首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robert L. Wilby 《水文研究》2005,19(16):3201-3219
Despite their acknowledged limitations, lumped conceptual models continue to be used widely for climate‐change impact assessments. Therefore, it is important to understand the relative magnitude of uncertainties in water resource projections arising from the choice of model calibration period, model structure, and non‐uniqueness of model parameter sets. In addition, external sources of uncertainty linked to choice of emission scenario, climate model ensemble member, downscaling technique(s), and so on, should be acknowledged. To this end, the CATCHMOD conceptual water balance model was used to project changes in daily flows for the River Thames at Kingston using parameter sets derived from different subsets of training data, including the full record. Monte Carlo sampling was also used to explore parameter stability and identifiability in the context of historic climate variability. Parameters reflecting rainfall acceptance at the soil surface in simpler model structures were found to be highly sensitive to the training period, implying that climatic variability does lead to variability in the hydrologic behaviour of the Thames basin. Non‐uniqueness of parameters for more complex model structures results in relatively small variations in projected annual mean flow quantiles for different training periods compared with the choice of emission scenario. However, this was not the case for subannual flow statistics, where uncertainty in flow changes due to equifinality was higher in winter than summer, and comparable in magnitude to the uncertainty of the emission scenario. Therefore, it is recommended that climate‐change impact assessments using conceptual water balance models should routinely undertake sensitivity analyses to quantify uncertainties due to parameter instability, identifiability and non‐uniqueness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The uncertainties associated with atmosphere‐ocean General Circulation Models (GCMs) and hydrologic models are assessed by means of multi‐modelling and using the statistically downscaled outputs from eight GCM simulations and two emission scenarios. The statistically downscaled atmospheric forcing is used to drive four hydrologic models, three lumped and one distributed, of differing complexity: the Sacramento Soil Moisture Accounting (SAC‐SMA) model, Conceptual HYdrologic MODel (HYMOD), Thornthwaite‐Mather model (TM) and the Precipitation Runoff Modelling System (PRMS). The models are calibrated based on three objective functions to create more plausible models for the study. The hydrologic model simulations are then combined using the Bayesian Model Averaging (BMA) method according to the performance of each models in the observed period, and the total variance of the models. The study is conducted over the rainfall‐dominated Tualatin River Basin (TRB) in Oregon, USA. This study shows that the hydrologic model uncertainty is considerably smaller than GCM uncertainty, except during the dry season, suggesting that the hydrologic model selection‐combination is critical when assessing the hydrologic climate change impact. The implementation of the BMA in analysing the ensemble results is found to be useful in integrating the projected runoff estimations from different models, while enabling to assess the model structural uncertainty. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
4.
End users face a range of subjective decisions when evaluating climate change impacts on hydrology, but the importance of these decisions is rarely assessed. In this paper, we evaluate the implications of hydrologic modelling choices on projected changes in the annual water balance, monthly simulated processes, and signature measures (i.e. metrics that quantify characteristics of the hydrologic catchment response) under a future climate scenario. To this end, we compare hydrologic changes computed with four different model structures – whose parameters have been obtained using a common calibration strategy – with hydrologic changes computed with a single model structure and parameter sets from multiple options for different calibration decisions (objective function, local optima, and calibration forcing dataset). Results show that both model structure selection and the parameter estimation strategy affect the direction and magnitude of projected changes in the annual water balance, and that the relative effects of these decisions are basin dependent. The analysis of monthly changes illustrates that parameter estimation strategies can provide similar or larger uncertainties in simulations of some hydrologic processes when compared with uncertainties coming from model choice. We found that the relative effects of modelling decisions on projected changes in catchment behaviour depend on the signature measure analysed. Furthermore, parameter sets with similar performance, but located in different regions of the parameter space, provide very different projections for future catchment behaviour. More generally, the results obtained in this study prompt the need to incorporate parametric uncertainty in multi‐model frameworks to avoid an over‐confident portrayal of climate change impacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Particular attention is given to the reliability of hydrological modelling results. The accuracy of river runoff projection depends on the selected set of hydrological model parameters, emission scenario and global climate model. The aim of this article is to estimate the uncertainty of hydrological model parameters, to perform sensitivity analysis of the runoff projections, as well as the contribution analysis of uncertainty sources (model parameters, emission scenarios and global climate models) in forecasting Lithuanian river runoff. The impact of model parameters on the runoff modelling results was estimated using a sensitivity analysis for the selected hydrological periods (spring flood, winter and autumn flash floods, and low water). During spring flood the results of runoff modelling depended on the calibration parameters that describe snowmelt and soil moisture storage, while during the low water period—the parameter that determines river underground feeding was the most important. The estimation of climate change impact on hydrological processes in the Merkys and Neris river basins was accomplished through the combination of results from A1B, A2 and B1 emission scenarios and global climate models (ECHAM5 and HadCM3). The runoff projections of the thirty-year periods (2011–2040, 2041–2070, 2071–2100) were conducted applying the HBV software. The uncertainties introduced by hydrological model parameters, emission scenarios and global climate models were presented according to the magnitude of the expected changes in Lithuanian rivers runoff. The emission scenarios had much greater influence on the runoff projection than the global climate models. The hydrological model parameters had less impact on the reliability of the modelling results.  相似文献   

6.
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.  相似文献   

7.
Climate change is expected to significantly affect flooding regimes of river systems in the future. For Western Europe, flood risk assessments generally assume an increase in extreme events and flood risk, and as a result major investments are planned to reduce their impacts. However, flood risk assessments for the present day and the near future suffer from uncertainty, coming from short measurements series, limited precision of input data, arbitrary choices for particular statistical and modelling approaches, and climatic non‐stationarities. This study demonstrates how historical and sedimentary information can extend data records, adds important information on extremes, and generally improves flood risk assessments. The collection of specific data on the occurrence and magnitude of extremes and the natural variability of the floods is shown to be of paramount importance to reduce uncertainty in our understanding of flooding regime changes in a changing climate. For the Lower Rhine (the Netherlands and Germany) estimated recurrence times and peak discharges associated with the current protection levels correlate poorly with historical and sedimentary information and seem biased towards the recent multi‐decadal period of increased flood activity. Multi‐decadal and centennial variability in flood activity is recorded in extended series of discharge data, historical information and sedimentary records. Over the last six centuries that variability correlates with components of the Atlantic climate system such as the North Atlantic Oscillation (NAO) and Atlantic Multi‐decadal Oscillation (AMO). These climatic non‐stationarities importantly influence flood activity and the outcomes of flood risk assessments based on relatively short measurement series. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Precipitation and runoff are key elements in the hydrologic cycle because of their important roles in water supply, flood prevention, river restoration, and ecosystem management. Global climate change, widely accepted to be happening, is anticipated to have enormous consequences on future hydrologic patterns. Studies on the potential changes in global, regional, and local hydrologic patterns under global climate change scenarios have been an intense area of research in recent years. The present study contributes to this research topic through evaluation of design flood under climate change. The study utilizes a weather state-based, stochastic multivariate model as a conditional probability model for simulating the precipitation field. An important premise of this study is that large-scale climatic patterns serve as a major driver of persistent year-to-year changes in precipitation probabilities. Since uncertainty estimation in the study of climate change is needed to examine the reliability of the outcomes, this study also applies a Bayesian Markov chain Monte Carlo scheme to the widely used SAC-SMA (Sacramento soil moisture accounting) precipitation-runoff model. A case study is also performed with the Soyang Dam watershed in South Korea as the study basin. Finally, a comprehensive discussion on design flood under climate change is made.  相似文献   

9.
This paper explores the predicted hydrologic responses associated with the compounded error of cascading global circulation model (GCM) uncertainty through hydrologic model uncertainty due to climate change. A coupled groundwater and surface water flow model (GSFLOW) was used within the differential evolution adaptive metropolis (DREAM) uncertainty approach and combined with eight GCMs to investigate uncertainties in hydrologic predictions for three subbasins of varying hydrogeology within the Santiam River basin in Oregon, USA. Predictions of future hydrology in the Santiam River include increases in runoff in the fall and winter months and decreases in runoff for the spring and summer months. One‐year peak flows were predicted to increase whereas 100‐year peak flows were predicted to slightly decrease. The predicted 10‐year 7‐day low flow decreased in two subbasins with little groundwater influences but increased in another subbasin with substantial groundwater influences. Uncertainty in GCMs represented the majority of uncertainty in the analysis, accounting for an average deviation from the median of 66%. The uncertainty associated with use of GSFLOW produced only an 8% increase in the overall uncertainty of predicted responses compared to GCM uncertainty. This analysis demonstrates the value and limitations of cascading uncertainty from GCM use through uncertainty in the hydrologic model, offers insight into the interpretation and use of uncertainty estimates in water resources analysis, and illustrates the need for a fully nonstationary approach with respect to calibrating hydrologic models and transferring parameters across basins and time for climate change analyses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
With the potentially devastating consequences of flooding, it is crucial that uncertainties in the modelling process are quantified in flood simulations. In this paper, the impact of uncertainties in design losses on peak flow estimates is investigated. Simulations were carried out using a conceptual rainfall–runoff model called RORB in four catchments along the east coast of New South Wales, Australia. Monte Carlo simulation was used to evaluate parameter uncertainty in design losses, associated with three loss models (initial loss–continuing loss, initial loss–proportional loss and soil water balance model). The results show that the uncertainty originating from each loss model differs and can be quite significant in some cases. The uncertainty in the initial loss–proportional loss model was found to be the highest, with estimates up to 2.2 times the peak flow, whilst the uncertainty in the soil water balance model was significantly less, with up to 60 % variability in peak flows for an annual exceedance probability of 0.02. Through applying Monte Carlo simulation a better understanding of the predicted flows is achieved, thus providing further support for planning and managing river systems.  相似文献   

11.
Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging of four monthly water balance models was proposed. The method was applied to the Weihe River Basin, the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities to runoff changes. The change point, which was used to determine the baseline period (1956–1990) and human-impacted period (1991–2009), was derived using both cumulative curve and Pettitt’s test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models.  相似文献   

12.
Simulations from hydrological models are affected by potentially large uncertainties stemming from various sources, including model parameters and observational uncertainty in the input/output data. Understanding the relative importance of such sources of uncertainty is essential to support model calibration, validation and diagnostic evaluation and to prioritize efforts for uncertainty reduction. It can also support the identification of ‘disinformative data’ whose values are the consequence of measurement errors or inadequate observations. Sensitivity analysis (SA) provides the theoretical framework and the numerical tools to quantify the relative contribution of different sources of uncertainty to the variability of the model outputs. In traditional applications of global SA (GSA), model outputs are aggregations of the full set of a simulated variable. For example, many GSA applications use a performance metric (e.g. the root mean squared error) as model output that aggregates the distances of a simulated time series to available observations. This aggregation of propagated uncertainties prior to GSA may lead to a significant loss of information and may cover up local behaviour that could be of great interest. Time‐varying sensitivity analysis (TVSA), where the aggregation and SA are repeated at different time steps, is a viable option to reduce this loss of information. In this work, we use TVSA to address two questions: (1) Can we distinguish between the relative importance of parameter uncertainty versus data uncertainty in time? (2) Do these influences change in catchments with different characteristics? To our knowledge, the results present one of the first quantitative investigations on the relative importance of parameter and data uncertainty across time. We find that the approach is capable of separating influential periods across data and parameter uncertainties, while also highlighting significant differences between the catchments analysed. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.  相似文献   

13.
Abstract

Different approaches used in hydrological modelling are compared in terms of the way each one takes the rainfall data into account. We examine the errors associated with accounting for rainfall variability, whether in hydrological modelling (distributed vs lumped models) or in computing catchment rainfall, as well as the impact of each approach on the representativeness of the parameters it uses. The database consists of 1859 rainfall events, distributed on 500 basins, located in the southeast of France with areas ranging from 6.2 to 2851 km2. The study uses as reference the hydrographs computed by a distributed hydrological model from radar rainfall. This allows us to compare and to test the effects of various simplifications to the process when taking rainfall information (complete rain field vs sampled rainfall) and rainfall–runoff modelling (lumped vs distributed) into account. The results appear to show that, in general, the sampling effect can lead to errors in discharge at the outlet that are as great as, or even greater than, those one would get with a fully lumped approach. We found that small catchments are more sensitive to the uncertainties in catchment rainfall input generated by sampling rainfall data as seen through a raingauge network. Conversely, the larger catchments are more sensitive to uncertainties generated when the spatial variability of rainfall events is not taken into account. These uncertainties can be compensated for relatively easily by recalibrating the parameters of the hydrological model, although such recalibrations cause the parameter in question to completely lose physical meaning.

Citation Arnaud, P., Lavabre, J., Fouchier, C., Diss, S. & Javelle, P. (2011) Sensitivity of hydrological models to uncertainty of rainfall input. Hydrol. Sci. J. 56(3), 397–410.  相似文献   

14.
This study attempts to assess the uncertainty in the hydrological impacts of climate change using a multi-model approach combining multiple emission scenarios, GCMs and conceptual rainfall-runoff models to quantify uncertainty in future impacts at the catchment scale. The uncertainties associated with hydrological models have traditionally been given less attention in impact assessments until relatively recently. In order to examine the role of hydrological model uncertainty (parameter and structural uncertainty) in climate change impact studies a multi-model approach based on the Generalised Likelihood Uncertainty Estimation (GLUE) and Bayesian Model Averaging (BMA) methods is presented. Six sets of regionalised climate scenarios derived from three GCMs, two emission scenarios, and four conceptual hydrological models were used within the GLUE framework to define the uncertainty envelop for future estimates of stream flow, while the GLUE output is also post processed using BMA, where the probability density function from each model at any given time is modelled by a gamma distribution with heteroscedastic variance. The investigation on four Irish catchments shows that the role of hydrological model uncertainty is remarkably high and should therefore be routinely considered in impact studies. Although, the GLUE and BMA approaches used here differ fundamentally in their underlying philosophy and representation of error, both methods show comparable performance in terms of ensemble spread and predictive coverage. Moreover, the median prediction for future stream flow shows progressive increases of winter discharge and progressive decreases in summer discharge over the coming century.  相似文献   

15.
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.  相似文献   

16.
ABSTRACT

This paper assesses how various sources of uncertainty propagate through the uncertainty cascade from emission scenarios through climate models and hydrological models to impacts, with a particular focus on groundwater aspects from a number of coordinated studies in Denmark. Our results are similar to those from surface water studies showing that climate model uncertainty dominates the results for projections of climate change impacts on streamflow and groundwater heads. However, we found uncertainties related to geological conceptualization and hydrological model discretization to be dominant for projections of well field capture zones, while the climate model uncertainty here is of minor importance. How to reduce the uncertainties on climate change impact projections related to groundwater is discussed, with an emphasis on the potential for reducing climate model biases through the use of fully coupled climate–hydrology models.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   

17.
ABSTRACT

Climate models and hydrological parameter uncertainties were quantified and compared while assessing climate change impacts on monthly runoff and daily flow duration curve (FDC) in a Mediterranean catchment. Simulations of the Soil and Water Assessment Tool (SWAT) model using an ensemble of behavioural parameter sets derived from the Generalized Likelihood Uncertainty Estimation (GLUE) method were approximated by feed-forward artificial neural networks (FF-NN). Then, outputs of climate models were used as inputs to the FF-NN models. Subsequently, projected changes in runoff and FDC were calculated and their associated uncertainty was partitioned into climate model and hydrological parameter uncertainties. Runoff and daily discharge of the Chiba catchment were expected to decrease in response to drier and warmer climatic conditions in the 2050s. For both hydrological indicators, uncertainty magnitude increased when moving from dry to wet periods. The decomposition of uncertainty demonstrated that climate model uncertainty dominated hydrological parameter uncertainty in wet periods, whereas in dry periods hydrological parametric uncertainty became more important.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   

18.
A need for more accurate flood inundation maps has recently arisen because of the increasing frequency and extremity of flood events. The accuracy of flood inundation maps is determined by the uncertainty propagated from all of the variables involved in the overall process of flood inundation modelling. Despite our advanced understanding of flood progression, it is impossible to eliminate the uncertainty because of the constraints involving cost, time, knowledge, and technology. Nevertheless, uncertainty analysis in flood inundation mapping can provide useful information for flood risk management. The twin objectives of this study were firstly to estimate the propagated uncertainty rates of key variables in flood inundation mapping by using the first‐order approximation method and secondly to evaluate the relative sensitivities of the model variables by using the Hornberger–Spear–Young (HSY) method. Monte Carlo simulations using the Hydrologic Engineering Center's River Analysis System and triangle‐based interpolation were performed to investigate the uncertainty arising from discharge, topography, and Manning's n in the East Fork of the White River near Seymour, Indiana, and in Strouds Creek in Orange County, North Carolina. We found that the uncertainty of a single variable is propagated differently to the flood inundation area depending on the effects of other variables in the overall process. The uncertainty was linearly/nonlinearly propagated corresponding to valley shapes of the reaches. In addition, the HSY sensitivity analysis revealed the topography of Seymour reach and the discharge of Strouds Creek to be major contributors to the change of flood inundation area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Forecasting of hydrologic time series, with the quantification of uncertainty, is an important tool for adaptive water resources management. Nonstationarity, caused by climate forcing and other factors, such as change in physical properties of catchment (urbanization, vegetation change, etc.), makes the forecasting task too difficult to model by traditional Box–Jenkins approaches. In this paper, the potential of the Bayesian dynamic modelling approach is investigated through an application to forecast a nonstationary hydroclimatic time series using relevant climate index information. The target is the time series of the volume of Devil's Lake, located in North Dakota, USA, for which it was proved difficult to forecast and quantify the associated uncertainty by traditional methods. Two different Bayesian dynamic modelling approaches are discussed, namely, a constant model and a dynamic regression model (DRM). The constant model uses the information of past observed values of the same time series, whereas the DRM utilizes the information from a causal time series as an exogenous input. Noting that the North Atlantic Oscillation (NAO) index appears to co‐vary with the time series of Devil's Lake annual volume, its use as an exogenous predictor is explored in the case study. The results of both the Bayesian dynamic models are compared with those from the traditional Box–Jenkins time series modelling approach. Although, in this particular case study, it is observed that the DRM performs marginally better than traditional models, the major strength of Bayesian dynamic models lies in the quantification of prediction uncertainty, which is of great value in hydrology, particularly under the recent climate change scenario. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号