首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Given that the concentration of 222Rn in groundwater is much higher than that in surface water and that its radioactive half‐life (3.83 d) is short, 222Rn is an effective tracer of groundwater–surface water interactions. In this study, a new mass balance method is presented, which can be used to estimate specific groundwater–surface water interactions within a river reach. Three possible situations of interaction between groundwater and surface water are considered, and equations based on the mass conservation of 222Rn are formulated for judging specific groundwater–surface water interaction processes and for calculating water flux. A case study was conducted for the Nalenggele River, Northwest China, to demonstrate the usefulness of this method. Samples of river water and groundwater containing 222Rn were collected from the study area to estimate the interactions between groundwater and surface water. The amount of water exchanged during these interactions was estimated and the results show that transformations between groundwater and surface water are frequent along the stream. The 222Rn mass balance method is highly sensitive for studying such interactions, even in areas for which conventional hydrologic data are sparse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A mass balance model of the main Pb stores and fluxes for a typical organic‐rich upland catchment in the Peak District, UK, has been produced. The model, based on the Howden reservoir catchment, reveals that the majority of Pb in the catchment is stored within the soil (approximately 8·63 t km?2). Soil Pb levels are extremely high and can only be explained as the result of centuries of atmospheric Pb deposition from surrounding urban–industrial conurbations, and mining and smelting activity within the Peak District National Park. The atmospheric Pb flux onto the Howden catchment is approximately 107 kg a?1. The aquatic Pb flux is estimated at between 29·9 and 71·7 kg a?1; thus, at present, catchment soils are acting as a sink for Pb pollution. The Howden reservoir acts as a secondary store for Pb eroded and leached from catchment soils, with approximately 80% re‐deposited in its sediments. It is estimated that 2·3% of the catchment soil Pb pool has been retained in the reservoir sediments over its 91 year lifespan. Although the catchment is currently acting as a Pb sink, the rate of change in the soil Pb pool is very small. Future change in climate or deposition chemistry could, however, transform catchment soils into a significant source of Pb to the aquatic environment and water supply. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The protection of the globally widespread lentic small water bodies (LSWB) must be based on detailed knowledge about their hydrological connectivity and water balance. The study aimed to identify and quantify water balance components as well as surface-groundwater interaction of two LSWB in a characteristic lowland region with a combination of different methods. This includes the collection of hydrological data and the use of bromide and water stable isotopes (δ2H and δ18O) as tracers. With their help, mixing models were established, and daily water balances were assessed. The results show a strong bidirectional interaction of both LSWB systems with shallow groundwater. Bromide and stable isotope tracers allowed for the identification of the most relevant in- and outflow sources and pathways. Thereby, isotope data revealed isotopic enrichment typical for open-water bodies and only minor precipitation inputs mainly relevant at the end of the dry season. Water balance calculations suggested accentuated seasonal dynamics that were strongly influenced by shallow groundwater, which represented large inputs into both LSWB. By that, different phases could be identified, with high inflow rates in winter and spring and decreasing fluxes in summer. In one LSWB, a drainage system was found to have a major impact next to the shallow groundwater interaction. The findings of this research provide detailed insights into the influence and importance of shallow groundwater for LSWB in lowland regions. This impacts the diffuse input of agricultural pollutants into these ecologically important landscape features.  相似文献   

4.
Mountains and highlands are typically areas that provide considerable quantities of water, the latter being an important resource for the lowlands. These run‐off quantities remain discernible in the superior‐scale river systems and significantly contribute to the global water resources. Therefore, mountain regions ought to be given specific consideration with regard to management endeavours. Although well known in principle, details of water resources originating from mountains remain under discussion. A new approach has been introduced, which depicts the water balance of Switzerland in a spatially distributed manner, based on catchments of about 150 km2. The main feature of this approach is the areal precipitation, which is calculated using run‐off, evaporation and storage change of glaciers, instead of being derived from gauged precipitation values. This methodology was selected because measurement and regionalization of precipitation remain subject to large uncertainties in mountainous areas. Subsequently, the view is widened to the European Alps, which, as compared with the surrounding lowlands, contribute considerably higher annual discharge, especially in the summer months. Finally, the focus is put on the hydrological significance of mountains in general. In dry regions, mountains, in particular, are indispensable contributors to the water resources downstream. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The partitioning of rainfall into surface runoff and infiltration influences many other aspects of the hydrologic cycle including evapotranspiration, deep drainage and soil moisture. This partitioning is an instantaneous non-linear process that is strongly dependent on rainfall rate, soil moisture and soil hydraulic properties. Though all rainfall datasets involve some degree of spatial or temporal averaging, it is not understood how this averaging affects simulated partitioning and the land surface water balance across a wide range of soil and climate types. We used a one-dimensional physics-based model of the near-surface unsaturated zone to compare the effects of different rainfall discretization (5-min point-scale; hourly point-scale; hourly 0.125° gridded) on the simulated partitioning of rainfall for many locations across the United States. Coarser temporal resolution rainfall data underpredicted seasonal surface runoff for all soil types except those with very high infiltration capacities (i.e., sand, loamy sand). Soils with intermediate infiltration capacities (i.e., loam, sandy loam) were the most affected, with less than half of the expected surface runoff produced in most soil types when the gridded rainfall dataset was used as input. The impact of averaging on the water balance was less extreme but non-negligible, with the hourly point-scale predictions exhibiting median evapotranspiration, drainage and soil moisture values within 10% of those predicted using the higher resolution 5-min rainfall. Water balance impacts were greater using the gridded hourly dataset, with average underpredictions of ET up to 27% in fine-grained soils. The results suggest that “hyperresolution” modelling at continental to global scales may produce inaccurate predictions if there is not parallel effort to produce higher resolution precipitation inputs or sub-grid precipitation parameterizations.  相似文献   

6.
Groundwater-surface water interactions (GSI) connect rivers and streams with riparian areas and the adjacent aquifer. Although these interactions exert a substantial control of quantity and quality of both groundwater and surface water, knowledge on GSI along rivers at the regional scale, particularly for inland waterways, is still limited. We investigated GSI along the river Moselle, an important federal inland waterway in Germany, by using radon and tritium to identify gaining (water flux from the aquifer to the surface water) and losing (water flux from the surface water to the aquifer) stream conditions, respectively. Gaining stream conditions were identified by continuously measuring radon along the river during boat surveys with a high spatial resolution (every 2 km) during intermediate (October 2020) and near low flow conditions (August/September 2021). The tritium concentrations in surface water and groundwater and the resulting tritium inventories were used to characterize losing stream conditions Monthly tritium inventories from 2017 to 2022 revealed a mean loss for the whole period of 20.3 % and a mean gain of 21.8%. Both were probably triggered by a combination of losing stream conditions and flood-induced mass transfer of water from the aquifer back into the river as well as discharge fluctuations. At the investigated site Lehmen there were direct indications of an influence of surface water due to elevated tritium concentrations in the groundwater (up to 13.3 Bq L−1). Using radon mass balance modelling, good agreements of simulated versus measured radon data with respect to two groundwater end-member scenarios were obtained during intermediate flow (Spearman's ρ: 0.97 and 0.99; MAE: 10.1 and 3.4 Bq L−1) and near low flow (Spearman's ρ: 0.97 and 0.99; MAE: 11 and 6.5 Bq L−1). Considerable groundwater inflow was limited to the meander of Detzem, where cumulated groundwater inflow of about 19 m3 s−1 (9.5% of total discharge) and 4.2 m3 s−1 (3.8% of total discharge) was simulated during intermediate and near low flow, respectively. However, the groundwater inflow was relatively low compared to alpine streams, for example. The study will help to better identify and quantify GSI at the regional scale and provide methodological guidance for future studies focusing on inland waterways.  相似文献   

7.
All previous versions of a physically based land-surface model SWAP have assumed for simplicity that vegetation is fully covered by snow during the cold season. Such assumption is reasonable only for the regions dominated by short vegetation or for warm climates where snow processes are absent. The major goals of this paper are (i) modification of the latest version of SWAP by incorporation of tall vegetation into the cold-season parameterizations to make the model applicable for simulating heat and water transfer within a boreal forest biome and (ii) validation of the modified version using the data from a forested catchment located in the boreal zone. Modification of SWAP required to parameterize radiative and turbulent exchange between the forest crown and forest floor, partitioning snowfall between interception by the canopy (in doing so, snow interception differs from rain interception) and falling to the ground, formation of snow cover on the forest crown and forest floor including snow accumulation (both in solid and liquid fractions), snow evaporation, and snowmelt. The advanced model was validated using a set of hydrometeorological data measured during 18 years (1966–1983) at the Tayozhniy catchment (covered by boreal spruce forest), Valdai, Russia. Simulations of annual and monthly snow/rain interception, daily runoff at the catchment outlet, snow density, snow depth, snow water equivalent, soil water storage in three layers (0–20, 0–50 and 0–100 cm), and monthly evapotranspiration from the catchment were compared with observations. Analysis of the results of validation shows that the new version of the model SWAP reproduces the heat and water exchange processes occurring in mid-latitude boreal forest quite reasonable.  相似文献   

8.
A pragmatic and simple approach for estimating the groundwater recharge of karst aquifers in mountainous regions by extrapolation of the hydrological regimes of gauged and well‐documented systems is presented. Specific discharge rates are derived using annual precipitation and spring measurements by taking into account catchment size and elevation, which are assumed to be the dominant factors. Reference sites with high data reliability are used for calibration and regional extrapolation. This is performed with normalized values employing spatial precipitation deviations and correlation with the elevation of the catchment areas. A tiered step procedure provides minimum and maximum normalized gradients for the relationship between recharge quantity and elevation for karst regions. The normalized recharge can therefore be obtained and extrapolated for any location using the spatial precipitation variability to provide an estimate of annual groundwater recharge. The approach was applied to Switzerland (approximately 7500 km2 of karst terrain situated between 200 and over 4000 m a.s.l.) using annual precipitation data from meteorological stations for the years 2000 to 2011. Results show that the average recharge rates of different Swiss karst domains range from 20 to 46 L/km2s, which corresponds to an infiltration ratio between 0.6 and 0.9 of total precipitation. Despite uncertainties inherent in the approach, these results provide a benchmark for renewable karst groundwater resources in Switzerland of about 8.4 km3/year. The approach can be applied to any other mountainous karst region, that is, where a clear relationship between elevation, precipitation and recharge can be assumed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

A two-parameter monthly water balance model to simulate runoff can be used for a water resources planning programme and climate impact studies. However, the model estimates two parameters of transformation of time scale (c) and of the field capacity (SC) by a trial-and-error method. This study suggests a modified methodology to estimate the parameters c and SC using the meteorological and geological conditions. The modified model is compared with the Kajiyama formula to simulate the runoff in the Han River and International Hydrological Programme representative basins in South Korea. We show that the estimated c and SC can be used as the initial or optimal values for the monthly runoff simulation study in the model.
EDITOR M.C. Acreman; ASSOCIATE EDITOR S. Kanae  相似文献   

10.
Soil moisture is a consideration for soil conservation, agricultural production and climate modelling. This article presents a simple method for estimating soil moisture storage under water stress and storage depletion conditions. The method is driven by the common agro‐hydrologic variables of precipitation (PPT), irrigation (IRR) and evapotranspiration (ET). The proposed method is successfully tested for the 152 000 km2 floodplain region of Hai River Basin using 48 consecutive months (2003–2006) of data. Soil moisture data from global land data assimilation system/Noah land surface model are validated with ground‐truth data from 102 soil moisture monitoring sites. The validated soil moisture is used in combination with in situ groundwater data to quantify total water storage change (TWSC) in the region. The estimated storage change is in turn compared with gravity recovery and climate experiment‐derived TWSC for the study area. The soil moisture and TWSC terms show favourable agreements, with discrepancies of < 10% on the average. While there is no consistent seasonal trend in soil moisture, TWSC shows a strong seasonality. It is low in spring and high in summer. This trend corresponds with the IRR–PPT season in the study area. Change in groundwater and total water storage indicates storage depletion in the basin. Storage depletion in the region is driven mainly by groundwater IRR and ET loss. Despite the low PPT and high ET, there is narrowing seasonal trend in soil moisture. This is achieved at the expense of groundwater storage. IRR pumping has induced extensive groundwater depletion in the basin. It is therefore vital to develop cultivation strategies that aim at limiting IRR pumping and ET loss. Water management practices that not only reduce waste but also ensure high productivity and ecological sustainability could also mitigate storage depletion in the region. These measures could reduce further not only the seasonal trend in soil moisture but also that in groundwater storage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号