首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upland agricultural land management activities such as grazing, vegetation burning, and bare ground restoration impact hydrological elements of headwater catchments, many of which may be important for downstream flood peaks (e.g., overland flow and soil water storage). However, there is poor understanding of how these management practices affect river flow peaks during high magnitude rainfall events. Using the distributed TOPMODEL, spatial configurations of land management were modelled to predict flood response in an upland catchment, which contains different regions operating subsidized agricultural stewardship schemes. Heavy grazing leading to soil compaction and loss of vegetation cover in stewardship regions covering 79.8% of the catchment gave a 42‐min earlier flow peak, which was 82.2% higher (under a 1‐hr 15‐mm storm) than the current simulated hydrograph. Light grazing over the same regions of the catchment had much less influence on river flow peaks (18 min earlier and 32.9% increase). Rotational burning (covering 8.8% of the catchment), most of which is located in the headwater areas, increased the peak by 3.2% in the same rainfall event. Vegetation restoration with either Eriophorum or Sphagnum (higher density) in bare areas (5.8%) of the catchment provided a reduction of flood peak (3.9% and 5.2% in the 15‐mm storm event), whereas the same total area revegetated with Sphagnum in riparian regions delivered a much larger decrease (15.0%) in river flow peaks. We show that changes of vegetation cover in highly sensitive areas (e.g., near‐stream zones) generate large impacts on flood peaks. Thus, it is possible to design spatially distributed management systems for upland catchments, which reduce flood peaks while at the same time ensuring economic viability for upland farmers.  相似文献   

2.
Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Interrill erosion processes on gentle slopes are affected by mechanisms of raindrop impact, overland flow and their interaction. However, limited experimental work has been conducted to understand how important each of the mechanisms are and how they interact, in particular for peat soil. Laboratory simulation experiments were conducted on peat blocks under two slopes (2.5° and 7.5°) and three treatments: Rainfall, where rainfall with an intensity of 12 mm h?1 was simulated; Inflow, where upslope overland flow at a rate of 12 mm h?1 was applied; and Rainfall + Inflow which combined both Rainfall and Inflow. Overland flow, sediment loss and overland flow velocity data were collected and splash cups were used to measure the mass of sediment detached by raindrops. Raindrop impact was found to reduce overland flow by 10 to 13%, due to increased infiltration, and reduce erosion by 47% on average for both slope gradients. Raindrop impact also reduced flow velocity (80–92%) and increased roughness (72–78%). The interaction between rainfall and flow was found to significantly reduce sediment concentrations (73–85%). Slope gradient had only a minor effect on overland flow and sediment yield. Significantly higher flow velocities and sediment yields were observed under the Rainfall + Inflow treatment compared to the Rainfall treatment. On average, upslope inflow was found to increase erosion by 36%. These results indicate that overland flow and erosion processes on peat hillslopes are affected by upslope inflow. There was no significant relationship between interrill erosion and overland flow, whereas stream power had a strong relationship with erosion. These findings help improve our understanding of the importance of interrill erosion processes on peat. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Fine‐scale dynamics of groundwater flow were studied in a 1·5 ha peatland in central New York. Measurements of the hydraulic head throughout a detailed network of piezometer clusters revealed spatial and temporal variability in the direction of groundwater flow at a very fine (within a few metres) scale of analysis. Within the small wetland, there were areas of groundwater recharge, discharge and lateral flow. Such patterns of groundwater flow frequently reversed or changed due to fluctuations of only a few centimetres in hydraulic head. Specific conductance, deuterium signatures and calcium concentrations of groundwater corroborated the groundwater flow patterns determined with hydraulic head measurements and illustrated the influence of source water chemistry and evaporation on different layers in the peat column. The control of peat chemistry by such fine‐scale groundwater flow may have important implications for plant community composition and diversity in groundwater‐fed peatlands. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
The topographically explicit distributed hydrology–soil–vegetation model (DHSVM) is used to simulate hydrological effects of changes in land cover for four catchments, ranging from 27 to 1033 km2, within the Columbia River basin. Surface fluxes (stream flow and evapotranspiration) and state variables (soil moisture and snow water equivalent) corresponding to historical (1900) and current (1990) vegetation are compared. In addition a sensitivity analysis, where the catchments are covered entirely by conifers at different maturity stages, was conducted. In general, lower leaf‐area index (LAI) resulted in higher snow water equivalent, more stream flow and less evapotranspiration. Comparisons with the macroscale variable infiltration capacity (VIC) model, which parameterizes, rather than explicitly represents, topographic effects, show that runoff predicted by DHSVM is more sensitive to land‐cover changes than is runoff predicted by VIC. This is explained by model differences in soil parameters and evapotranspiration calculations, and by the more explicit representation of saturation excess in DHSVM and its higher sensitivity to LAI changes in the calculation of evapotranspiration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
7.
There are few multibasin analyses of the effects of urban land cover on seasonal stream flow patterns within northern watersheds where winter snow cover is the norm. In this study, the effects of urban cover on stream flow were evaluated at nine catchments in southern Ontario, Canada, which vary greatly in urban impervious cover (1–84%) but cluster into two groups having ≥54% urban impervious area (‘urban’) and ≤11% impervious cover (‘rural’), respectively. Annual and seasonal run‐off totals (millimetres) were similar between the rural and urban groups and were relatively insensitive to urban cover. Instead, urban streams had significantly greater high flow frequency, flow variability and quickflow and lower baseflow compared with rural streams. Furthermore, differences in high flow frequency between urban and rural stream groups were largest in the summer and fall and less extreme in the winter and spring, perhaps because of the homogenizing effect of winter snow cover, frozen ground and spring melt on surface imperviousness. Although the clear clustering of streams into urban and rural groups precluded the identification of a threshold above which urban cover is the primary cause of flow differences, relatively high extreme flow frequency and flow variability in the two most urbanized of the rural streams (10–11% impervious) suggest that it may lie close to this range. Furthermore, whereas total run‐off volumes were not affected by urban cover, increases in stream flashiness and a greater frequency of high flow events particularly during the summer and fall may negatively impact stream biota and favour the transfer of surface‐deposited pollutants to urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Climate warming and human disturbance in north‐western Canada have been accompanied by degradation of permafrost, which introduces considerable uncertainty to the future availability of northern freshwater resources. This study demonstrates the rate and spatial pattern of permafrost loss in a region that typifies the southern boundary of permafrost. Remote‐sensing analysis of a 1·0 km2 area indicates that permafrost occupied 0·70 km2 in 1947 and decreased with time to 0·43 km2 by 2008. Ground‐based measurements demonstrate the importance of horizontal heat flows in thawing discontinuous permafrost, and show that such thaw produces dramatic land‐cover changes that can alter basin runoff production in this region. A major challenge to northern water resources management in the twenty‐first century therefore lies in predicting stream flows dynamically in the context of widely occurring permafrost thaw. The need for appropriate water resource planning, mitigation, and adaptation strategies is explained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes the preliminary development of a network‐index approach to modify and to extend the classic TOPMODEL. Application of the basic Beven and Kirkby form of TOPMODEL to high‐resolution (2·0 m) laser altimetric data (based upon the UK Environment Agency's light detection and ranging (LIDAR) system) to a 13·8 km2 catchment in an upland environment identified many saturated areas that remained unconnected from the drainage network even during an extreme flood event. This is shown to be a particular problem with using high‐resolution topographic data, especially over large appreciable areas. To deal with the hydrological consequences of disconnected areas, we present a simple network index modification in which saturated areas are only considered to contribute when the topographic index indicates continuous saturation through the length of a flow path to the point where the path becomes a stream. This is combined with an enhanced method for dealing with the problem of pits and hollows, which is shown to become more acute with higher resolution topographic data. The paper concludes by noting the implications of the research as presented for both methodological and substantive research that is currently under way. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
In the Sahel, there are few long‐term data series available to estimate the climatic and anthropogenic impacts on runoff in small catchments. Since 1950, land clearing has enhanced runoff. The question is whether and by how much this anthropogenic effect offsets the current drought. To answer this question, a physically based distributed hydrological model was used to simulate runoff in a small Sahelian catchment in Niger, from the 1950–1998 rain‐series. The simulation was carried out for three soil surface states of the catchment (1950, 1975 and 1992). The catchment is characterized by an increase in cultivated land, with associated fallow, from 6% in 1950 to 56% in 1992, together with an increase in the extent of eroded land (from 7 to 16%), at the expense of the savanna. Effects of climate and land use are first analysed separately: irrespective of the land cover state, the simulated mean annual runoff decreases by about 40% from the wet period (1950–1969) to the dry period (1970–1998); calculated on the 1950–1998 rainfall‐series, the changes that occurred in land cover between 1950 and 1992 multiplies the mean annual runoff by a factor close to three. The analysis of a joint climatic and anthropogenic change shows that the transition from a wet period under a ‘natural’ land cover (1950) to a dry period under a cultivated land cover (1992) results in an increase in runoff of the order of 30 to 70%. At the scale of a small Sahelian catchment, the anthropogenic impact on runoff is probably more important than that of drought. This figure for relative increase in runoff contributions to ponds, preferential sites of seepage to groundwater, is less than that currently estimated for aquifer recharge, which has been causing a significant continuous water table rise over the same period. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Information on the spatial and temporal origin of runoff entering the channel during a storm event would be valuable in understanding the physical dynamics of catchment hydrology; this knowledge could be used to help design flood defences and diffuse pollution mitigation strategies. The majority of distributed hydrological models give information on the amount of flow leaving a catchment and the pattern of fluxes within the catchment. However, these models do not give any precise information on the origin of runoff within the catchment. The spatial and temporal distribution of runoff sources is particularly intricate in semi‐arid catchments, where there are complex interactions between runoff generation, transmission and re‐infiltration over short temporal scales. Agents are software components that are capable of moving through and responding to their local environment. In this application, the agents trace the path taken by water through the catchment. They have information on their local environment and on the basis of this information make decisions on where to move. Within a given model iteration, the agents are able to stay in the current cell, infiltrate into the soil or flow into a neighbouring cell. The information on the current state of the hydrological environment is provided by the environment generator. In this application, the Connectivity of Runoff Model (CRUM) has been used to generate the environment. CRUM is a physically based, distributed, dynamic hydrology model, which considers the hydrological processes relevant for a semi‐arid environment at the temporal scale of a single storm event. During the storm event, agents are introduced into the model across the catchment; they trace the flows of water and store information on the flow pathways. Therefore, this modelling approach is capable of giving a novel picture of the temporal and spatial dynamics of flow generation and transmission during a storm event. This is possible by extracting the pathways taken by the agents at different time slices during the storm. The agent based modelling approach has been applied to two small catchments in South East Spain. The modelling approach showed that the two catchments responded differently to the same rainfall event due to the differences in the runoff generation and overland flow connectivity between the two catchments. The model also showed that the time of travel to the nearest flow concentration is extremely important for determining the connectivity of a point in the landscape with the catchment outflow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Two distributed parameter models, a one‐dimensional (1D) model and a two‐dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event‐based and represent each watershed by an array of 1‐m2 cells, in which the cell size is approximately equal to the average area of the shrubs. Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite‐difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second‐order predictor–corrector finite‐difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions. The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large‐scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The effects of ice cover on flow characteristics in meandering rivers are still not completely understood. Here, we quantify the effects of ice cover on flow velocity, the vertical and spatial flow distribution, and helical flow structure. Comparison with open‐channel low flow conditions is performed. An acoustic doppler current profiler (ADCP) is used to measure flow from up to three meander bends, depending on the year, in a small sandy meandering subarctic river (Pulmanki River) during two consecutive ice‐covered winters (2014 and 2015). Under ice, flow velocities and discharges were predominantly slower than during the preceding autumn open‐channel conditions. Velocity distribution was almost opposite to theoretical expectations. Under ice, velocities reduced when entering deeper water downstream of the apex in each meander bend. When entering the next bend, velocities increased again together with the shallower depths. The surface velocities were predominantly greater than bottom/riverbed velocities during open‐channel flow. The situation was the opposite in ice‐covered conditions, and the maximum velocities occurred in the middle layers of the water columns. High‐velocity core (HVC) locations varied under ice between consecutive cross‐sections. Whereas in ice‐free conditions the HVC was located next to the inner bank at the upstream cross‐sections, the HVC moved towards the outer bank around the apex and again followed the thalweg in the downstream cross‐sections. Two stacked counter‐rotating helical flow cells occurred under ice around the apex of symmetric and asymmetric bends: next to the outer bank, top‐ and bottom‐layer flows were towards the opposite direction to the middle layer flow. In the following winter, no clear counter‐rotating helical flow cells occurred due to the shallower depths and frictional disturbance by the ice cover. Most probably the flow depth was a limiting factor for the ice‐covered helical flow circulation, similarly, the shallow depths hinder secondary flow in open‐channel conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This study examines how the sediment transport capacity of interrill overland flow varies with stone cover and stone size at two flow intensities. Six series of flume experiments were conducted on two slopes (2° and 10°) with stones of three sizes (28·0, 45·5 and 91·3 mm) serving as roughness elements. Bed sediment size, water discharge and simulated rainfall intensity were the same in all experiments. It was found (1) that transport capacity is positively related to stone size, with the relation becoming stronger as stone cover increases and flow intensity decreases; and (2) that transport capacity is negatively related to stone cover at the high flow intensity and curvilinearly related to stone cover at the low flow intensity. The curvilinear relations are concave‐upward with the lowest transport capacities occurring at stone covers between 0·40 and 0·60. The highest transport capacities are found at stone covers of 0 and 1, with the transport capacity being greater at the former stone cover than at the latter. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
We investigated the influence of recent and future land‐cover changes on stream flow of a watershed northeastern Puerto Rico using hydrological modeling and simulation analysis. Monthly and average annual stream flows were compared between an agricultural period (1973–1980) and an urbanized/reforested period (1988–1995) using the revised Generalized Watershed Loading Function model. Our validated results show that a smaller proportion of rainfall became stream flows in the urbanized/forested period compared with the agricultural period, apparently because of reforestation. Sensitivity analysis of the model showed that evapotranspiration, precipitation, and curve number were the most significant factors influencing stream flow. Simulations of projected land‐cover scenarios indicate that annual stream flows would increase by 9·6% in a total urbanization scenario, decrease by 3·6% in a total reforestation scenario, and decrease by 1·1% if both reforestation and urbanization continue at their current rates to 2020. An imposed hurricane event that was similar in scale to the largest recent event on the three land‐cover scenarios would increase the daily stream flow by 62·1%, 68·4% and 67·1% respectively. Owing to the environmental setting of eastern Puerto Rico, where sea breezes caused by temperature differences between land surface and the ocean dominate the local climate, we suggest that managing local land‐cover changes can have important consequences for water management. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
We investigated, through hydrologic modelling, the impact of the extent and density of canopy cover on streamflow timing and on the magnitude of peak and late summer flows in the upper Tuolumne basin (2600–4000 m) of the Sierra Nevada, California, under current and warmer temperatures. We used the Distributed Hydrology Soil Vegetation Model for the hydrologic modelling of the basin, assuming four vegetation scenarios: current forest (partial cover, 80% density), all forest (uniform coverage, 80% density), all barren (no forest) and thinned forest (partial cover, 40% density) for a medium‐high emissions scenario causing a 3.9 °C warming over a 100‐year period (2001–2100). Significant advances in streamflow timing, quantified as the centre of mass (COM) of over 1 month were projected for all vegetation scenarios. However, the COM advances faster with increased forest coverage. For example, when forest covered the entire area, the COM occurred on average 12 days earlier compared with the current forest coverage, with the rate of advance higher by about 0.06 days year?1 over 100 years and with peak and late summer flows lower by about 20% and 27%, respectively. Examination of modelled changes in energy balance components at forested and barren sites as temperatures rise indicated that increases in net longwave radiation are higher in the forest case and have a higher contribution to melting earlier in the calendar year when shortwave radiation is a smaller fraction of the energy budget. These increases contributed to increased midwinter melt under the forest at temperatures above freezing, causing decreases in total accumulation and higher winter and early spring melt rates. These results highlight the importance of carefully considering the combined impacts of changing forest cover and climate on downstream water supply and mountain ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This study was designed to develop a physically based hydrological model to describe the hydrological processes within forested mountainous river basins. The model describes the relationships between hydrological fluxes and catchment characteristics that are influenced by topography and land cover. Hydrological processes representative of temperate basins in steep terrain that are incorporated in the model include intercepted rainfall, evaporation, transpiration, infiltration into macropores, partitioning between preferential flow and soil matrix flow, percolation, capillary rise, surface flow (saturation‐excess and return flow), subsurface flow (preferential subsurface flow and baseflow) and spatial water‐table dynamics. The soil–vegetation–atmosphere transfer scheme used was the single‐layer Penman–Monteith model, although a two‐layer model was also provided. The catchment characteristics include topography (elevation, topographic indices), slope and contributing area, where a digital elevation model provided flow direction on the steepest gradient flow path. The hydrological fluxes and catchment characteristics are modelled based on the variable source‐area concept, which defines the dynamics of the watershed response. Flow generated on land for each sub‐basin is routed to the river channel by a kinematic wave model. In the river channel, the combined flows from sub‐basins are routed by the Muskingum–Cunge model to the river outlet; these comprise inputs to the river downstream. The model was applied to the Hikimi river basin in Japan. Spatial decadal values of the normalized difference vegetation index and leaf area index were used for the yearly simulations. Results were satisfactory, as indicated by model efficiency criteria, and analysis showed that the rainfall input is not representative of the orographic lifting induced rainfall in the mountainous Hikimi river basin. Also, a simple representation of the effects of preferential flow within the soil matrix flow has a slight significance for soil moisture status, but is insignificant for river flow estimations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The crucial role of stone pavements in arid environments for aeolian or alluvial processes and as numerical dating tools is increasingly acknowledged. This role is based on the assumption that stone pavements are stable landforms, formed gradually over time and predominantly by vertical processes. However, this is challenged by evidence of stone‐pavement clast reworking or burial. Bimodal, mostly slope aspect‐symmetrical clast orientation is a frequent phenomenon in various study areas. It implies that stone pavements may be influenced by unidirectional lateral processes besides vertical ones. Here, the finding of lateral processes contributing to stone‐pavement evolution is supported by numerical modelling and physical experiments. These unequivocally show that unconcentrated overland flow can transport clasts to form a closely packed stone mosaic with characteristics similar to those of natural stone pavements. The commonly observed length‐axes orientation angle of 40 ± 14° for natural stone‐pavement clasts is consistently reproduced by angle‐dependent force equilibrium. Monte Carlo runs confirm the natural scatter and allow characterization of the control parameters of clast orientation. The model explains up to 70% of the natural variance. It is further validated by flume experiments, which confirm model predictions of single object orientation angles. Experiments with multiple objects yield artificial stone pavements with properties similar to those found in the field. The unidirectional lateral process acting on natural stone pavements requires the presence of a vesicular horizon. This underlines the tight genetic coupling of this common epipedon feature and the clast cover. The presented findings highlight the role of stone pavements as process and environment proxies. However, stone pavements represent information since the last surface disturbance only. This has to be considered when using them as age indicators. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Shallow upland drains, grips, have been hypothesized as responsible for increased downstream flow magnitudes. Observations provide counterfactual evidence, often relating to the difficulty of inferring conclusions from statistical correlation and paired catchment comparisons, and the complexity of designing field experiments to test grip impacts at the catchment scale. Drainage should provide drier antecedent moisture conditions, providing more storage at the start of an event; however, grips have higher flow velocities than overland flow, thus potentially delivering flow more rapidly to the drainage network. We develop and apply a model for assessing the impacts of grips on flow hydrographs. The model was calibrated on the gripped case, and then the gripped case was compared with the intact case by removing all grips. This comparison showed that even given parameter uncertainty, the intact case had significantly higher flood peaks and lower baseflows, mirroring field observations of the hydrological response of intact peat. The simulations suggest that this is because delivery effects may not translate into catchment‐scale impacts for three reasons. First, in our case, the proportions of flow path lengths that were hillslope were not changed significantly by gripping. Second, the structure of the grip network as compared with the structure of the drainage basin mitigated against grip‐related increases in the concentration of runoff in the drainage network, although it did marginally reduce the mean timing of that concentration at the catchment outlet. Third, the effect of the latter upon downstream flow magnitudes can only be assessed by reference to the peak timing of other tributary basins, emphasizing that drain effects are both relative and scale dependent. However, given the importance of hillslope flow paths, we show that if upland drainage causes significant changes in surface roughness on hillslopes, then critical and important feedbacks may impact upon the speed of hydrological response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Heavy winter rainfall produces double‐peak hydrographs at the Slapton Wood catchment, Devon, UK. The first peak is saturation‐excess overland flow in the hillslope hollows and the second (i.e. the delayed peak) is subsurface stormflow. The physically‐based spatially‐distributed model SHETRAN is used to try to improve the understanding of the processes that cause the double peaks. A three‐stage (multi‐scale) approach to calibration is used: (1) water balance validation for vertical one‐dimensional flow at arable, grassland and woodland plots; (2) two‐dimensional flow for cross‐sections cutting across the stream valley; and (3) three‐dimensional flow in the full catchment. The main data are for rainfall, stream discharge, evaporation, soil water potential and phreatic surface level. At each scale there was successful comparison with measured responses, using as far as possible parameter values from measurements. There was some calibration but all calibrated values at one scale were used at a larger scale. A large proportion of the subsurface runoff enters the stream from three dry valleys (hillslope hollows), and previous studies have suggested convergence of the water in the three large hollows as being the major mechanism for the production of the delayed peaks. The SHETRAN modelling suggests that the hillslopes that drain directly into the stream are also involved in producing the delayed discharges. The model shows how in the summer most of the catchment is hydraulically disconnected from the stream. In the autumn the catchment eventually ‘wets up’ and shallow subsurface flows are produced, with water deflected laterally along the soil‐bedrock interface producing the delayed peak in the stream hydrograph. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号