an increasing trend in their recession flow intercepts, a proxy for increasing active layer thickness. Alternatively, the majority of catchments underlain by permafrost types that are less spatially extensive (e.g., discontinuous, sporadic, isolated, or no permafrost) have decreasing trends in their recession flow intercepts, indicating that a potential increase in active layer thickness is not the driving factor of baseflow variations in these catchments. This may indicate that in catchments underlain by continuous permafrost, active layer thickening correlates with increases in baseflow, whereas, in other catchments with less extensive permafrost, increases in baseflow may be caused by wholesale permafrost loss and vertical talik expansion that enhances regional groundwater circulation. The results of this work may inform our understanding of the subsurface mechanisms responsible for the changing Arctic hydrologic cycle.  相似文献   

4.
Using hydro-meteorological time series of 50 years and in situ measurements, the dominant runoff processes in perennial Andean headwater catchments in Chile were determined using the hydrological model HBV light. First, cluster analysis was used to identify dry, wet and intermediate years. From these, sub-periods were identified with contrasting seasonal climatic influences on streamflow. By calibrating the model across different periods, impacts on model performance, parameter sensitivity and identifiability were investigated, providing insights into differences in hydrological processes. The modelling approach suggested that, independently of a dry or wet period of calibration, the streamflow response is mostly consistent with flux from groundwater storage, while only a small fraction comes from direct routing of snowmelt. The variation of model parameters, such as the groundwater rate coefficient, was found to be consistent with differing recharge in wet and dry years. The resulting snowmelt–groundwater model is a realistic hypothesis of the hydrological operation of such complex, data scarce and semi-arid Andean catchments. This model may also be a useful tool for predictions of seasonal water availability and a basis for further field studies.  相似文献   

5.
As a consequence of the remote location of the Andean páramo, knowledge on their hydrologic functioning is limited; notwithstanding, these alpine tundra ecosystems act as water towers for a large fraction of the society. Given the harsh environmental conditions in this region, year‐round monitoring is cumbersome, and it would be beneficial if the monitoring needed for the understanding of the rainfall–runoff response could be limited in time. To identify the hydrological response and the effect of temporal monitoring, a nested (n = 7) hydrological monitoring network was set up in the Zhurucay catchment (7.53 km2), south Ecuador. The research questions were as follows: (1) Can event sampling provide similar information in comparison with continuous monitoring, and (2) if so, how many events are needed to achieve a similar degree of information? A subset of 34 rainfall–runoff events was compared with monthly values derived from a continuous monitoring scheme from December 2010 to November 2013. Land cover and physiographic characteristics were correlated with 11 hydrological indices. Results show that despite some distinct differences between event and continuous sampling, both data sets reveal similar information; more in particular, the monitoring of a single event in the rainy season provides the same information as continuous monitoring, while during the dry season, ten events ought to be monitored. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
7.
S. Rai  M. Z. Iqbal 《水文研究》2015,29(2):173-186
Fluorescein and bromide tracers were used to study baseflow mechanisms of a small suburban watershed in northeast Iowa, USA. The tracers were applied to ten injection holes ranging from 1.3 to 3.0 ft in depth in two phases. Separately, two PVC wells (15 and 16 ft deep) were used to investigate tracer movement in a deeper flow system. Over 30 days of phase 1, none of the tracers was detected in the creek water. In phase 2, fluorescein was irregularly detected in the creek at two sites, whereas bromide was detected at one site only. Meanwhile, soil analysis detected measurable diffusion of bromide and fluorescein at four sites. At each of these sites, the tracer was found to be diffusing toward the creek. None of the tracers applied to the deeper PVC wells showed any movement toward the creek over 1 month of continuous sampling. Isotopic composition of water samples varied spatially as well as temporally going from the deep well (δ18O = ?8.89‰) to the injection holes (average δ18O = ?8.42‰), to the creek (average δ18O = ?7.86‰), and further to the rain samples (average δ18O = ?4.68‰). The analytical error margin is ±0.09‰. Samples from the injection holes were generally heavier than the deep well sample and lighter than the creek samples, indicating that there was no significant connection between the surface and the subsurface systems. Furthermore, the sporadic appearance of bromide and fluorescein both spatially and temporally points to the fact that baseflow does not constitute a significant part of the area's stream discharge. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Few high‐elevation tropical catchments worldwide are gauged, and even fewer are studied using combined hydrometric and isotopic data. Consequently, we lack information needed to understand processes governing rainfall–runoff dynamics and to predict their influence on downstream ecosystem functioning. To address this need, we present a combination of hydrometric and water stable isotopic observations in the wet Andean páramo ecosystem of the Zhurucay Ecohydrological Observatory (7.53 km2). The catchment is located in the Andes of south Ecuador between 3400 and 3900 m a.s.l. Water samples for stable isotopic analysis were collected during 2 years (May 2011–May 2013), while rainfall and runoff measurements were continuously recorded since late 2010. The isotopic data reveal that andosol soils predominantly situated on hillslopes drain laterally to histosols (Andean páramo wetlands) mainly located at the valley bottom. Histosols, in turn, feed water to creeks and small rivers throughout the year, establishing hydrologic connectivity between wetlands and the drainage network. Runoff is primarily composed of pre‐event water stored in the histosols, which is replenished by rainfall that infiltrates through the andosols. Contributions from the mineral horizon and the top of the fractured bedrock are small and only seem to influence discharge in small catchments during low flow generation (non‐exceedance flows < Q35). Variations in source contributions are controlled by antecedent soil moisture, rainfall intensity, and duration of rainy periods. Saturated hydraulic conductivity of the soils, higher than the year‐round low precipitation intensity, indicates that Hortonian overland flow rarely occurs during high‐intensity precipitation events. Deep groundwater contributions to discharge seem to be minimal. These results suggest that, in this high‐elevation tropical ecosystem, (1) subsurface flow is a dominant hydrological process and (2) (histosols) wetlands are the major source of stream runoff. Our study highlights that detailed isotopic characterization during short time periods provides valuable information about ecohydrological processes in regions where very few basins are gauged. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A high Andean stream in the equatorial zone of Ecuador, the Rio Itambi, located at 2,600 to 4,600 m a.s.l., was studied to describe its physical structure, geomorphology, water chemistry and biodiversity.The Itambi catchment basin is characterized in its upper part by the volcanic sierra with >70% slope, and in its lower part by lake deposits. The length of Rio Itambi is 17 km with a catchment basin of 11,271 ha; the annual flow amounts to 0.07-0.5 m3/s. Stream structure is evaluated using a modification of the German “Geomorphological Structure Classification Method” with six main parameters (development of stream bed, longitudinal profile, transversal profile, bed structure, stream bank structure, and surrounding environment). Nowadays an impact of Rio Itambi's stream structure occurs due to anthropogenic activities. The water quality of Rio Itambi is presented on the basis of a monthly monitoring, and a comparison of rainy and dry season is given. An impact on quality is caused by human activities (sewage input, cattle raising), by landslides with a remodelling of the stream bed and by a low oxygen concentration due to altitude.Flora of stream banks as well as diatoms, macrophytes and fauna of stream bed were determined, and within the stream, biodiversity is low. In the upper part of the stream, this seems to be an effect of low oxygen saturation values and of landslide that remodel the stream bed, and in the lower part of the stream it is due to anthropogenic damage by sewage input.  相似文献   

10.
Pollutant delivery through artificial subsurface drainage networks to streams is an important transport mechanism, yet the impact of drainage tiles on groundwater hydrology at the watershed scale has not been well documented. In this study, we developed a two‐dimensional, steady‐state groundwater flow model for a representative Iowa agricultural watershed to simulate the impact of tile drainage density and incision depth on groundwater travel times and proportion of baseflow contributed by tile drains. Varying tile drainage density from 0 to 0.0038 m?1, while maintaining a constant tile incision depth at 1.2 m, resulted in the mean groundwater travel time to decrease exponentially from 40 years to 19 years and increased the tile contribution to baseflow from 0% to an upper bound of 37%. In contrast, varying tile depths from 0.3 to 2.7 m, while maintaining a constant tile drainage density of 0.0038 m?1, caused mean travel times to decrease linearly from 22 to 18 years and increased the tile contribution to baseflow from 30% to 54% in a near‐linear manner. The decrease in the mean travel time was attributed to decrease in the saturated thickness of the aquifer with increasing drainage density and incision depth. Study results indicate that tile drainage affects fundamental watershed characteristics and should be taken into consideration when evaluating water and nitrate export from agricultural regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Catchments with minimal disturbance usually have low dissolved inorganic nitrogen (DIN) export, but disturbances and anthropogenic inputs result in elevated DIN concentration and export and eutrophication of downstream ecosystems. We studied streams in the southern Appalachian Mountains, USA, an area dominated by hardwood deciduous forest but with areas of valley agriculture and increasing residential development. We collected weekly grab samples and storm samples from nine small catchments and three river sites. Most discharge occurred at baseflow, with baseflow indices ranging from 69% to 95%. We identified three seasonal patterns of baseflow DIN concentration. Streams in mostly forested catchments had low DIN with bimodal peaks, and summer peaks were greater than winter peaks. Streams with more agriculture and development also had bimodal peaks; however, winter peaks were the highest. In streams draining catchments with more residential development, DIN concentration had a single peak, greatest in winter and lowest in summer. Three methods for estimating DIN export produced consistent results. Annual DIN export ranged from less than 200 g ha?1 year?1 for the less disturbed catchments to over 2,000 g ha?1 year?1 in the catchments with the least forest area. Land cover was a strong predictor of DIN concentration but less significant for predicting DIN export. The two forested reference catchments appeared supply limited, the most residential catchment appeared transport limited, and export for the other catchments was significantly related to discharge. In all streams, baseflow DIN export exceeded stormflow export. Morphological and climatological variation among watersheds created complexities unexplainable by land cover. Nevertheless, regression models developed using land cover data from the small catchments reasonably predicted concentration and export for receiving rivers. Our results illustrate the complexity of mechanisms involved in DIN export in a region with a mosaic of climate, geology, topography, soils, vegetation, and past and present land use.  相似文献   

12.
ABSTRACT

This work examines 140 hydrological studies conducted in the Mediterranean region. It identifies key characteristics of the hydrological responses of Mediterranean catchments at various time scales and compares different methods and modelling approaches used for individual-catchment studies. The study area is divided into the northwestern (NWM), eastern (EM) and southern (SM) Mediterranean. The analysis indicates regional discrepancies in which the NWM shows the most extreme rainfall regime. A tendency for reduced water resources driven by both anthropogenic and climatic pressures and a more extreme rainfall regime are also noticeable. Catchments show very heterogeneous responses over time and space, resulting in limitations in hydrological modelling and large uncertainties in predictions. However, few models have been developed to address these issues. Additional studies are necessary to improve the knowledge of Mediterranean hydrological features and to account for regional specificities.
Editor D. Koutsoyiannis Associate editor A. Efstratiadis  相似文献   

13.
A summary is provided of the first of a series of proposed Integrated Science Initiative workshops supported by the UNESCO International Hydrological Programme. The workshop brought together hydrologists, environmental chemists, microbiologists, stable isotope specialists and natural resource managers with the purpose of communicating new ideas on ways to assess microbial degradation processes and reactive transport at catchment scales. The focus was on diffuse contamination at catchment scales and the application of compound‐specific isotope analysis (CSIA) in the assessment of biological degradation processes of agrochemicals. Major outcomes were identifying the linkage between water residence time distribution and rates of contaminant degradation, identifying the need for better information on compound specific microbial degradation isotope fractionation factors and the potential of CSIA in identifying key degradative processes. In the natural resource management context, a framework was developed where CSIA techniques were identified as practically unique in their capacity to serve as distributed integrating indicators of process across a range of scales (micro to diffuse) of relevance to the problem of diffuse pollution assessment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The debris flow of 28 August 1997 which occurred in the Riale Buffaga, a torrent channel in the territory of the village of Ronco s./Ascona (Ticino, Switzerland), has been simulated with a good degree of reliability due to the existence of morphologic surveys of the torrent channel preceding the flood event and the presence of a rain gauge that registered the rainfall event at a resolution of 10 minutes. With these data it is possible to conduct a quantitative analysis of the effect of a forest fire on the hydrogeological response of a given catchment. In the case at hand, a 10‐year rainfall event caused a 100‐ to 200‐year flood event. This result clearly quantifies the possible consequences of a forest fire in terms of territorial safety. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Quantifying the relative contributions of different sources of water to a stream hydrograph is important for understanding the hydrology and water quality dynamics of a given watershed. To compare the performance of two methods of hydrograph separation, a graphical program [baseflow index (BFI)] and an end‐member mixing analysis that used high‐resolution specific conductance measurements (SC‐EMMA) were used to estimate daily and average long‐term slowflow additions of water to four small, primarily agricultural streams with different dominant sources of water (natural groundwater, overland flow, subsurface drain outflow, and groundwater from irrigation). Because the result of hydrograph separation by SC‐EMMA is strongly related to the choice of slowflow and fastflow end‐member values, a sensitivity analysis was conducted based on the various approaches reported in the literature to inform the selection of end‐members. There were substantial discrepancies among the BFI and SC‐EMMA, and neither method produced reasonable results for all four streams. Streams that had a small difference in the SC of slowflow compared with fastflow or did not have a monotonic relationship between streamflow and stream SC posed a challenge to the SC‐EMMA method. The utility of the graphical BFI program was limited in the stream that had only gradual changes in streamflow. The results of this comparison suggest that the two methods may be quantifying different sources of water. Even though both methods are easy to apply, they should be applied with consideration of the streamflow and/or SC characteristics of a stream, especially where anthropogenic water sources (irrigation and subsurface drainage) are present. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In deeply weathered laterite catchments of the Darling Range in south-western Australia, the direct contribution (i.e., discharge) of permanent groundwater to streamflow has long been considered as minor. Instead, downslope shallow throughflow was thought to dominate, generating more than 90% of streamflow. We used a chemical hydrograph separation approach to estimate annual groundwater discharge for three catchments over periods of up to 39 years, and found that direct groundwater contributions to streamflow were far more variable across catchments and through time than has previously been acknowledged. The estimated proportion of annual streamflow sourced directly from groundwater ranged from 0 to 93% and was related linearly to the size of the groundwater discharge area in the catchment valley floor. In contrast, contributions from shallow sources including shallow throughflow varied primarily and linearly with annual rainfall. However, the response to rainfall was “amplified” in a predictable way by the size of the groundwater discharge area, consistent with the variable source area concept. We derived a functional relationship between catchment annual rainfall-runoff ratio and groundwater discharge area and successfully applied this to a further four catchments, inferring that the results were broadly applicable across the Darling Range. The implications for an improved understanding of streamflow generating processes in the study region, and for laterite catchments generally, are discussed.  相似文献   

18.
Hydrology and solute concentrations of two intermittent Mediterranean streams draining two nested catchments were compared. The two catchments were mainly underlain by granitic rocks and different types of sericitic schists. Only the lowland catchment had an alluvial zone and a well‐developed riparian forest. The rainfall–runoff relationship and the correlation between daily flow concentrations showed that hydrological behaviour was similar at both sites during most of the year. However, reverse fluxes were detected during the wetting and drying up periods only in the stream with an alluvial zone. The intermittence in stream flow also had effects on absolute solute concentrations, temporal solute dynamics and streamwater stoichiometry. Streamwater chemistry was not affected by drainage area, except for cations produced mainly by bedrock dissolution (i.e. calcium and magnesium) that increased with increasing catchment size. Differences in the relationship among cations and anions were detected between the two streams, which could be attributed to biogeochemical processes occurring in the alluvial zone. The multivariate model used in this study showed that stoichiometry was more useful than absolute concentrations when analyzing the influence of different lithologies on streamwater chemistry. Such differences were amplified in autumn, likely due to a low hydrological connectivity between the two nested catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The bedrock controls on catchment mixing, storage, and release have been actively studied in recent years. However, it has been difficult to find neighbouring catchments with sufficiently different and clean expressions of geology to do comparative analysis. Here, we present new data for 16 nested catchments (0.45 to 410 km2) in the Alzette River basin (Luxembourg) that span a range of clean and mixed expressions of schists, phyllites, sandstones, and quartzites to quantify the relationships between bedrock permeability and metrics of water storage and release. We examined 9 years' worth of precipitation and discharge data, and 6 years of fortnightly stable isotope data in streamflow, to explore how bedrock permeability controls (a) streamflow regime metrics, (b) catchment storage, and (c) isotope response and catchment mean transit time (MTT). We used annual and winter precipitation–run‐off ratios, as well as average summer and winter precipitation–run‐off ratios to characterise the streamflow regime in our 16 study catchments. Catchment storage was then used as a metric for catchment comparison. Water mixing potential of 11 catchments was quantified via the standard deviation in streamflow δD (σδD) and the amplitude ratio (AS/AP) of annual cycles of δ18O in streamflow and precipitation. Catchment MTT values were estimated via both stable isotope signature damping and hydraulic turnover calculations. In our 16 nested catchments, the variance in ratios of summer versus winter average run‐off was best explained by bedrock permeability. Whereas active storage (defined here as a measure of the observed maximum interannual variability in catchment storage) ranged from 107 to 373 mm, total catchment storage (defined as the maximum catchment storage connected to the stream network) extended up to ~1700 mm (±200 mm). Catchment bedrock permeability was strongly correlated with mixing proxies of σδD in streamflow and δ18O AS/AP ratios. Catchment MTT values ranged from 0.5 to 2 years, based on stable isotope signature damping, and from 0.5 to 10 years, based on hydraulic turnover.  相似文献   

20.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号