首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Permeable pavements are implemented to provide at-source treatment of urban stormwater runoff while supporting vehicular and pedestrian use. Studies on these systems have mainly focused on those treating only direct rainfall and installed atop well-drained soils which typically provide substantial hydrologic mitigation through exfiltration that may not be representative of more hydrologically taxing conditions. A single lane parking area retrofitted with permeable interlocking concrete pavement in Vermilion, OH, USA was monitored over a 15-month period to quantify its hydrologic performance under such conditions. The 470 m2 permeable pavement was underlain by silt loam soils and a shallow bedrock layer and treated run-on from the adjacent 324 m2 asphalt drive lane. Observed data were compared to a calibrated SWMM model developed to simulate the pre-retrofit conditions of the site (i.e., a completely impervious parking lot). Cumulative runoff volumes were reduced by 43% across all events in the monitoring period compared to a fully impervious parking lot. While median peak flows were reduced by 75%, substantial mitigation was limited to smaller, lower intensity events with longer antecedent dry periods (i.e., non-flood producing events). The permeable pavement significantly delayed the occurrence of peak flows from the site following peak rainfall intensity by a median 29 min. Results from this study demonstrate that permeable pavements which receive run-on from adjacent imperious cover and are installed atop poorly drained soils can significantly reduce runoff volumes and peak flow rates and delay the occurrence of peak discharge. The modelling approach implemented can provide a better estimation of diffuse inflows to green infrastructure stormwater controls and aid in refining design features which enhance the hydrologic performance in systems underlain by poorly drained soils.  相似文献   

2.
Permeable pavements and similar stormwater control devices have not been exploited in the UK, in part because their adoption has been hindered by a lack of detailed knowledge of their hydrological performance. This paper describes a research programme that produced detailed information on the hydrological behaviour of a car park surface. The study involved the construction of full‐scale permeable pavement model car park structures and a rainfall simulator for use in the laboratory. A monitoring procedure was developed in order to measure inputs and changes in drainage, storage and evaporation over short and long time‐scales (2 hours to 3 months). A range of simulated rainfalls, which varied in intensity and duration, was applied to the model car park surfaces. Hydrological processes were monitored over an 18‐month period. Results demonstrated that evaporation, drainage and retention in the structures were strongly influenced by the particle size distribution of the bedding material and by water retention in the surface blocks. In general, an average of 55% of a one‐hour duration, 15 mm h−1 rainfall event could be retained by an initially air‐dry structure. Subsequent simulations demonstrated that 30% of a one‐hour duration, 15 mm h−1 rainfall event could be stored by an initially wet structure (with a minimum time interval between rainfall applications of 72 hours). Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Rui Guo  Yiping Guo  Jun Wang 《水文研究》2018,32(17):2708-2720
An approach based on individual rainfall events is introduced to mathematically describe the hydrologic responses and estimate the stormwater capture efficiencies of permeable pavement systems (PPSs). A stochastic model describing the instantaneous dynamic water balance of a PPS is established, from which the probability distribution of the antecedent moisture content of the PPS at the beginning of a rainfall event is analytically derived. Based on this probability distribution and the event‐based approach, an analytical equation that can be used for estimating the stormwater capture efficiencies of PPSs is also derived. The derived analytical equation is verified by comparing its results with those from continuous simulations for a wide range of PPSs with different sizes and underlying soils and operating under various climate conditions. It was found that the antecedent moisture contents of PPSs at the test locations are usually fairly close to zero, suggesting that PPSs at these locations are always almost empty at the start of a rainfall event. The derived analytical equation accounts for many key processes influencing the behaviour and operation of PPSs; it may serve as an easy‐to‐use tool that is essential for the planning and design of PPSs.  相似文献   

4.
Considering all the alterations on hydrology and water quality that urbanization process brings, permeable pavement (PP) is an alternative to traditional impermeable asphalt and concrete pavement. The goal of the PP and other low impact development devices is to increase infiltration and reduce peak runoff flows. These structures are barely used in Brazil aiming stormwater management, one of the big hydrological issues in cities throughout the country, with increasing urbanization rates. The main objective of this paper is the hydraulic characterization of a PP and the assessment of its hydrological efficiency from the point of view of the infiltration process. The study focuses on a pilot area in a parking lot in an urban area (Recife, Brazil). Soil elements filling the voids between concrete elements were sampled (particle size density, water contents) and tested with water infiltration experiments at several points of the 3 m × 1.5 m surface pilot area. Beerkan Estimation of Soil Transfer parameters algorithm was applied to the infiltration experiment data to obtain the hydraulic characteristics of the soil composing the PP surface layer, the concrete grid pavers (with internal voids filled with natural soil) permeability being neglected. Results show that the soil hydraulic characteristics vary spatially within the pilot area and that the soil samples have different hydraulic behaviours. The hydraulic characteristics derived from Beerkan Estimation of Soil Transfer parameters analysis were implemented into Hydrus code to simulate runoff, infiltration and water balance over a year. The numerical simulation showed the good potential of the PP for rainfall–runoff management, which demonstrates that PP can be used to retrofit existing parking infrastructure and to promote hydrological behaviour close to natural soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Sustainable strategies such as green roofs have been implemented as stormwater management tools to mitigate disturbance of the hydrologic cycle resulting from urbanization. Green roofs, also referred to as vegetated roofs, can improve the urban landscape by reducing heat island effects, providing ecosystem services, and facilitating the retention and treatment of stormwater. Green roofs have received particular attention because they do not require acquisition and development of land and represent an application of biomimicry in design and construction. In this paper, we evaluate the effects of precipitation, evapotranspiration (ET), antecedent dry period (ADP), and seasonal variation on the run‐off quantity and distribution of an extensive, sedum covered, green roof on a commercial building in Syracuse, NY, USA. The green roof greatly facilitated retention of precipitation events without significant changes over the 4‐year study. The green roof retained on average 95.9 ± 3.6% (6.5 ± 5.6 mm) per rainfall event, with a range from 75% to 99.6% (33.2 to 3.3 mm). However, as precipitation quantity increased, the retention of water decreased. This high water retention capacity was the result of the combined effects of ET, stormwater storage (plants, growth media, and stormwater retention layer), and limited surface run‐off from the roof deck due to variation in the sloping of the green roof and the tapered insulation to the deck drains. The water retention capacity of the green roof did not change significantly between growing and nongrowing seasons. Slightly greater precipitation during the growing season coincided with increased ET. Average potential ET during the growing season was approximately 3 times greater than during the nongrowing season. The hydrologic performance of the green roof was not significantly impacted by an ADP greater than 2 days.  相似文献   

6.
Permeable pavements (PPs) are widely implemented in urban areas to mimic natural hydrologic processes through enhancing infiltration, and reducing, delaying, and retaining surface runoff. However, its performance can be affected by shallow groundwater since high soil moisture may inhibit its infiltration and exfiltration. This study built a numerical model, which was calibrated and validated based on laboratory experiment data, to evaluate the water balance and retention of PP in shallow groundwater conditions. It assessed the impacts of shallow groundwater and the hydrologic effectiveness of different PP design measures (i.e., building a PP with a smaller storage depth, implementing an underdrain at different elevations, and installing an impermeable liner) on relieving the impacts. Shallower groundwater led to larger amounts of surface runoff and underdrain flow, and a higher chance of saturating the PP reservoir. The three design measures had both benefits and drawbacks in mimicking natural hydrologic cycle and retaining the performance of PP under extreme conditions (e.g., areas of very shallow groundwater tables and/or extreme rainfalls). A PP with a smaller storage depth resulted in less underdrain flow but was prone to saturation. It is, thus, more recommended for PP with more-permeable subsoils, which can avoid frequent pavement saturation. Although a shallower PP corresponds to a smaller storage volume and shorter hydraulic retention time, it can increase the applicability of PP to shallow groundwater areas, which is beneficial to the regional hydrologic environment. Installing an underdrain generated underdrain flow, which is a burden to the downstream drainage system. However, it significantly reduced the surface runoff and the chance of saturating the PP reservoir, which, thus, is more recommended for PP with less-permeable subsoils. Comparatively, elevating the underdrain is recommended in areas of shallow groundwater because it can reduce the frequency and amount of groundwater-induced underdrain flow. In addition, a higher underdrain together with an impermeable liner can create a storage depth, increase the retention duration, enhance exfiltration and evaporation without increasing the saturation risk.  相似文献   

7.
A pilot-scale nutrient injection will (NIW) (4 m by 4 m by 1 m) was installed in the Borden Aquifer lo serve as a pulsed injection source of a potassium acetate solution for the stimulation of anaerobic microbial activity. The success of the flushing procedure was evaluated by monitoring the breakthrough of the acetate solution at several multilevel piezometers installed in the wall. Although some variation in the ground water velocity was observed with depth, the wall was flushed with reasonable uniformity after about six hours of injection and withdrawal, representing about one pore volume, Calculations bused on head level data collected during the flush, and on the solute breakthrough curves, indicated that about 90% of the flow induced by the pumping and injecting was confined to the permeable wall. These results show that a permeable wall injection system is a viable method of introducing solutes uniformly to a cross section of aquifer, with minimal perturbation of the natural flow system. In addition lo its importance for the biostimulation system tested in this project the flushing of permeable walls may have applications in other semi-passive remedial systems, such as the rejuvenation of reactive barriers.  相似文献   

8.
We report an empirical analysis of the hydrologic response of three small, highly impervious urban watersheds to pulse rainfall events, to assess how traditional stormwater management (SWM) alters urban hydrographs. The watersheds vary in SWM coverage from 3% to 61% and in impervious cover from 45% to 67%. By selecting a set of storm events that involved a single rainfall pulse with >96% of total precipitation delivered in 60 min, we reduced the effect of differences between storms on hydrograph response to isolate characteristic responses attributable to watershed properties. Watershed-average radar rainfall data were used to generate local storm hyetographs for each event in each watershed, thus compensating for the extreme spatial and temporal heterogeneity of short-duration, intense rainfall events. By normalizing discharge values to the discharge peak and centring each hydrograph on the time of peak we were able to visualize the envelope of hydrographs for each group and to generate representative composite hydrographs for comparison across the three watersheds. Despite dramatic differences in the fraction of watershed area draining to SWM features across these three headwater tributaries, we did not find strong evidence that SWM causes significant attenuation of the hydrograph peak. Hydrograph response for the three watersheds is remarkably uniform despite contrasts in SWM, impervious cover and spatial patterns of land cover type. The primary difference in hydrograph response is observed on the recession limb of the hydrograph, and that change appears to be associated with higher storm-total runoff in the watersheds with more area draining to SWM. Our findings contribute more evidence to the work of previous authors suggesting that SWM is less effective at attenuating urban hydrographs than is commonly assumed. Our findings also are consistent with previous work concluding that percent impervious cover may have greater influence on runoff volume than percent SWM coverage.  相似文献   

9.
Abstract

Sediment is transported in the form of debris flows in major gullies dissecting permeable volcanic slopes as exemplified by the Kami-kamihori Valley in the northern Japan Alps. Four years of hydrological observations in the headwater area of the gully showed that the surface runoff which triggers debris flows is related to peak 10- to 20-minute rainfall. Sediment production in such a short time is not sufficient to prepare a debris flow. Therefore, debris must have been accumulated at a particular section by repeated sediment discharge due to minor rainstorms. The volume of the debris produced in the headwaters was evaluated and correlated to an effective rainfall. The quantity of sediment transport at seven sections along the gully by debris flows in three periods was evaluated through the measurement of the topographic changes. It was compared with the total effective rainfall for the pertinent period, and the mean “sediment concentration” in the debris flow was calculated for each section and for each period. It was shown that the change in the sediment concentration along the gully reflects the entrainment of debris from the gully floor in the acceleration zone and the deposition in the deceleration zone. It was also demonstrated that the sediment delivery of a debris flow depends on the time distribution of rainfall, because rainfall time bases appropriate to prediction of the sediment transport at different reaches vary.  相似文献   

10.
Urban stormwater run‐off degrades the ecological condition of streams. The use of rainwater tanks to supplement water supply can reduce the frequency and volume of urban stormwater run‐off that is otherwise conveyed directly to streams via conventional stormwater drainage systems. Few studies, however, have examined the use of tanks in the context of managing flow regimes for stream protection, with most focussed uniquely on their water conservation benefits. We used measured tank water level data to assess the performance of 12 domestic rainwater tanks against the dual criteria of their ability to (i) reduce potable mains water usage and (ii) retain run‐off from rainfall events and thus reduce the volume and frequency of stormwater run‐off. We found that five households relied almost entirely on tank water. Three of the tanks achieved stormwater retention performance approaching that of the same area of pre‐developed land, although nine did not – a consequence of limited demand and small tank capacity. Our results suggest that tank water usage can result in substantial reductions in mains water use, if regular and sufficiently large domestic demands are connected to tanks. In many cases, such demands will also result in the best stormwater retention performance. Our results highlight an opportunity to design tank systems to achieve multiple objectives. Application of similar analyses in different locations will help to optimize tanks for simultaneous water supply and stormwater retention purposes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper the results of a field investigation on rilling carried out in the experimental Sparacia area are reported. The measurements were made on a plot 6 m wide and 22 m long subjected to natural rainfalls. For ten rainfalls the total soil loss (interrill and rill erosion) was collected in a storage system consisting of two tanks arranged in series at the base of the plot. Rill morphology (rill length and cross‐sections) was measured for five rainfall events, while the rill profile was surveyed for three events. First the contribution of each component (rill and interrill erosion) to total soil loss was established. Then the analysis allowed establishment of a power relationship between the rill length and the rill volume. Finally, for three events detailed information on rill erosion and rill morphology allowed verification of the applicability of WEPP and estimation of the rill erodibility constant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
To mitigate the impacts of impervious surfaces in urban areas, structures such as bioretention systems and permeable pavements have been installed to enhance infiltration in many countries. However, relatively little knowledge is available regarding the performance of such infiltration‐based structures in humid tropical and highly urbanized areas. This study investigates the feasibility of enhancing the infiltration of stormwater in tropical urbanized areas using Singapore as a case study. It first shows that the rainfall depth and intensity are both high, but the time interval between consecutive rainfall event is long in Singapore. It then numerically simulates single‐event local infiltration and finds that the fraction of infiltrated rainfall is actually high. It finally performs catchment‐scale simulations and finds that bioretention systems can enhance infiltration and groundwater recharge particularly during wet periods. However, local mounding of groundwater can be significant and can hinder the performance of those structures. Furthermore, with 5% of catchment area being converted to such structures, the infiltration of the entire catchment is enhanced but still not yet up to the natural level. To increase the overall effectiveness, future studies can look into bioretention systems with underdrain systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an analytical case study to explore one‐dimensional subsurface air pressure variation in a coastal three‐layered unsaturated zone. The upper layer is thin and much less permeable than the middle layer, and water table is located in the very permeable lower layer. An analytical solution was derived to describe the air pressure variation caused by tide‐induced water table fluctuations. We revisited the case study at Hong Kong International Airport conducted by Jiao and Li (2004) who used a two‐dimensional numerical model. The analytical prediction using the parameter values equivalent to the two‐dimensional numerical model agreed very well with the observed air pressure, indicating the validity and applicability of our one‐dimensional model in approximating the actual situation in this coastal zone with adequate accuracy. The analysis revealed that the asphalt pavement played an important role in causing air pressure fluctuations below it. Abnormally high air pressure can be caused beneath the surface pavement when the air permeability decreases due to rainfall infiltration, which may lead to heaving problems during rising tides.  相似文献   

14.
Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water‐table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October–March) and summer (April–September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21–24% of annual rainfall, with more evaporation taking place during summer than winter. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Chloride contamination of groundwater in urban areas due to deicing is a well‐documented phenomenon in northern climates. The objective of this study was to evaluate the effects of permeable pavement on degraded urban groundwater. Although low impact development practices have been shown to improve stormwater quality, no infiltration practice has been found to prevent road salt chlorides from entering groundwater. The few studies that have investigated chlorides in permeable asphalt have involved sampling directly beneath the asphalt; no research has looked more broadly at surrounding groundwater conditions. Monitoring wells were installed upgradient and downgradient of an 860 m2 permeable asphalt parking lot at the University of Connecticut (Storrs, Connecticut). Water level and specific conductance were measured continuously, and biweekly samples were analyzed for chloride. Samples were also analyzed for sodium (Na), calcium (Ca), and magnesium (Mg). Analysis of variance analysis indicated a significantly (p < 0.001) lower geometric mean Cl concentration downgradient (303.7 mg/L) as compared to upgradient (1280 mg/L). Concentrations of all alkali metals increased upgradient and downgradient during the winter months as compared to nonwinter months, indicating that cation exchange likely occurred. Despite the frequent high peaks of chloride in the winter months as well as the increases in alkali metals observed, monitoring revealed lower Cl concentrations downgradient than upgradient for the majority of the year. These results suggest that the use of permeable asphalt in impacted urban environments with high ambient chloride concentrations can be beneficial to shallow groundwater quality, although these results may not be generalizable to areas with low ambient chloride concentrations.  相似文献   

16.
《水文科学杂志》2012,57(15):1918-1931
ABSTRACT

In stormwater management, it is important to accurately quantify the infiltration rates to solve urban runoff-related problems. This study proposes a method to improve estimates of the infiltration rate in permeable stormwater channels. As part of the analysis, five infiltration models were evaluated: the Kostiakov, Horton, modified Kostiakov, Philip and SCS (Soil Conservation Service) models. Infiltration tests with various initial water levels were performed on channel models with differing base width and side slopes. The results show that the addition of three parameters that describe the trapezoidal cross-sectional area, i.e. the depth, side slope and base width, in the infiltration models yielded better estimates of the infiltration rate. A comparison of the infiltration capacity values obtained from the models after the three parameters were added with those that were experimentally obtained, shows that the improved modified Kostiakov model is the most suitable model to predict infiltration rates in trapezoidal permeable stormwater channels.  相似文献   

17.
Bioretention flow-through planters manage stormwater with smaller space requirements or structural constraints associated with other forms of green infrastructure. This project monitored the hydrology of four bioretention planters at Stevens Institute of Technology to evaluate the system's ability to delay runoff and fully capture small rain events. The water depth in the outflow and the volumetric water content near the inflow were measured continuously over 15 months. Rainfall characteristics were documented from an on-site rain gauge. This monitoring determined the time from the start of a rain event to the onset of outflow from each planter, which was defined as the lag. The initial moisture deficit (difference between pre-event volumetric water content and maximum measured volumetric water content), approximate runoff volume, and approximate runoff volume in the first half hour were analysed to determine their effect on runoff capture and lag. During the monitoring period, 38% of observations did not produce measurable outflow. Logistic regression determined that the initial moisture deficit and approximate runoff volume were statistically significant in contributing to a fully captured storm. Despite the large hydraulic loading rate and concrete bottom, the planters demonstrate effective discharge lag, ranging from 5 to 1,841 min with a median of 77.5 min. Volumetric water content of the media and inlet runoff volume in the first half hour were significant in modelling the lag duration. These results represent a combination of controllable and uncontrollable aspects of green infrastructure: media design and rainfall.  相似文献   

18.
In the modeling of urban storm water runoff temperatures, the contribution of rooftops to the heating of rainfall runoff is usually neglected or not mentioned in the literature. In this paper we examine the accuracy of this assumption (a) by analyzing temperature data that we recorded on a residential rooftop, a commercial rooftop, and a concrete driveway, and (b) by simulating temperature profiles within rooftops and pavements, and estimating heat transfer amounts from these surfaces to rainfall runoff (‘heat export’). Analysis of both wet‐ and dry‐weather temperature data recorded in the Minneapolis/St. Paul metropolitan area (north‐central USA) over periods of several months leads to the conclusion that (a) a concrete driveway has a far greater capacity for heat storage and release than a shingled residential rooftop, and (b) an insulated commercial rooftop is able to store and release more heat than the residential rooftop. Unexpectedly, the rainfall events with the highest dew point (rainfall) and surface temperatures often occurred during late night or early morning hours, and not during daylight hours. The analysis of three rainfall events showed that the heat export from the commercial rooftop was roughly three times that of the residential rooftop, but only 30%–90% of the heat export from a concrete driveway. Maximum (potential) heat export was significantly higher for the driveway than for either rooftop. In conclusion, the results of the data analysis and heat export simulations support the assumption that residential rooftops contribute very little heating to runoff from rainfall, while commercial rooftops may have a thermal impact on rainfall runoff because of their greater thermal storage capacity. Commercial rooftops, in addition to asphalt and concrete pavements, should be considered when estimating water temperature of rainfall runoff from urbanized areas and the associated impact on the thermal regime of streams and fish habitat. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
SUMMARY

The evaporation tank consists of a square pan with a flat base, 2 metres long and 0, 7 metre deep, set into the ground with the rim 0, 1 metre above, and connected to a well on which is installed a limnigraph. This limnigraph records continuously fluctuations of the free water surface.

The recordings show that a large amount of water can be evaporated during rainfall. This phenomenon is specific at every evaporation tank with a free water surface. It is only during the dry intervals that a strong correlation can be established between the evaporation measured in the tank and the potential evapotranspiration of the surrounding natural surfaces. In order to locate the dry intervals and to measure the evaporation only during these intervals, it is necessary to use an apparatus provided with a continuous recording mechanism  相似文献   

20.
Four runs of experimental landform development, with the same uplift rate, different rainfall intensity, and the same material of different permeability adjusted by the degree of compaction, showed complicated effects of rainfall and mound-forming material. In the run with more rainfall on less permeable material, low separated ridges developed in the uplifted area, because abundant overland flow promoted valley erosion and slope processes from early stages. In the run with less rainfall on less permeable material, valley incision proceeded mostly in major valleys where surface water converges. Canyons developed during early stages and later a high massive mountain emerged. The effect of rainfall difference, however, appeared completely opposite on more permeable material accompanied by lower shear strength. In the run with more rainfall on more permeable material, a massive mountain similar to that with less rainfall on less permeable material appeared, and low separated ridges appeared in the run with less rainfall on more permeable material as in the run with more rainfall on less permeable material. In the former case, similar amount of water available for Hortonian overland flow in early stages estimated from rainfall rate and permeability can explain the development of similar landforms. In the latter case, while abundant surface water with more rainfall on less permeable material made fluvial erosion active from early stages, the deficiency in surface water with less rainfall on more permeable material apparently attenuated fluvial erosion but possibly accentuated slope processes and slope failures by seepage water flow through more permeable material of low shear strength. The active erosion from early stages apparently resulted in the development of enduring similar low landforms later in the dynamic equilibrium stage. These experimental results indicate that similar landforms can emerge from different environmental and lithologic controls, and that process does not necessarily follow from form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号